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Abstract

One of the major problems in Data Envelopment Analysis (DEA) is to determine the projection of
inefficient Decision Making Units (DMUs) into the efficient frontier. In conventional DEA models,
inputs and outputs of inefficient DMUs alter arbitrarily for reaching to the efficient frontier. Never-
theless, sometimes the ability of DMUs is defined and restricted. Moreover, there are situations in
the real world applications that limited resources exist. Therefore, in these cases inputs and outputs
cannot vary irrationally. Actually, there are pre-specified alteration levels of inputs and outputs. For
this purpose, the current study proposes DEA-based models, radial and non-radial models, to evaluate
the relative efficiency of DMUs with restricted input and output variables. Furthermore, non-radial
super-efficiency models are extended for ranking efficient DMUs. An example from the banking sector
is used to illustrate the proposed approach.
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—————————————————————————————————–

1 Introduction

D
ata envelopment analysis (DEA), popularized
by Charnes et al. [5] and Banker et al. [2], is

a non-parametric technique to evaluate the rela-
tive efficiency of DMUs with multiple inputs and
multiple outputs. The set of observations in DEA
define a production possibility set (PPS) and the
boundary points of this set construct the efficient
frontier. Decision making units (DMUs) that be-
long to the boundary are called efficient and the
others are inefficient. The reference set for inef-
ficient units consists of efficient units and deter-
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mines a virtual unit on the efficient frontier. In
conventional DEA models, inefficient DMUs re-
duce their inputs and increase their outputs (with
considering desirable factors) arbitrarily to meet
the efficient frontier. These variations can be
made in different ways: radially and non-radially.
In radial models, inefficient DMUs can be im-
proved by fixing the outputs (inputs) and radi-
ally reducing the inputs (increasing the outputs)
until the efficient frontier is met. However, non-
radial models consider the input excesses and the
output shortfalls simultaneously in arriving at a
point on the efficient frontier which is most dis-
tant from inefficient DMU. In many real appli-
cations of DEA, because of some limitations in
resources and DMU’s ability, these changes can-
not be made arbitrarily. For instance, in eval-
uating the efficiency of banks, a factor like the
number of staffs is considered as an input and
a factor like income is deemed as an output. As-
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sume in a survey of banks, 20 staffs exist in a bank
while income is 4000 dollars. In addition, suppose
this bank is specified as an inefficient bank after
evaluating by means of conventional DEA mod-
els; that it should decrease staffs to 5 individuals
and increase income to 8000 dollars for reaching
to the efficient frontier. Nonetheless, the bank
is not able to achieve the aforementioned situ-
ation. In these situations, there are predefined
variation levels of inputs and outputs that are
determined by decision makers. Unlike the clas-
sical DEA models, the target unit for inefficient
DMU is not necessarily efficient in these cases.
In the current paper with considering these pre-
defined variation levels on inputs and outputs, re-
stricted DEA models are proposed to determine
the relative efficiency of DMUs with restricted
variables. To illustrate, radial and non-radial
models are introduced to assess the performance
of DMUs where input and output variations are
restricted. Furthermore, approaches are sug-
gested for ranking the efficient DMUs. As far as
we see the DEA literature, there is no study about
the subject except Kordrostami et al. [8] that
have considered the variation levels in radial mod-
els where undesirable outputs exist while in this
study, radial and non-radial models are proposed
that incorporate restricted variations. Moreover,
slacks-based super-efficiency models are extended
for ranking efficient units. Indeed, in DEA con-
texts, radial and non-radial models exist for rank-
ing the efficient DMUs. Readers can refer to
[1, 6, 9, 11, 6] for more information. In this
study, non-radial super-efficiency models are used
and generalized because the slacks-based super-
efficiency DEA models are always feasible, that
is, Tone’s model [11] and Du et al.’s model [7]
are extended for occasions that these restrictions
exist. Also, the efficiency scores of Iranian bank
branches are calculated and ranked by using the
suggested methods.
The paper is organized as follows: Section 2 re-
views some basic concepts and models in DEA
that are applied and extended in this study. Next,
the suggested approaches are provided and illus-
trated in Section 3. A case study of commercial
bank branches in Iran is given in Section 4. Fi-
nally, conclusions appear in Section 5.

2 Preliminaries

Consider n DMUs, DMUj(j = 1, 2, ..., n), that
each DMU consumes m inputs xij , i = 1, 2, ...,m
and produce s outputs yrj , r = 1, 2, ..., s. Charnes
et al. [5] proposed the following model, called
CCR (Charnes, Cooper, and Rhodes) model, for
evaluating the efficiency of DMUs.

Min θ
s.t.

∑n
j=1 λjxij ≤ θxip, i = 1, 2, ...,m,∑n

j=1 λjyrj ≥ yrp, r = 1, 2, ..., s,

λj ≥ 0, j = 1, 2, ..., n.

(2.1)

If the constraint
∑n

j=1 λj = 1 is added to model
(2.1), we will have the BCC model, introduced
by Banker et al. [2]. The aforementioned models,
the CCR and BCC models, are radial models. In
DEA contexts, there are, also, non-radial models
like slacks-based measure (SBM) of efficiency, the
additive model. Readers can refer to Tone [10]
and [4] for more information.

Further, as mentioned in the previous section,
there are models for ranking efficient DMUs in
the DEA literature. Here, we review non-radial
models that are extended in this study. Tone [11]
proposed the following model for distinguishing
efficient DMUs.

Min (1 + 1
m

∑m
i=1

t−ip
xip

)/(1− 1
s

∑s
r=1

t+rp
yrp

)

s.t.
∑n

j=1,j ̸=p λjxij ≤ xip + t−ip, i = 1, 2, ...,m,∑n
j=1,j ̸=p λjyrj ≥ yrp − t+rp, r = 1, 2, ..., s,

λj ≥ 0, t−ip ≥ 0, t+rp ≥ 0, j = 1, 2, ..., n, j ̸= p

i = 1, 2, ...,m, r = 1, 2, ..., s.
(2.2)

Furthermore, Du et al. [7] introduced the ad-
ditive super-efficiency model for ranking efficient
DMUs as follows:

Min
∑m

i=1 t
−
ip +

∑s
r=1 t

+
rp

s.t.
∑n

j=1,j ̸=p λjxij ≤ xip + t−ip, i = 1, 2, ...,m,∑n
j=1,j ̸=p λjyrj ≥ yrp − t+rp, r = 1, 2, ..., s,

λj ≥ 0, t−ip ≥ 0, t+rp ≥ 0, j = 1, 2, ..., n, j ̸= p

i = 1, 2, ...,m, r = 1, 2, ..., s.
(2.3)
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In both models (2.2) and (2.3), t−ipand t
+
rp indicate

amounts by which inputs increase and outputs de-
crease forDMUp to reach the frontier constructed
by the remaining DMUs.

3 Flexibility of variations

In this section some radial and non-radial mod-
els are proposed that regard restricted variations.
Actually, in the real world, there are occasions
that the input and output factors of DMUs can-
not change arbitrarily. To illustrate, a DMU
is not able to reach some situations. In this
study, knowledge of managers and decision mak-
ers about resources, products, and DMU’s ability
has a considerable effect on determining the effi-
ciency of firms. The structure of this system is
displayed as follows:

Figure 1: A System.

3.1 Restricted variations in radial
Models

As previous section, suppose there are n DMUs,
DMUj(j = 1, 2, ..., n), with m inputs xij , i =
1, 2, ...,m and s outputs yrj , r = 1, 2, ..., s. In-
efficient units in DEA should increase their out-
put levels and simultaneously decrease their in-
put levels according to equations (3.4) to become
efficient.∑n

j=1 λjxij ≤ xip, i = 1, 2, ...,m,∑n
j=1 λjyrj ≥ yrp, r = 1, 2, ..., s.

(3.4)

The conventional DEA models assume that re-
ducing inputs and increasing outputs can be
made arbitrarily. In real applications, however,
because of limited resources, infinite variations in
inputs and outputs are impossible.

Suppose the i-th input of DMUp is limited to
decrease to xip − αip ≥ 0. Similarly, the r-th
output of DMUp is limited to increase to yrp +
βrp ≥ 0. In other words

xip → xip − αip, i = 1, 2, ...,m,

yrp → yrp + βrp, r = 1, 2, ..., s
(3.5)

that αp = (α1p, α2p, ..., αmp)
t and βp =

(β1p, β2p, ..., βsp)
t. If (

∑n
j=1 λjxj ,

∑n
j=1 λjyj)be

the projection of DMUp in PPS (that is T),
clearly, we cannot expect this projection is lo-
cated on the frontier.

Considering the restricted variations (i.e.(3.5)),
the following constraints must be held:

∑n
j=1 λjxij ≥ xip − αip, i = 1, 2, ...,m,∑n
j=1 λjyij ≤ yrp +Brp, r = 1, 2, ..., s.

(3.6)

Now consider the efficiency assessment of DMUp

in CRS environment as follows:

min θ
(θxp, yp) ∈ T.

By the definition of T and taking the restrictions
(3.6) into consideration, we have the following lin-
ear programming:

Min θ

s.t.
∑n

j=1 λjxij ≤ θxip, i = 1, 2, ...,m,∑n
j=1 λjyrj ≥ yrp, r = 1, 2, ..., s,∑n
j=1 λjxij ≥ xip − αip, i = 1, 2, ...,m,∑n
j=1 λjyrj ≤ yrp + βrp, r = 1, 2, ..., s,

λj ≥ 0, j = 1, 2, ..., n.

(3.7)

The first two constraints in (3.7) are the usual
envelopment restrictions of the classical CCR-
model. The last two constraints take the re-
stricted variations imposed by decision makers
into consideration. To avoid the weak efficient
units in (3.7), the following revised model is pro-
posed:
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Table 1: Data for a Real Application.

Branch Personnel Cost Debt Resource Income Loan

1 19 2026 22585 187679 13304 102808
2 18 1953 21035 124349 2521 75509
3 11 1914 17861 72149 3153 57537
4 18 1753 39525 127370 5252 149860
5 17 1839 11796 89871 2673 51114
6 16 1989 9632 95288 4690 55757
7 14 1857 12830 150026 6783 106734
8 7 1511 14867 42654 2354 52485
9 12 1962 10383 97812 4782 67298
10 14 1430 15118 77031 1881 43487
11 17 1285 13955 89304 5766 84631
12 14 1409 11947 75923 2261 41442
13 9 1478 16423 47763 2028 43262
14 5 1500 3772 45732 756 14237
15 6 1153 31647 55222 863 41062
16 6 2429 4986 53323 2469 37418
17 8 2076 18700 69734 2433 57883
18 9 1838 7153 160138 8395 102353
19 9 1652 15773 49153 2364 47139
20 8 2100 7705 92365 5663 55543
21 32 167 446698 515578 40254 1277833
22 7 1944 3752 64236 1361 22347
23 9 1528 4875 89104 2681 45717
24 7 1728 30614 42012 2814 73925
25 7 2008 4584 69360 2240 27246
26 7 1670 4977 51438 2293 26531
27 6 1578 4495 39948 1151 20223
28 7 1514 9464 154284 1518 43928
29 7 1594 4953 61101 1855 25718
30 8 2079 5405 81544 1711 27985
31 9 1555 8109 79046 8085 58355
32 5 2051 5185 47876 648 14055
33 7 1543 9235 71606 4289 68341
34 8 2363 728 124146 8563 54541
35 6 1881 1577 77868 1965 33838
36 5 1537 3534 58696 2248 28746
37 13 2011 7806 148755 2697 38375
38 9 1609 6881 68792 4475 66061
39 5 1674 161 88358 756 14628
40 8 1608 3762 140413 3665 20398

e∗p =Min θ − ε
[∑m

i=1 s
−
i +

∑s
r=1 s

+
r

]
s.t.

∑n
j=1 λjxij + s−i = θxip, i = 1, , 2, ...,m,∑n

j=1 λjyrj − s+r = yrp, r = 1, , 2, ..., s,∑n
j=1 λjxij ≥ xip − αip, i = 1, , 2, ...,m,∑n
j=1 λjyrj ≤ yrp + βrp, r = 1, , 2, ..., s,

λj ≥ 0, j = 1, 2, ..., n.
(3.8)

in which ε is a very small positive constant (i.e.
a non-Archimedean constant).

Definition 3.1 DMUp is said to be efficient in
models (3.7) and (3.8) if and only if e∗p = 1.

Improvement in an inefficient unit is attained by
the following formula:

x̂ip ←
∑n

j=1 λjxij , i = 1, 2, ...,m,

ŷrp ←
∑n

j=1 λjyrj , r = 1, 2, ..., s.
(3.9)
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Table 2: The Levels of Variations for all Branches.

Branch α1 α2 α3 β1 β2 β3

1 4 405.2 6775.5 56303.7 2660.8 5140.4
2 4 390.6 6310.5 3304.7 504.2 3775.45
3 2 382.8 5358.3 21644.7 630.6 2876.85
4 5 350.6 11857.5 38211 1050.4 7493
5 4 367.8 3538.8 26934.3 534.6 2555.7
6 5 397.8 2889.6 28586.4 938 2787.85
7 4 371.4 3849 45007.8 1356.6 5336.7
8 2 302.2 4460.1 12796.2 470.8 2624.25
9 3 392.4 3114.9 29343.6 956.4 3364.9
10 4 286 4535.4 23109.3 376.2 2174.35
11 5 257 4186.5 26791.2 1153.2 4231.55
12 3 281.8 3584.1 22776.9 452.2 2072.1
13 2 295.6 4926.9 14328.9 405.6 2163.1
14 1 300 1131.6 16566.6 151.2 711.85
15 1 230.6 9494.1 15996.9 172.6 2053.1
16 1 485.8 1495.8 20920.2 493.8 1870.9
17 2 415.2 5610 48041.4 486.6 2894.15
18 3 367.6 2145.9 14745.9 1679 5117.65
19 2 330.4 4731.9 27709.5 472.8 2356.95
20 2 420 2311.5 154673.4 1132.6 2777.15
21 7 33.4 134009.4 19270.5 8050.8 63891.65
22 1 388.8 1125.6 26731.2 272.2 1117.35
23 3 305.67 1462.5 12603.6 536.2 2285.85
24 2 345.6 9184.2 20808 562.8 3696.25
25 1 401.6 1375.2 15431.4 448 1362.3
26 2 334 1493.1 11984.4 458.6 1326.55
27 1 315.6 1348.5 46285.5 230.2 1011.15
28 1 302.8 2839.2 18330.3 303.6 2196.4
29 2 318.8 1485.9 24463.2 371 1285.9
30 2 415.8 1621.5 23713.8 342.2 1399.25
31 3 311 2432.7 23713.8 1617 2917.75
32 1 410.2 1555.5 14362.8 129.6 702.75
33 2 308.6 2770.5 21481.8 857.8 3417.05
34 2 472.6 218.4 37243.8 1712.6 2727.05
35 1 376.2 473.1 23360.4 393 1691.9
36 1 307.4 1060.2 17608.8 449.6 1423.8
37 4 402.2 2341.8 44626.5 539.4 1918.75
38 2 321.8 2064.3 20367.6 895 3303.05
39 1 334.8 48.3 26507.4 151.2 731.4
40 2 321.6 1128.67 42123.9 733 1019.9

An important point to be noted is that unlike
the traditional DEA models, there is no guaran-
tee that the peer unit (

∑n
j=1 λjxj ,

∑n
j=1 λjyj) is

efficient.

The dual formulation of the LP model (3.7)

is given by

Max
∑s

r=1(ur − µr)yrp+∑m
i=1 ρi(xip − αip)−

∑s
r=1 µrβrp

s.t.
∑s

r=1(ur − µr)yrj−∑m
i=1(νi − ρi)xij ≤ 0, j = 1, 2, ..., n,∑m

i=1 νixip = 1,

ur, µr, νi, ρi ≥ 0, ∀i,∀r.

(3.10)
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Table 3: The Results for the Real Case Example.

Branch Eff. Eff. ζ∗p Ranking by τ∗p η∗p Ranking by
CCR RRVM ζ∗p and ψ∗

p η∗p and δ∗p(ρ)

1 1 1 1 7 0 1 7
2 0.636025 0.855908 0.773792 11 10140.597 0.810738 10
3 0.422454 0.818182 0.653009 26 30895.25 0.653009 27
4 0.786154 0.921302 0.742109 13 45106.252 0.798673 13
5 0.522770 0.8 0.699359 18 33343.02 0.699701 20
6 0.537073 0.8 0.633792 34 35470.703 0.635167 34
7 0.894326 0.915496 0.75415 12 24923.982 0.80507 12
8 0.525947 0.8 0.627208 35 20654.177 0.678984 23
9 0.574844 0.8 0.633803 33 37175.2 0.633803 35
10 0.533131 0.8 0.645312 27 30375.754 0.645312 28
11 0.872278 0.941762 0.800346 10 22010.183 0.808505 11
12 0.550701 0.8 0.688427 21 28947.192 0.688427 21
13 0.384028 0.8 0.641628 29 22122.1 0.641628 30
14 0.467366 0.8 0.636722 30 18862.25 0.636722 31
15 0.449719 0.833333 0.740927 14 23273.741 0.760077 17
16 0.544604 0.874548 0.676026 24 25266.726 0.676026 25
17 0.493986 0.8 0.58737 39 57448.841 0.58737 39
18 1 1 1 5 0 1 6
19 0.397567 0.8 0.597256 37 35603.55 0.597256 37
20 0.696858 0.8 0.68915 20 60387.564 0.734586 19
21 1 1 1 1 0 1 1
22 0.495655 0.857143 0.642949 28 29636.15 0.642949 29
23 0.696698 0.820067 0.715532 16 16094.366 0.748255 18
24 0.551870 0.8 0.593213 38 34598.798 0.593213 38
25 0.535181 0.857143 0.678806 23 19019.5 0.678806 24
26 0.407578 0.8 0.635743 31 15598.65 0.635743 32
27 0.362532 0.833333 0.529263 40 49191.95 0.529263 40
28 1 1 1 6 0 1 5
29 0.473590 0.8 0.606592 36 27926.8 0.606592 36
30 0.534537 0.8 0.635448 32 27494.55 0.635448 33
31 1 1 1 8 0 1 8
32 0.461411 0.84069 0.681282 22 17161.257 0.681282 22
33 0.780388 0.829781 0.696452 19 27626.729 0.780674 16
34 1 1 1 3 0 1 3
35 0.783579 0.957404 0.86343 9 18228.542 0.86343 9
36 0.642561 0.8 0.670288 25 20850.404 0.670288 26
37 0.801389 0.848838 0.723024 15 36528.67 0.782222 15
38 0.723072 0.829503 0.7128 17 25365.177 0.792907 14
39 1 1 1 2 0 1 2
40 1 1 1 4 0 1 4

Theorem 3.1 The radial restricted variation
model (RRVM) represented in (3.7) is feasible
and bounded.

Proof. The feasibility of model (3.7) is obvious.
Because θ = 1,λp = 1, λj = 0, j = 1, ..., n, j ̸= p
satisfies all constraints. Thus, it is a feasible so-
lution. Furthermore, the optimal solution is not
greater than one because the problem is mini-

mized and a feasible solution with θ = 1 exists.
Moreover, θ > 0. This is because the input and
output vectors have at least a nonzero compo-
nent. Assume θ = 0, from the first constraint of
model (3.7) it is obtained λ = 0 and from the sec-
ond constraint of model (3.7) is achieved y ≤ 0.
But we have y ≥ 0. Thus, y = 0, while it has been
assumed input and output vectors are nonzero at
least in one component. As a result, reduction ad
absurdum is invalid, and θ > 0. So 0 < θ ≤ 1,
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Table 4: The Results of Models (3.12), (3.15), and (3.16).

Branch ψ∗
p Ranking by ψ∗

p ρ∗p δ∗p(ρ) Ranking by δ∗p(ρ)

1 1.145064 7 888.56872 1.146 7
18 1.264889 5 1475.673 1.473 6
21 43.38264 1 363023.27 51.596 1
28 1.154989 6 1270.3899 1.537 5
31 1.041851 8 958.77753 1.059 8
34 1.785514 3 6745.8244 2.579 3
39 7.028259 2 32147.024 10.546 2
40 1.418697 4 29085.831 1.604 4

and it guarantees that model (3.7) (RRVM) is
bounded, and this completes the proof.

Theorem 3.2 Let DMUp̂ be the projection of
DMUp in model (3.7). Then DMUp̂ dominates
DMUp.

Proof. Clearly, the first and second constraints
of model (3.7) imply that

x̂ip =
∑n

j=1 λjxij =

θxip − s−i ≤ xip, i = 1, 2, ...,m,

ŷrp =
∑n

j=1 λjyrj =

yrp + s+r ≥ yrp, r = 1, 2, ..., s.

and strict inequality is held at least for one com-
ponent, that is, θ < 1 and θxip < xip; therefore,
x̂ip < xip . This completes the proof.

3.2 Restricted Variations in Non-
Radial Models

In this subsection, two non-radial restricted DEA
approaches are provided. The first approach is an
extension of SBM model proposed by Tone [10]
as follows:

Min ζ∗p = (1− 1
m

∑m
i=1

s−ip
xip

)/(1 + 1
s

∑s
r=1

s+rp
yrp

)

s.t.
∑n

j=1 λjxij + s−ip = xip, i = 1, 2, ...,m,∑n
j=1 λjyrj − s+rp = yrp, r = 1, 2, ..., s,∑n
j=1 λjxij ≥ xip − αip, i = 1, 2, ...,m,∑n
j=1 λjyrj ≤ yrp + βrp, r = 1, 2, ..., s,

λj ≥ 0, j = 1, 2, ..., n.
(3.11)

s−ip and s+rp called slacks show the excesses of in-
puts and shortfalls of outputs for DMUp, respec-
tively. The third and fourth constraints indicate
the amount of variations in inputs and outputs,
respectively.

Definition 3.2 model (3.11) is efficient if and
only if ζ∗p = 1. It means all inputs and outputs
slacks are equal to zero.

Furthermore, for ranking the efficient DMUs and
discriminating the efficient DMUs, the following
model is proposed. Model (3.12) is an extension
of slacks-based super-efficiency model proposed
by Tone [11].

Min ψ∗
p =

(1 + 1
m

∑m
i=1

t−ip
xip

)/(1− 1
s

∑s
r=1

t+rp
yrp

)

s.t.
∑n

j=1,j ̸=p λjxij ≤ xip + t−ip, i = 1, 2, ...,m,∑n
j=1,j ̸=p λjyrj ≥ yrp − t+rp, r = 1, 2, ..., s,∑n
j=1,j ̸=p λjxij ≥ xip − αip, i = 1, 2, ...,m,∑n
j=1,j ̸=p λjyrj ≤ yrp + βrp, r = 1, 2, ..., s,

λj ≥ 0, t−ip ≥ 0, t+rp ≥ 0, j = 1, 2, ..., n, j ̸= p

i = 1, 2, ...,m, r = 1, 2, ..., s.
(3.12)

where ψ∗
p ≥ 1. Furthermore, models (3.11)

and (3.12) can be transformed into the linear
programming problems by using Charnes and
Cooper transformation [3].

As another approach, Du et al.’ s method [7]
is also generalized for evaluating the efficiency of
DMUs and ranking efficient DMUs when varia-
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tion levels like the following exist:

Max τ∗p =
∑m

i=1 s
−
ip +

∑s
r=1 s

+
rp

s.t.
∑n

j=1 λjxij + s−ip = xip, i = 1, 2, ...,m,∑n
j=1 λjyrj − s+rp = yrp, r = 1, 2, ..., s,∑n
j=1 λjxij ≥ xip − αip, i = 1, 2, ...,m,∑n
j=1 λjyrj ≤ yrp + βrp, r = 1, 2, ..., s,

λj ≥ 0, j = 1, 2, ..., n.
(3.13)

In the above model, DMUp is efficient if and only
if all slacks are zero. Furthermore, the follow-
ing formula is used for estimating the efficiency
score:

η∗p = (1− 1

m

m∑
i=1

s−∗
ip

xip
)/(1 +

1

s

s∑
r=1

s+∗
rp

yrp
) (3.14)

in which s−∗
ip and s+∗

rp are obtained from model

(3.13).
In this case, for distinguishing between efficient
DMUs, the following model is presented:

Min ρ∗p =
∑m

i=1 t
−
ip +

∑s
r=1 t

+
rp

s.t.
∑n

j=1,j ̸=p λjxij ≤ xip + t−ip, i = 1, 2, ...,m,∑n
j=1,j ̸=p λjyrj ≥ yrp − t+rp, r = 1, 2, ..., s,∑n
j=1,j ̸=p λjxij ≥ xip − αip, i = 1, 2, ...,m,∑n
j=1,j ̸=p λjyrj ≤ yrp + βrp, r = 1, 2, ..., s,

λj ≥ 0, t−ip ≥ 0, t+rp ≥ 0, j = 1, 2, ..., n, j ̸= p

i = 1, 2, ...,m, r = 1, 2, ..., s.
(3.15)

Then,

δ∗p(ρ) =

( 1
m

∑m
i=1

(xip+t−∗
ip (ρ))

xip
)/( 1s

∑s
r=1

(yrp−t+∗
rp (ρ))

yrp
)

(3.16)

is determined that t−∗
ip (ρ) and t+∗

rp (ρ) are attained
from model (3.15). δ∗p(ρ) is used as the super-

efficiency score which δ∗p(ρ) ≥ 1. t−ip and t+rp in
models (3.12) and (3.15) denote the increase of
inputs and the decrease of outputs for the efficient
DMUp while the frontier has been made by the
remaining DMUs.

Theorem 3.3 Models (3.12) and (3.15) are fea-
sible.

Proof. As Tone [11] and Du et al. [7], we also
assume
t̃−ip = max{xip,

∑n
j=1,j ̸=p λ̃jxij} − xip ≥ 0, i =

1, ...,m,
t̃+rp = yrp − min{yrp,

∑n
j=1,j ̸=p λ̃jyrj} ≥ 0, r =

1, ..., s.
Therefore,
xip + t̃−ip = max{xip,

∑n
j=1,j ̸=p λ̃jxij} ≥∑n

j=1,j ̸=p λ̃jxij and

yrp − t̃+rp = min{yrp,
∑n

j=1,j ̸=p λ̃jyrj} ≤∑n
j=1,j ̸=p λ̃jyrj .

Furthermore, λ̃jj = 1, ..., n, j ̸= p is con-
sidered as a non-negative set such that∑n

j=1,j ̸=p λ̃jxij ≥ xip − αip, i = 1, 2, ...,m,∑n
j=1,j ̸=p λ̃jyrj ≤ yrp + βrp, r = 1, 2, ..., s.

Thus,

t̃−ip, i = 1, ...,m, t̃+rp, r = 1, ..., s, and λ̃j
j = 1, ..., n, j ̸= p

is a feasible solution for models (3.12) and
(3.15).

4 A Real Application

In this section we examine the validity of the re-
stricted DEA models by using a real data set. We
apply the approaches to a data set consisting 40
branches of a commercial bank in one region in
Iran. We have used six variables from the data set
as inputs and outputs. Each branch uses three in-
puts and three outputs. Inputs include number of
staff, operational costs (excluding staff costs) and
overdue debts; outputs are deposits (resources),
amount of income and amount of loans. The cho-
sen input and output measures that are used in
the application are summarized in Table 1 (All
monetary variables are stated in ten million of
Iranian current Rials). Table 2 contains listing of
the levels of variations in inputs and outputs of
each branch j for j = 1, ..., 40 that are predicted
by the board of management. The defined limited
values are associated with management’s points
of view and unit location. In Table 2, columns 2,
3, and 4 show the variations levels in inputs(αi)
while the variations levels in outputs (βr)are rep-
resented in columns 5, 6, and 7. Running the
CCR- model (2.1), eight efficient units as 1, 18,
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21, 28, 31, 34, 39, and 40 are obtained. This is
confirmed by our proposed models. The results
are listed in Table 3. As columns 2 and 3 of the ta-
ble show, efficiency measures of inefficient units in
model (3.7) (RRVM) are greater than that of the
CCR-model. This means that the target unit ob-
tained from model (3.7) is closer than the target
obtained from the CCR model for the unit under
evaluation. Furthermore, one can contrast the
results of SBM and additive models with models
(3.11) and (3.14), respectively. It is found that
the efficiency measures of non-radial restricted
variation models, models (3.11) and (3.14), will
be greater than the SBM and additive models.
This is the advantage of our models in the sense
that we took the ability of the units into consid-
eration. Columns 4, 6, and 7 in Table 3 show the
results of models (3.11), (3.13) and (3.14), respec-
tively. Also, the results of ranking branches by
using the restricted variation SBM approach and
the restricted variation additive approach can be
seen in columns 5 and 8 of Table 3, respectively.
In both approaches, branch 21 has been distin-
guished as the most efficient while branch 27 has
been determined as the least efficient. Neverthe-
less, there are some differences between rankings
of the two methods. Table 4 represents the results
of models (3.12), (3.15) and (3.16). To illustrate,
the results of ranking the efficient branches can
be found in Table 4. As can be seen, except ranks
of 18 and 28 branches, ranks of other branches are
the same when model (3.12), models (3.15) and
(3.16) are calculated.

5 Concluding Remarks

In the real world, there are application cases in
which inefficient units cannot reduce their inputs
and increase their outputs arbitrarily to become
efficient. In these cases, the target units for these
operational units do not necessarily belong to the
efficient frontier. The current paper has proposed
modified DEA models in such a restricted en-
vironment. Indeed, it has been imported these
limitations in some DEA models and proposed
new models, radial and non-radial models, in or-
der to assess the relative efficiency of these ap-
plication cases. In models proposed, inefficient
units are not necessarily projected onto the effi-
cient frontier, but the projections dominate inef-
ficient units. Moreover, some non-radial ranking

approaches have been extended for distinguishing
the efficient DMUs where restricted variations ex-
ist. An application area investigated involved 40
branches of a commercial bank. It seems incor-
porating unbalanced data with missing values in
the proposed models is an interesting subject for
future research.
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