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Abstract

This paper will examine the relationship between “Data Envelopment Analysis” and a statistical
concept “Outlier”. Data envelopment analysis (DEA) is a method for estimating the relative efficiency
of decision making units (DMUs) having similar tasks in a production system by multiple inputs to
produce multiple outputs. An important issue in statistics is to identify the outliers. In this paper,
we attempt to investigate the concept of the outliers determination by data envelopment analysis
and assess the manner of decision making units when a sample contains an outlier. We will start
by providing a review literature. We will then proceed with our proposed method and discuss the
strengths and weaknesses of our method. We will provide some numerical results to demonstrate the
applicability of our method.
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—————————————————————————————————–

1 Introduction

I
n recent years, applying data envelopment anal-
ysis has been investigated to different and var-

ious sciences and vice versa. In this research, we
are going to pay attention to a statistical concept
in data envelopment analysis.
As we know, the interdecile or interquartile
ranges may be used to represent the variability in-
frequently. A researcher can select either of these
measures to represent the variability. Sometimes,
there are a few extreme scores in a special dis-
tribution that the researcher likes to omit them.
Such extreme scores are referred to as ”outliers”.
Specifically, an outlier is a score within a set of
data which is so extreme that, by all appearances,
it is not representative of the population from
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which the sample is ostensibly derived. Since,
the presence of outliers can dramatically affect
the variability as well as the value of the sam-
ple mean, it may cause a researcher to believe
that the variability of a distribution might best
be expressed through the use of the interdecile
or interquartile range. That is, when outliers are
present, the sample median is more likely than
the mean to be a representative measure of cen-
tral tendency [18].
On the other hand, traditional models in DEA
evaluate the efficiency of a group of DMUs, in-
cluding itself. Against, the super-efficiency model
in DEA excludes each DMU from its own refer-
ence set, therefore, it is possible to obtain effi-
ciency scores that exceed one.
Banker and Gifford [3], proposed the use of super-
efficiency model to screen out DMUs by gross
data errors, and obtain more reliable efficiency
estimates after omitting the outliers identified.
Banker-Gifford method, BG hereafter, is sketched
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for when some DMUs contaminated and, with
the result that, classified erroneously as efficient.
The first step in BG recognizes the outliers as
DMUs whose super-efficiency score exceeds a pre-
specified screen level. In the next step, DMUs
identified as outliers are removed, and a tradi-
tional DEA model such as BCC or CCR model
will be used by the remaining DMUs. They
prove that the correlations between real efficiency
and estimated super-efficiency are negative for
the subset of efficient DMUs. Indeed, Banker
and Gifford’s procedure [3] for identifying out-
liers generalizes Timmer’s procedure [21].
Timmer proposes discarding a specific percentage
of efficient DMUs from PPS and re-estimating
the production frontier by using the remaining
DMUs. Another way to explain Timmer’s pro-
cedure is that a specific proportion of efficient
DMUs are classified as outliers and excluded be-
fore re-estimating the efficiency of the remaining
DMUs. BG’s procedure differs from that of Tim-
mer’s in that they propose the use of a screen
based on the super-efficiency score to identify
DMUs more likely to be contaminated by noise.
In other words, instead of throwing out an arbi-
trary set of efficient DMUs, BG suggest that only
DMUs by super-efficiency scores higher than a
pre-selected screen should be omitted.
Subsequently, Banker and Change [4] conducted
simultaneous experiments for outlier recognition
based on the super-efficiency procedure. Note
that, the difference between the above super-
efficiency model and BCC traditional model is
that, when the super-efficiency model is used,
the DMUo under evaluation will not be included
in the reference set for the constraints. Since
DMUo under evaluation is eliminated from the
reference set in the super-efficiency model, we
are not sure that a convex combination can be
generated from the remaining DMUs to envelop
DMUo from under for inputs and from above
for its outputs. Banker and Gifford [3] proved
that, while there is a feasible solution for the
super-efficiency model of CCR characteristic, it
may not be a feasible solution for the super-
efficiency model of BBC characteristic of certain
extreme DMUs. Though, for avoiding the compu-
tational problem associated with infeasible pro-
grams of BCC super-efficiency model, Banker and
Gifford [3] suggested a modified model. But,
the method developed has two basic difficulties.

Firstly, sometimes, when we contaminate some
units, only a few of them are identified as outliers
(Bellini. [6]). Secondly, it identifies those DMUs
as outliers when super-efficiency exceeds a pre-
defined measure. Whereas, probably, in a set of
data, some units are extremely efficient and their
efficiency scores are higher than pre-specified level
by super-efficiency model and this data set has no
outlier at all. That is, indeed, the first problem
of this model is that some outliers are hidden but
not identified as outliers. The second is that some
units are not outlier but identified as outlier er-
roneously.
The previous outlier identification methods were
only related to overly efficient outliers. But,
only Johnson and McGinnis [15] used the con-
cept of ”inefficient frontier” to detect possible
outliers performed poorly. Unfortunately, ”inef-
ficient frontier” is ad hoc and inconsistent with
the DEA standard axioms. Production theory
presumes that DMUs are bounded to those by
superior performance and that of interior points
respected to the efficient frontier and always fea-
sible. Simply applying former procedure, e.g.,
Pastor et al. [16] to inefficient DMUs violates
standard axioms of DEA (production theory) and
thus, it is logically problematic.
Chen and Johnson [8] developed a unified model
for identifying both inefficient and efficient out-
liers in DEA. Moreover, by allowing to detect the
outliers, the method described is compatible with
a relaxed set of DEA axioms. That is, the adapta-
tion of a relaxed set of DEA axioms permits the
identification and ranking of both efficient out-
liers influencing the efficiency evaluations and in-
efficient outliers probably affecting post analysis
procedures. But, one of the most important prob-
lem of this method is that, it is relaxing the as-
sumption of free disposability. In other word, this
method violates DEA standard axioms. Besides,
the applications of the model suggested may be
problematic, if the data set is ill-conditioned, i.e.,
the number of DMUs is small and the variables
do not vary over a sufficiently wide range.
At last, Bellini [6] combined the super-efficiency
DEA and the forward search to identify the out-
liers. The forward search is a statistical method
originally introduced in linear and nonlinear re-
gression by Atkinson and Riani [1] and so, it is
the first effort to extend the approach to a lin-
ear programming technique. As we know, there
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are several methods for outlier identification di-
viding the data set into two parts: a clean subset
and an outlier subset. The clean data are used
to evaluate the model parameters. By contrast,
the forward search is based on the following idea:
they are built up of an initial subset of a few
DMUs adding an additional DMU, step by step.
The increasing subset is built up by those DMUs
that are the closest according to a pre-specified
level. But, this method has some difficulties as
follows: when we note to a statistical model, for
instance a regression model, we can evaluate its
parameters on a subset of data and calculate fit-
ting errors. When focusing on DEA, we can cal-
culate efficiency scores which are not parameters
for fitting the model to data. Thus, fitting errors
can not be calculated. The next one is the def-
inition of boundaries by which the inference on
outlier will be made. Additionally, the calcula-
tion process is very complex and the simulation
developed in that paper is for when there is one
output and multi inputs. Of course, theoretically,
the process of applying the method is represented
in a case by multi inputs and multi outputs. But,
practically, the method developed is very difficult
and complex.
In continue, this paper proceeds as follows: Sec-
tion 2 discusses the basic DEA models, defining
the outliers and reviewing some methods to find
them. Section 3 scrutinizes the concept of outlier
and proposes a new method for finding it by com-
plementary discission in data envelopment analy-
sis. Section 4 provides some numerical examples
according to what said in previous sections. Fi-
nally, conclusions are given in section 5.

2 Background

Data Envelopment Analysis (DEA) is a tech-
nique being used widely in the literature of
supply chain management. This non-parametric,
multi-factor approach enhances our ability to
capture the multi-dimensionality of the perfor-
mance discussed earlier. More formally, DEA
is a mathematical programming technique to
measure the relative efficiency of decision making
units (DMUs) where each DMU has a set of
inputs to produce a set of outputs, (Ross et al.
[17]). Consider DMUj , (j = 1, ..., n), where each
DMU consumes m inputs to produce s outputs.
Suppose that the observed input and output

vectors of DMUj are Xj = (x1j , ..., xmj) and
Yj = (y1j , ..., ysj) respectively, and let Xj ≥ 0,
Xj ̸= 0, Yj ≥ 0, and Yj ̸= 0.
The production possibility set Tc is defined as:

Tc =
{
(X,Y ) | X ≥

n∑
j=1

λjXj , Y ≤
n∑

j=1

λjYj

}
where λj ≥ 0, j = 1, . . . , n

The above definition implies that the CCR
model is as follows, (Charnes et al. [7]):

Min θ
s.t

n∑
j=1

λjxij ≤ θxio, i = 1, . . . ,m

n∑
j=1

λjyrj ≥ yro, r = 1, . . . , s

λj ≥ 0, j = 1, . . . , n
(2.1)

Moreover, the production possibility set Tv is
defined as:

Tv =
{
(X,Y ) | X ≥

n∑
j=1

λjXj , Y ≤
n∑

j=1

λjYj

}
s.t

n∑
j=1

λj = 1, λj ≥ 0, j = 1, . . . , n

The above definition implies that BCC model is
as following, (Banker et al. [2]):

Min θ
s.t

n∑
j=1

λjxij ≤ θxio, i = 1, . . . ,m

n∑
j=1

λjyrj ≥ yro, r = 1, . . . , s

n∑
j=1

λj = 1 λj ≥ 0, j = 1, . . . , n

(2.2)

The efficiency data envelopment analysis mod-
els assessing decision making units are unable to
discriminate between efficient DMUs. The dis-
crimination of these efficient units is an interest-
ing subject matter. For ranking decision making
units, an important model is proposed by Ander-
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sen and Petersen (AP). This model is:

AP : Min θo
s.t.
n∑

j=1,j ̸=o

λjxij ≤ θoxio , i = 1, · · · ,m

n∑
j=1,j ̸=o

λjyrj ≥ yro , r = 1, · · · , s

λj ≥ 0 , j = 1, · · · , n, j ̸= o

(2.3)

Definition 2.1 (Reference Set) For a DMUo,
the reference set Eo will be:
Eo = {j | λ∗

j > 0, in some optimal solution to
model (1) or (2)} (Cooper et al., [9]).

Definition 2.2 (Pareto-Koopmans Effi-
ciency). A DMU is fully efficient, if and only if,
it is not possible to improve any input or output
without worsening some other input or output,
(Cooper et al., 2002).

Definition 2.3 A DMUo is extreme efficient, if
and only if it satisfies the following two condi-
tions:
(i) It is efficient(Pareto-Koopmans Efficient).
(ii) | Eo |= 1. (Gholam Abri et al. [12])

Definition 2.4 (Median) The median is the
middle score in a distribution. In order to de-
termine the median, if there is an odd number of
scores in a distribution, the following procedure
can be used: Divide the total number of scores to
2 and add 0.5 to the result of the division.

The value calculated shows the ordinal position
of the score representing the median of the
distribution. Thus, if we have a distribution
consisted of five scores (e.g., 6,8,9,13,16), we will
divide the number of scores in the distribution
to two, and add 0.5 to the result of the division.
The obtained value 3 represents that if five scores
are arranged ordinally, the median will be the
3rd score in the distribution. Respected to the
mentioned distribution, the value of the median
will be equal to 9, since it is the score in the 3rd
ordinal position. If there are an even number of
scores in a distribution, there will be two middle
scores. The median is the average of the two
middle scores (Sheskin., [18]).

Theorem 2.1 (Central Limit Theorem) If a
sample by n member is taken from a statistical
population by the mean of µ and the variance of
σ2, if n is adequately large (n ≥ 30), then the
sample average X will have a normal distribution
by the mean µ and standard deviation σ√

n
.

Here, the concept of outliers and the way of
recognizing them will be discussed. An outlier is
an observation or subset of observations in a set
of data appearing inconsistent with the rest of
the data. In most instances, inconsistency is re-
flected in the magnitude of an observation. That
is, it is either much higher or much lower than
any of the other observations (Banker et al., [4]).
Yet, what appears to be an inconsistent/extreme
score to one observer may not appear to be so to
another. Barnett and Lewis [5] emphasizes that
a definable characteristic of an outlier is that it
elicits genuine surprise in an observer.
To illustrate the fact that what may surprise
an observer may not surprise another, we will
consider an example cited by Barnett and Lewis
[5]. They represented data developed by Fisher,
Corbet, and Williams [10] describing the number
of moths of a specific species caught in light-traps
mounted in a geographical locale in England.
The following 15 observations were obtained.

3,3,4,5,7,11,12,15,18,24,51,54,84,120,560

Barnett and Lewis [5] pointed out that, though
the value 560 might appear to be an observation
surprising most observers, in fact, it is not an
anomaly. The reason why 560 would not be
classified as an outlier, is that an experienced
entomologist would be privy to the fact that
the distribution under study is characterized
by a marked skewness and consequently, an
occasional extreme score in the upper tail such
as the value 560 is a matter-of-fact occurrence.
Thus, a researcher familiar with the phenomenon
under study would not classify 560 as an outlier.
Stevens [20] represented that there are basically
two strategies used to deal with outliers. The
first strategy is to develop and apply procedures
for identifying outliers. By the latter strategy,
criteria should be established to determine under
what conditions one or more scores identified as
outliers should be deleted from a set of data.
The second approach is to develop statistical
procedures not influenced or least affected by the
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presence of outliers. Such procedures commonly
called robust statistical procedures. The term
”robust” as noted earlier, refers to procedures
not overly depended on critical assumptions
regarding an underlying population distribution.
The discussion of outliers within the framework
of robustness is predicated on the fact that the
presence of outliers may lead to the violation of
one or more assumptions underlying a statistical
test.
Barnett and Lewis [5], by representing the most
comprehensive source of the subject, describe
a large number of tests for identifying outliers.
They describe 48 tests alone for the detection
of outliers in data assumed to be drawn from a
normal distribution. Some tests are designed to
identify a single outlier. Others are designed to
identify multiple outliers and the rest are specific
respected to the identification of outliers in one
or both tails of a distribution. Additionally,
tests are described to detect outliers in data
assumed to be drawn from any number of a
variety of non-normal distributions. Given the
large number of tests available for detecting
outliers, it is not unusual that two or more
tests applied to the same set of data may not
agree with one another whether a specific DMU
should be classified as an outlier or not. In
order to recognize the outliers, there are some
methods. From which two of them are reviewed
in following:

Two Procedures for Identifying
Outliers.

First. Sprent [19],[22] proposes a procedure for
identifying outliers as being relatively robust.
The procedure uses equation (2.4) to determine
whether a score in a sample of n DMUs should
be classified as an outlier or not:

|Xi −M |
MAD

> Max (2.4)

Where:
Xi represents any of the evaluated scores n re-
spected to whether it is an outlier.
M is the median of the n scores in the sam-
ple.
MAD is the median absolute deviation.

Max is the critical value the result to the left of
the inequality must exceed to conclude the value
Xi is an outlier.
To illustrate the application of equation (2.4), as-
sume we have a sample consisted of the following
five scores: 2,3,4,7,18. Next, we determine the
median or the middle score of the sample as 4.
We compute the absolute deviation of each score
from the median: |2−4|= 2, |3−4|= 1, |4−4|= 0,
|7−4|= 3, |18−4|= 14. By arranging four devia-
tion scores ordinally (0,1,2,3,14), we determine
the median of five deviation scores as 2. The
latter value represents MAD in equation (2.4).
Since, the only value we would suspect to be an
outlier is the score 18, we use that value to rep-
resent Xi in equation (2.4). We will assume the
data are derived from a normal distribution, so
we apply the value Max=5. Substituting the ap-
propriate values in the left side of equation (2.4),

we compute |18−4|
2 = 7. The obtained value 7

is greater than Max=5, so we conclude that the
score 18 is an outlier.
Second. The latter test is developed by Grubbs
(1969) as follows:

Tn =
| Xi −X |

s
(2.5)

Calculated test of statistic Tn is referred to
the ”extreme studentized residual”. By using
the equation (2.5) to compute Tn, we require
a sample mean (based on all scores including
the suspected outlier) to be subtracted from the
value of a suspected outlier (Xi).
The resulting difference is divided to by the
value calculated for s which is based on all
scores in the sample, just like the mean including
the suspected outlier with the equation following:

s =

√∑
(Xi−X)2

n−1 (3)

The value calculated for Tn evaluated by
special tables may be found in resources describ-
ing the test. In order to illustrate the application
of equation (2.5), assume we have a sample
consisted of the following five scores:
2,3,4,7,18.

By using equation (2.5), according to data

mentioned Tn = |18−6.8|
6.53 = 1.72 which its

turn-out is significant at the level 0.05. So,
we conclude that the score 18 is an outlier,
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(Sheskin., 2000).

3 Evaluating DMUs in the
Presence of the Outliers and
Complementary Discussion

3.1 Proposed Method

In this section, a statistical method is used to
recognize outliers. When an inferential statistical
test is used by one or more samples to draw infer-
ences of one or more populations, such a test may
make certain assumptions about the shape of the
distribution of underlying population. The most
commonly used assumption is that a distribution
is normal. That is, the most important continu-
ous probability distribution is normal one in the
whole statistics. Its histogram is called ”Normal
Curve” and it has a bell-shape representing some
different and numerous events in the nature, in-
dustries and researches.
In the year 1733, Demoivre found out a mathe-
matical formula for normal distribution. Normal
distribution parameters include the average µ, (
−∞ < µ < +∞ ) and the variation σ2 > 0.
There is a simple interpretation about standard
deviation in normal distribution explained by Fig.
1. Any normal distribution can be converted into
what is referred to as the standard normal distri-
bution by assigning it (µ=0, σ=1).
Standard normal distribution is used more fre-
quently in inferential statistics than any other
theoretical probability distribution. The use of
the term theoretical probability distribution in
this context is based on the fact that it is known
that, in the standard normal distribution, a cer-
tain proportion of cases will always fall within
specific areas of the curve. As a result, if one
knows how far a score is removed from the mean
of the distribution, one can specify the propor-
tion of cases obtaining that score as well as the
likelihood of randomly selecting or objecting by
the score. So, based on the normal distribution
explained previously, central limit theorem and
that, experimentally, the number of variables by
normal distribution is usually more than variables
by non-normal distribution, identification of out-
liers is also relied on this distribution. As ex-
plained in previous part, an outlier is the data
by values greater or smaller than the others. On

the other hand, data envelopment analysis, is a
method for evaluating the efficiency of decision
making units and identifying the efficient fron-
tiers. Suppose that all decision making units are
evaluated in a specific example and an efficiency
score would be concluded for each of them. The
score is between 0 and 1, (Cooper et al. [9]). In
addition, suppose that all identification criteria
of outlier units are the score of units efficiency.
Because, the units by lower efficiency scores have
no effect in assessing the units by upper efficiency,
no attention will be paid to the outliers by lowest
efficiency scores when evaluating decision making
units (weak outlier). This subject is the main dif-
ference between the definition of outliers in DEA
and in Statistics.
In this way, the outliers are considered in such

X

f(X)

µ

σ
2

Figure 1: Normal curve

a way that their efficiency scores are absolutely
1 (strong outlier). It is expected that, in sam-
ples by such outliers, the efficiency score to be 1
and the rest of the units, in comparison with the
score 1, represents a sudden decrease. In these
samples, a few outliers units have the efficiency
score 1, the rest would be inefficient by a great
difference. So, it seems that the evaluation of the
units would be unreal in such circumstances. It
is why some outliers are exception in population
considered and it is not logical to compare com-
mon units with them.
For instances, Albert Einstein and Isaac Newton
were very famous and popular for the best contri-
bution in human society. But, as we know, these
two scientists, in comparison with other people,
are the exceptions and if we compare them, all
people will be inefficient. So, these two people
are as outliers. Therefore, prior to proposing
our method for identifying outliers, a definition
of them in DEA is provided.

Definition 3.1 (Outlier in DEA) DMU is an
outlier, if and only if, it’s efficiency score is abso-
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lutely 1 and the efficiency score of other units in
comparison to them have a sudden decrease and
close to 0. In other words, outliers have 2 char-
acteristics:

I. They are recognized as super-efficient units.
II. The efficiency score of other units compared
to them are extremely low.
Initially, the outliers would be determined and
omitted from the sample considered, then the rest
of units would be evaluated to be closer to the re-
ality. So, the score concluded for the rest of the
units will be considered as efficiency scores.
As we know, the main objective is to determine
the outliers by data envelopment analysis and
the methods mentioned suggest many outliers ap-
pearing as an outlier according to the observation
by data envelopment analysis are not really so.
To overcome this difficulty, a new method is pro-
posed for recognizing real outliers as follows.
1. First, a sample by one main model in DEA
such as CCR, BCC or etc is used and its effi-
ciency scores will be calculated.
2. Second, Kolmogrov-Smirnov test is done on
the units efficiency scores. Also, the histogram of
the units efficiency scores can confirm the data
having or not having normal distribution. If the
test confirms that the units efficiency scores have
a normal distribution, then, it can be said that
this sample has no outlier. But, if it figures out no
normal distribution, the sample will have outlier.
In this step, all units having the efficiency score
1, are wiped out from the PPS and then, the rest
of units will be evaluated again by a DEA model.
Again, Kolmogrov-Smirnov test is used to con-
sider the properties of the efficiency scores of the
units. If the test demonstrates that the units ef-
ficiency scores have a normal distribution, it can
be claimed that the new sample has no outlier
anymore and the units efficiency scores will be
accepted without any difficulties. Nevertheless,
the procedure goes on to determine and omit all
samples outliers.
3. After omitting all outliers, the efficiency scores
obtained would be considered as units efficiency
scores in the next step. By doing so, the real ef-
ficiency of the units will be observed.
Here, an important point is the determination of
efficiency score of outlier units removed from the
PPS. Because, based on the reasons explained,
these units are removed to estimate the real ef-
ficiency score of other units. But, there is no

method for calculating the efficiency score of
these units.
4. Now, to calculate the efficiency scores of the
outliers compared to other DMUs the following
method will be used. Firstly, according to what
said previously, outliers will be identified if exist-
ing. Then, in order to help our development, we
classify the set of n DMUs into two classes:
1. Class Ω1, a clean subset containing all com-
mon units without any outlier.
2. Class Ω2, an outlier subset containing all out-
liers. ( if existing ).
If the second set is vacuous, that is, when produc-
tion possibility set is without outlier, the evalua-
tion of the units will not be difficult. But, when
the second set is not vacuous, having at least one
member, for evaluating the first set, after remov-
ing the outlier units, the method will be used as
said before. The evaluation of the second set can
be as following. Assume the set Ω2 contains out-
liers as:
Ω2 = {DMU1, . . . , DMUl}
So, we calculate the efficiency scores of the sec-
ond set member as follows:
First, add each member of Ω2 to Ω1 one by one:
Γ1 = Ω1

∪
{DMU1}

Γ2 = Ω1
∪
{DMU2}

...
Γl = Ω1

∪
{DMUl}

Then, we use the AP model for Γi, for each i
∈ {1, 2, . . . , l} separately, and we will obtain the
efficiency scores for DMU1, DMU2, . . . , DMUl

introduced as outliers ( Gholam Abri et al., [11]
[13] [14]). An important point is that the effi-
ciency scores of these units surely are far away
1. So, noting that the data are usually of the
first set, that is, Ω1, the efficiency scores will be
between 0 and 1. In addition, outliers have the
efficiency scores considerably higher than 1 com-
pared to other common units, so the evaluation
of the whole units will be closer to the reality.
The mentioned method can be represented with
the following flowchart: However, in continue, the
paper notes to different cases of DMUs evaluation
by the method developed. As it will be seen later,
it is very important to note to different probable
conditions. By paying attention to this subject
the probable difficulties of the method proposed
will be removed. Of course, it must be said that
the evaluation is not very simple in all cases. In
other word, there may be some different and ex-
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START

Evaluating sample with a model

Evaluating is OK

Finish

1. The Scores of common units can be obtained from 3 step.

2. The Scores of outliers can be obtained from 4 step.

Kolmogrov smirnov should carried out

Sample

Has

Outlier

No

Yes

Figure 2: Flowchart of the Method

ceptional conditions. So, it is necessary to have a
complementary discussion.

3.2 Complementary Discussion

As mentioned, for the classification of efficiency
score of the units under evaluation, the outliers
are units that their efficiency score, in comparison
with other units, are very small or very large in
data envelopment analysis. So, one of the follow-
ing items may be encountered in the investigation
of the outliers existence.
Case 3.2.1
The distribution of efficiency scores is normal
without any outlier. An example is considered
in Fig. 3. In this case, the units under evaluation

1 2 3 4 5 6 7 8

1

2

3

4

A

B

X

Y

C

E

F

D

Figure 3: Without Outlier

encounters no problem because of not having any
outlier.
Case 3.2.2
The set under-study has only strong outliers as

discussed in details.
Case 3.2.3
The set under-study has just weak outliers. Fig.
4 makes the matter clear. It is obvious that

1 2 3 4 5 6 7 8

1

2

3

4

A

B

X

Y

C D

E

F

G

H

OUTLIER 1 (WEAK)

OUTLIER 2 (WEAK)

Figure 4: Weak Outlier

Kolmogrov-Smirnov test does not confirm the
normal distribution. But, the histogram of the
sample represents the data having weak outliers.
In this way, since the efficient frontier is char-
acterized by the units having efficiency score 1,
these weak outliers have no effect in the evalua-
tion of the rest units. So, the units assessment is
done without any omitting.
Case 3.2.4
In this case, our assumption is that there are
both strong and weak outliers. The units are dis-
tributed in a way that Kolmogrov-Smirnov test
verifies normal distribution wrongly.
It represents a sense when the outliers exist in
sample, but, because of a symmetric distribution
between strong and weak outliers, Kolmogrov-
Smirnov test would verify it as a normal distribu-
tion. Also, the histogram of the units efficiency
scores confirms the matter. In such case, the
steps followed are in progress.
At first, the units are evaluated by a basic model
in DEA, such as CCR or BCC and then, effi-
cient units are wiped out from the production
possibility set. Two cases can be considered:
A. Kolmogrov-Smirnov test and units efficiency
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Figure 5: Strong and Weak Outlier
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scores histogram also would not figure out the
normal distribution any more. In this circum-
stance, the data distribution are not normal. Be-
cause the strong outliers are omitted from the
PPS, but there are weak outliers in the sam-
ple under-study. In following, after omitting
strong outliers, units efficiency scores are calcu-
lated again and then it goes to the end.
B. Kolmogrov-Smirnov test and histogram rep-
resent a normal distribution. But, both of them
claim that the normal distribution has a worse
condition compared to previous case. That is,
the normal distribution, at least, moves a little
away from symmetric condition. In this context,
the rest units are evaluated by the help of a main
model in DEA such as CCR or BCC and so, the
efficient units are omitted from the PPS. In con-
tinue, either ”A” or ”B” will be encountered. If
”A”, the process will be cleared as we said per-
viously. If ”B”, the process will be continued to
meet ”A”. Since, the number of outliers in com-
parison with the number of other units is few;
mostly, 5 percent, omitting the efficient units will
be continued till 5 percent of total DMUs.
Important Points.
As said in Fig. 5, because there are both strong
and weak outliers in sample and Kolmogrov-
Smirnov test verifies it as a normal distribution,
after omitting the strong outliers from the PPS
and using Kolmogrov-Smirnov test again on the
rest units, we will encounter a condition in which
the test does not confirm it as a normal distribu-
tion for the rest units. That is, by continuing the
process, the case ”A” would be met certainly. So,
after wiping out the strong outliers in this situa-
tion, the rest units will meet a circumstance like
the case 3.2.3
As it can be seen, the remaining units by weak
outliers represents that the data have no nor-
mal distribution. In fact, the units remained will
cause the conditions like the case 3.2.3 that, in
continue, a similar procedure will be applied to.

4 Applications to some data
sets

4.1 Data Set 1

Consider 10 DMUs by a single input and output
as defined in Table 1. By evaluating these DMUs
according to CCR model, we find out:
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Figure 6: Data set in CCR model

As observed in Fig. 6, DMUA is efficient and
the other units are inefficient. At first, according
to the new method, Kolmogrov-Smirnov test is
done on 10 units.
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Figure 7: The Histogram of 10 units

The results represent that the sample has an
outlier. Moreover, Fig. 7, the histogram of the
sample verifies the subject. Then, the unit A
which is efficient would be wiped out from the
PPS and after that, 9 remained units would be
evaluated in accordance with CCR model. It is
observed that DMUB is efficient and the rest
units are inefficient.
Kolmogrov-Smirnov test is done again on 9 units
remained. Results represent that the rest sample
has outlier as well. Again, Fig. 8, the histogram
of 9 remained units efficiency scores confirms no
normal distribution as follows:

The unit B is wiped out from the new PPS
and the 8 remained units are evaluated by CCR
model.
In 8 units remained, Kolmogrov-Smirnov test
confirms a normal distribution. On the other
hand, the histogram represents the matter in
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Table 1: Data and Result

DMUs Input Output The efficiency score (All units) step1 (after omitting A) step2 (after omitting A,B)

A 3 3 1.0000 —— ——
B 4 3.75 0.9375 1.0000 ——
C 5 1 0.2000 0.2133 0.9600
D 6 1.25 0.2083 0.2222 1.0000
E 6.5 1 0.1583 0.1641 0.7385
F 6 1 0.1667 0.1778 0.8000
G 7 1.3 0.1857 0.1981 0.8914
H 7.25 1.4 0.1931 0.2060 0.9269
I 7.5 1.25 0.1667 0.1778 0.8000
J 8 1.5 0.1875 0.2000 0.9000
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Figure 8: The Histogram of 9 units

Fig. 9.

It is claimed that the units A and B are
outliers recognized along with 2 steps. So,we set:
Ω1 = {C,D,E, F,G,H, I, J}, Ω2 = {A,B}
Γ1 = Ω1

∪
{A}, Γ2 = Ω1

∪
{B}

Then, after omitting outliers, the actual assess-
ment is done and real conclusions are figured out
in the last column of Table 1. In continue, the
AP model will be used to calculate the efficiency
score of A and B for Γi, for each i ∈ {A,B}. So,
the efficiency score of the unit A is θ∗A = 2.67 and
the efficiency score of the unit B is θ∗B = 2.31. By
a little more attention to the results obtained,
the difference between the new method and the
pervious methods will be determined.
Point. As illustrated in figure 6, if the BCC
model was applied to the data set, units A and
B, would be recognized as outliers, since the effi-
cient frontier would not have a significant change.
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Figure 9: The Histogram of 8 units

4.2 Data Set 2

. As an application, the approach is used to some
branches of Iranian banks. The district is con-
sisted of 50 branches. Each branch uses 4 inputs
and like all systems have a process, 4 outputs
would be concluded. All data are normalized.
At first, the units will be evaluated by the CCR
model. Data and results are summarized in Ta-
ble 2. As it is represented in the conclusion col-
umn, 20th and 30th units are efficient and the
rest are not. In addition, the highest efficiency
score, except these two units, is the unit 12 that
θ∗12 = 0.4159. It represents a considerable gap
between 0.4159 and 1.
According to the new method, Kolmogrov-
Smirnov test is used to these 50 units. It is
shown that the data have no normal distribution.
The histogram of the units efficiency scores con-
firms that the data have no normal distribution
as shown in Fig. 10:

Now, DMU20 and DMU30 would be omitted
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Table 2: Data and Result

DMUs Input1 Input2 Input3 Input4 Output1 Output2 Output3 Output4 θ∗Old θ∗New

1 0.9333 0.7006 0.8276 0.4404 0.0556 0.1077 0.0026 0.5803 0.0586 0.5257
2 0.8667 0.9641 0.6810 0.3793 0.0518 0.0684 0.0107 0.6871 0.0805 0.6832
3 1.0000 0.8862 0.7974 0.3301 0.0857 0.1394 0.0039 0.7942 0.1069 0.6796
4 1.0000 0.4371 1.0000 0.2058 0.2213 0.1611 0.0064 1.0000 0.2160 0.9116
5 0.9333 0.7964 0.7888 0.3601 0.0949 0.0817 0.0102 0.7922 0.0978 0.7247
6 0.9333 1.0000 0.7759 0.4424 0.0644 0.0330 0.0038 0.5137 0.0516 0.4695
7 0.7333 0.5329 0.6250 0.2579 0.0454 0.0890 0.0023 0.5449 0.0939 0.6310
8 0.6667 0.7365 0.5733 0.1102 0.0253 0.0514 0.0050 0.3229 0.1302 0.4133
9 0.6667 0.8563 0.5086 0.2552 0.0698 0.1010 0.0007 0.6304 0.1098 0.8119
10 0.5333 0.3413 0.5086 0.1698 0.0778 0.1401 0.0172 0.4081 0.1068 0.6665
11 0.8000 0.6467 0.6940 0.2675 0.0687 0.0544 0.0011 0.8005 0.1330 0.8474
12 0.6000 0.6228 0.5043 0.0514 0.0710 0.0743 0.0031 0.4810 0.4159 1.0000
13 0.6000 0.6168 0.5129 0.0617 0.0724 0.0447 0.0010 0.3620 0.2608 0.6380
14 0.7333 0.6347 0.6207 0.1260 0.0591 0.0723 0.0011 0.4404 0.1553 0.5100
15 0.6667 0.7725 0.5431 0.0674 0.0537 0.0663 0.0124 0.5679 0.3745 0.9136
16 0.6000 0.4850 0.5302 0.1461 0.0395 0.0532 0.0068 0.4320 0.1314 0.6125
17 0.8000 0.4731 0.7672 0.1828 0.4035 0.1294 0.0026 0.8467 0.2059 0.8879
18 0.4000 0.2575 0.3707 0.0823 0.0323 0.0174 0.0007 0.4249 0.2295 0.8927
19 0.9333 0.6287 0.8405 0.3395 0.1402 0.3263 0.0207 0.6414 0.0840 0.6339
20 0.0600 0.0200 0.0700 0.0400 0.8000 0.7700 0.2500 0.9000 1.0000 ——
21 0.7333 0.5868 0.6552 0.1631 0.1791 0.3236 0.0105 0.6076 0.1656 0.7725
22 0.4000 0.3114 0.3319 0.1007 0.0317 0.0299 0.0028 0.3343 0.1475 0.7133
23 0.1100 0.0970 0.0931 0.1070 0.6677 0.5862 0.1553 0.9231 0.3834 1.0000
24 0.4000 0.3713 0.3233 0.1134 0.0296 0.0475 0.0023 0.2335 0.0915 0.5000
25 0.4667 0.2275 0.4828 0.1774 0.0386 0.0256 0.0006 0.2778 0.0696 0.5265
26 0.8000 0.4910 0.7457 0.2512 0.0663 0.0375 0.0011 0.8220 0.1454 0.8629
27 0.8000 0.6707 0.6983 0.1646 0.0803 0.1486 0.0016 0.6497 0.1754 0.6873
28 0.4667 0.3713 0.4138 0.1911 0.0359 0.0430 0.0032 0.2765 0.0643 0.5027
29 0.7333 0.4251 0.6897 0.1183 0.6867 0.2694 0.0028 0.8741 0.3284 1.0000
30 0.0500 0.0300 0.0800 0.0500 0.7500 0.8000 0.2000 0.9150 1.0000 ——
31 0.4667 0.3234 0.0995 0.0545 0.0430 0.0362 0.0006 0.5040 0.4110 1.0000
32 0.5333 0.6287 0.4138 0.2839 0.0228 0.1653 0.0015 0.2482 0.0467 0.4759
33 0.8667 0.7066 0.7543 0.2725 0.2847 0.3709 0.0098 0.7874 0.1284 0.8237
34 0.2000 0.1138 0.1810 0.0309 0.0141 0.0125 0.0005 0.1125 0.1618 0.4807
35 0.5333 0.3054 0.5000 0.1354 0.1500 0.2461 0.0154 0.3450 0.1132 0.7085
36 0.3333 0.3174 0.2802 0.1778 0.0319 0.0445 0.0035 0.2240 0.0622 0.5749
37 0.4000 0.3174 0.3405 0.1592 0.0770 0.0352 0.0006 0.3783 0.1056 0.8027
38 0.6000 0.2934 0.5862 0.2140 0.0852 0.0683 0.0009 0.5308 0.1102 0.7818
39 0.5333 0.3713 0.5000 0.1903 0.0805 0.0628 0.0004 0.4393 0.1026 0.6913
40 0.7333 0.3713 0.7241 0.2646 0.2638 0.2923 0.0226 0.6747 0.1133 0.8198
41 0.4667 0.4431 0.3750 0.5637 0.0580 0.0984 0.0018 0.3487 0.0723 0.6389
42 0.5333 0.4431 0.4440 0.0617 0.0327 0.0251 0.0006 0.3712 0.2674 0.6504
43 0.4667 0.3353 0.3966 0.1364 0.0554 0.0909 0.0022 0.5263 0.1715 0.9579
44 0.4667 0.3413 0.4009 0.2264 0.0441 0.0739 0.0074 0.5425 0.1065 0.9910
45 0.6000 0.4192 0.5172 0.1274 0.0562 0.0508 0.0029 0.5473 0.1909 0.7740
46 0.5333 0.2994 0.4741 0.3540 0.0816 0.0490 0.0022 0.5587 0.0917 0.8901
47 0.4667 0.5449 0.4095 0.0886 0.0385 0.0633 0.0012 0.2773 0.1391 0.5029
48 0.4667 0.4910 0.3750 0.4702 0.0384 0.0282 0.0024 0.4197 0.0870 0.7692
49 0.6667 0.3892 0.6336 0.1749 0.0911 0.2292 0.0015 0.7404 0.1881 0.9317
50 0.2667 0.1796 0.2586 0.0720 0.0387 0.0282 0.0005 0.2483 0.1533 0.7810

from PPS and Kolmogrov-Smirnov test will be
implemented on the units remained.

By doing so, the rest of 48 samples have a normal
distribution. It can be claimed that there is no
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Figure 10: The Histogram of 50 units

outlier in 48 units. On the other hand, Fig. 11,
the histogram confirms the matter as following:
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Figure 11: The Histogram of 48 units

Obviously, the units 20 and 30 are efficient as
well and have the efficiency score 1. So, these
units are outliers. So,we set:
Ω1 = {DMU1, ..., DMU19, DMU21

, ..., DMU29, DMU31, ..., DMU50}

Ω2 = {DMU20, DMU30}
Γ1 = Ω1

∪
{DMU20}, Γ2 = Ω1

∪
{DMU30}

Then, after omitting outliers, the actual assess-
ment is done and real conclusions are figured out
in the last column of Table 2. In continue, the
AP model will be used to calculate the efficiency
score of DMU20 and DMU30 for Γi, for each i
∈ {20, 30}. So, the efficiency score of the unit 20
is θ∗20 = 2.43 and the efficiency score of the unit
30 is θ∗30 = 2.38.
By using the method proposed, real efficiency of

the units will be observed. Specially, we can see
that the number of efficient units are increased.

5 Conclusion

In this paper, a conceptual application of statis-
tics called ”outlier” are studied by data envel-
opment analysis. Moreover, a new method will
be proposed to determine the outliers in samples
under evaluation. As a contribution, the units by
lower efficiency score have no effect on units by
higher scores when evaluating the decision mak-
ing units and so, the efficiency frontiers would be
constructed by efficient units. Then, we are not
going to consider the outliers by very small effi-
ciency score.
On the other hand, recognizing the outliers by ef-
ficiency score 1 is essential. Because these units
are exceptions of the population, the comparison
between common units and these outliers leads to
the conclusion that there is a long way to the re-
ality. It is anticipated that, after recognizing the
outliers and wiping them out from the production
possibility set, the conclusion will be closer to the
reality.
But, the priority of this method to the previous
ones is that, in addition to its very simple com-
putational process like other methods developed
formally, it has no need to determine pre-specified
level to identify outliers. That is, it works dynam-
ically. Consequently, the problems of the previ-
ous methods are solved. According to the new
method introduced, there is a problem in practi-
cal examples. The outliers by very weak perfor-
mance ( lower efficiency score) in statistical anal-
ysis frustrates the outliers effect by a very good
performance ( higher efficiency score ). It makes
a symmetric score distributions. In this way, it
is possible that Kolmogrov-Smirnov test confirms
the distribution scores as normal. But, the out-
liers with strong performance exist in samples re-
ally.
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