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Ranking Stohasti EÆient DMUs based onReliabilityG.R. Jahanshahloo a, M. H. Behzadi b, M. Mirboloukia�(a) Department of Mathematis, Siene and Researh Branh, Islami Azad University, Tehran, Iran.(b) Department of Statistis, Siene and Researh Branh, Islami Azad University, Tehran, Iran.Reeived 6 June 2010; revised 25 Otober 2010; aepted 30 Otober 2010.|||||||||||||||||||||||||||||||AbstratData Envelopment Analysis (DEA) is a nonparametri mathematial programming ap-proah for evaluating eÆieny of a set of deision making units (DMUs). Sine thenumber of eÆient DMUs is more than one, there is a neessity of having methods todisriminate between eÆient DMUs. In lassi DEA it is assumed that data have de-terministi values. Through real world appliations this assumption may not be satis�ed.On the other hand, data may have stohasti essene. In this paper a method for rankingstohasti DMUs is suggested whih is based on the reliability of eÆieny of DMUs. Us-ing numerial example, we demonstrate how to use the results.Keywords : Data envelopment analysis; Quadrati programming; Ranking; Stohasti program-ming.||||||||||||||||||||||||||||||||{1 IntrodutionData Envelopment Analysis (DEA) onepts were originated by Charnes et al. [3℄ afterthat this idea was extended to an approah for evaluating the relative eÆieny of DMUs[6,10℄. The DMUs usually use a set of resoures, referred to as input indies, and transformthem into a set of outomes, referred to as output indies. DEA models divide DMUs intotwo ategories: eÆient DMUs and ineÆient DMUs. In many appliations, we know thatusually several DMUs are eÆient. To disriminate between these eÆient DMUs rankingmethodologies had been initiated [9℄. Sexton et al. [11℄ were pioneers in ranking �eld.They introdued a ranking method based on a ross-eÆieny. Andersen and Petersen[1℄ evaluated a DMUs eÆieny by exluding it from prodution possibility set and theystarted supper eÆieny �eld. They tried to disriminate between these eÆient DMUs,�Corresponding author. Email address: m.mirbolouki�srbiau.a.ir263



264 G.R. Jahanshahloo et al. = IJIM Vol. 2, No. 4 (2010) 263-270by using di�erent eÆieny sores larger than 1.0. Cook et al. [4℄ developed prioritizationmodels to rank the eÆient units in DEA. Torgersen et al. [12℄ obtained a ompleteranking of eÆient DMUs by measuring their importane as a benhmark for ineÆientDMUs.In many appliations through real world, data of problem are impreise. One of meth-ods in onfronting with these kinds of data is onsidering them as stohasti or randomvariables. Cooper et al. [5℄ applied stohasti variables in DEA models. They also de�nedstohasti eÆient DMUs. Huang and Li [8℄ introdued stohasti dominane onditions.behzadi et al. [2℄ and Hosseinzadeh Lot� et al. [7℄ proposed methods for ranking stohas-ti eÆient DMUs. In this paper we propose a ranking approah based on Huang an Li[8℄. With this method an stohasti eÆient DMU has a higher rank if it is dominatedwith lesser error.The paper is organized as follows: First the preliminaries on stohasti models andstohasti eÆieny are provided and then a model for ranking DMUs based on stohastireliability is introdued. Using numerial example, we demonstrate how to use the result.2 PreliminariesConsider n DMUs with ~Xj = (~x1j ; :::; ~xmj) and ~Yj = (~y1j ; :::; ~ysj) as random inputand output vetors of DMUj, j = 1 : : : ; n. Assume that Xj = (x1j ; :::; xmj) and Yj =(y1j ; :::; ysj) stand for orresponding vetors of expeted values of input and output forevery DMUj . All input and output omponents have been onsidered to be normallydistributed. The hane onstrained version of input oriented stohasti BCC model is asfollows: min �s:t: pf nXj=1 �j~yrj � ~yrog � 1� �; r = 1; :::; s;pf nXj=1 �j~xij � �~xiog � 1� �; i = 1; :::;m;nXj=1 �j = 1;�j � 0; j = 1; :::; n: (2.1)
Model (2.1) an be onverted into the following two-stage model with equality onstraints:min � � "( sXr=1 s+r + mXi=1 s�i )s:t: pf nXj=1 �j~yrj � s+r � ~yrog = 1� �; r = 1; :::; s;pf nXj=1 �j~xij + s�i � �~xiog = 1� �; i = 1; :::;m;nXj=1 �j = 1;s�i � 0; s+r � 0; i = 1; :::;m; r = 1; :::; s:�j � 0; j = 1; :::; n:

(2.2)



G.R. Jahanshahloo et al. = IJIM Vol. 2, No. 4 (2010) 263- 270 265where in the above models, p means \probability" and � is a predetermined numberbetween 0 and 1. On basis of normal distribution harateristis, the deterministi modelfor (2.2) an be attained as follows:min � � "( sXr=1 s+r + mXi=1 s�i )s:t: nXj=1 �jyrj � s+r +��1(�)uor = yro; r = 1; :::; s;nXj=1 �jxij + s�i � ��1(�)vIi = �xio; i = 1; :::;m;nXj=1 �j = 1;s�i � 0; s+r � 0; i = 1; :::;m; r = 1; :::; s;�j � 0; j = 1; :::; n:
(2.3)

where(uor)2 = nXj=1j 6=o nXk=1k 6=o �j�kov(~yrj ; ~yrk) + 2(�o � 1) nXj=1j 6=o �jov(~yrj ; ~yro) + (�o � 1)2var(~yro);and(vIi )2 = nXj=1j 6=o nXk=1k 6=o �j�kov(~xij ; ~xik) + 2(�o � �) nXj=1j 6=o �jov(~xij ; ~xio) + (�o � �)2var(~xio):Here, � is the umulative distribution funtion of the standard normal distribution and��1(�), is its inverse in level of �. The above model is a quadrati nonlinear programmingmodel.De�nition 2.1. DMUo is stohasti eÆient if and only if in the optimal solution ofmodel (2.3), the following onditions are both satis�ed:(i) �� = 1(ii) Slak values are all zeros.3 Reliability ranking methodLet ~X = (~x1; :::; ~xn) and ~Y = (~y1; :::; ~yn) be the matrixes of input vetors and outputvetors respetively, and X = (x1; :::; xn) and Y = (y1; :::; yn) be their mean matrixes.Huang and Li [5℄ de�ned �-stohasti eÆient DMU as follows,De�nition 3.1. DMUo is �-stohasti eÆient if it is eÆient with reliability of at least(1� �).The above de�nition indiates that an stohasti eÆient DMU may be dominatedwith a probability of at most �. On the other hand DMUo is �-stohasti eÆient if thefollowing expression is hold and stritly for at least one.P 0� nXj=1 �j ~xij � ~xio; nXj=1 �j~yrj � ~yro1A � �:



266 G.R. Jahanshahloo et al. = IJIM Vol. 2, No. 4 (2010) 263-270By the spei�ations of sets and probability onepts it is resulted that,8<: nXj=1 �j ~xj � ~xo; nXj=1 �j ~yj � ~yo9=; � 8<:1T ( nXj=1 �j~xj�~xo) + 1T (~yo � nXj=1 �j ~yj) < 09=; :where 1T = (1; :::; 1). From the above expression we have,P 0� nXj=1 �j~xj � ~xo; nXj=1 �j ~yj � ~yo1A � P 0�1T ( nXj=1 �j ~xj�~xo) + 1T (~yo � nXj=1 �j ~yj) < 01A :Therefore the following expression is the neessary ondition for �-stohasti eÆieny.P 0�1T ( nXj=1 �j ~xj�~xo) + 1T (~yo � nXj=1 �j ~yj) < 01A � �: (3.4)Let ~h = 1T ( ~X�� ~xo)+1T (~yo� ~Y �). Therefore expression (3.4) is equal to P �~h � 0� � �.It an be onverted to an equal form by adding nonnegative variables as P �~h � 0� = ��".Applying slak variables results that,P �~h � s0� = �: (3.5)~h has normal distribution with parameters h and �2h where,h = E(~h) = 1T (X�� xo) + 1T (yo � Y �);�2h = V ar(~h) = 1T�1 + 1T�01 + 2(1T�001): (3.6)and � = [�ik℄m�m;�ik = Cov( nPj=1�jxij � xio; nPj=1�jxkj � xko);�0 = [�0rk℄s�s;�0rk = Cov(yro � nPj=1�jyrj; yko � nPj=1�jykj);�00 = [�00ir℄m�s;�00ir = Cov( nPj=1�jxij � xio; yro � nPj=1�jyrj):From expressions (3.5) and (3.6) we have,P � ~h�h�h � s0�h�h � = �;) P � ~Z � s0�h�h � = �;) s0�h�h = ��1(�):



G.R. Jahanshahloo et al. = IJIM Vol. 2, No. 4 (2010) 263- 270 267Thus deterministi equivalent of (3.4) is h� s0 + �h��1(�) = 0:Suppose DMUo is an stohasti eÆient DMU. Therefore from de�nition 2.1 and optimalsolution of model (2.3), nPj=1 ��jxij � ��1(�)v�i = xio; i = 1; :::;m;nPj=1 ��jyrj +��1(�)u�r = yro; r = 1; :::; s:
Let � be the optimality solutions spae of model (2.3). In our ranking method we seekthe minimum level of error in whih a DMU is dominated probabilistially on set �. i.e.we seek the optimal solution of the following model:�� = min �s:t: nPj=1 �jxij � ��1(�)vi = xio; i = 1; :::;m;nPj=1 �jyrj +��1(�)ur = yro; r = 1; :::; s;h� s0 +��1(�)w = 0;v2i = nPj=1j 6=o nPk=1k 6=o �j�kCov(~xij; ~xik) + (�o � 1)2V ar(~xio)+ 2 (�o � 1) nPj=1j 6=o �jCov(~xij; ~xio);i = 1; :::;m;u2r = nPj=1j 6=o nPk=1k 6=o �j�kCov(~yrj ; ~yrk) + (�o � 1)2V ar(~yro)+ 2 (�o � 1) nPj=1j 6=o �jCov(~yrj; ~yro); r = 1; :::; s;w2 = 1T�1 + 1T�01 + 2 �1T�001� ;w � 0; �j � 0; j = 1; :::; n;vi � 0; ur � 0; i = 1; :::;m; r = 1; :::; s:

(3.7)

Model (3.7) is a nonlinear programming whih is not lear beause of the existene of illde�ned term ��1. Minimizing � equals minimizing ��1(�). Then model (3.7) an be



268 G.R. Jahanshahloo et al. = IJIM Vol. 2, No. 4 (2010) 263-270onverted to the following model:� = min s:t: nPj=1 �jxij � ��1(�)vi = xio; i = 1; :::;m;nPj=1 �jyrj +��1(�)ur = yro; r = 1; :::; s;h� s0 + w = 0;v2i = nPj=1j 6=o nPk=1k 6=o �j�kCov(~xij; ~xik) + (�o � 1)2V ar(~xio)+ 2 (�o � 1) nPj=1j 6=o �jCov(~xij; ~xio);i = 1; :::;m;u2r = nPj=1j 6=o nPk=1k 6=o �j�kCov(~yrj; ~yrk) + (�o � 1)2V ar(~yro)+ 2 (�o � 1) nPj=1j 6=o �jCov(~yrj; ~yro); r = 1; :::; s;w2 = 1T�1 + 1T�01 + 2 �1T�001� ;�3:8 �  � 3:8;w � 0; �j � 0; j = 1; :::; n;vi � 0; ur � 0; i = 1; :::;m; r = 1; :::; s:
(3.8)

Model (3.8) is a nonlinear quadrati programming model. The onstraint �3:8 �  � +3:8is added to prevent unboundedness of this model. The optimal objetive funtion of model(3.8) is our reliability ranking indiator. Less � indiates better rank.4 An appliationIn this setion, we onsider 10 branhes of an Iranian bank with two stohasti in-puts and two stohasti outputs and run the mentioned model in order to fully rank thestohasti eÆient units. In this model, \payable bene�t" and \delayed requisitions" areinputs and \amount of deposits " and \reeived bene�t" are outputs. These data based ononsidering ten suessive months have normal distribution and their saled parametersare presented in Table 1. We want to assess the total performane of these units. In thisexample these DMUs have been assessed by using model (2.3). Then stohasti eÆientDMUs have been ranked by their ineÆieny sores by applying model (3.8). We onsider� = 0:05 or on the other hand at least 95% on�dene to results whih are stated in Table 2.



G.R. Jahanshahloo et al. = IJIM Vol. 2, No. 4 (2010) 263- 270 269Table 1Predited inputs and outputs.inputs outputsxij N(�; �) xij N(�; �) yrj N(�; �) yrj N(�; �)X1,1 N(18.79,9.41) X2,1 N(7.28,0.76) Y1,1 N(49.6,6.93) Y2,1 N(4.7,0.64)X1,2 N(44.3,25.3) X2,2 N(1.11,0.15) Y1,2 N(73.13,3.62) Y2,2 N(1.85,0.15)X1,3 N(19.73,16.63) X2,3 N(19.2,0.69) Y1,3 N(108.04,15.02) Y2,3 N(6.06,0.12)X1,4 N(17.43,11.06) X2,4 N(59.47,0.92) Y1,4 N(44.97,3.71) Y2,4 N(4.9,1.29)X1,5 N(10.38,4.59) X2,5 N(12.23,7.74) Y1,5 N(31.63,6.24) Y2,5 N(2.78,0.66)X1,6 N(16.67,10.42) X2,6 N(568.63,37.42) Y1,6 N(71.98,8.37) Y2,6 N(13.19,3.03)X1,7 N(25.46,13.67) X2,7 N(552.85,20.78) Y1,7 N(78.05,13.99) Y2,7 N(7.79,1.89)X1,8 N(123.06,65.3) X2,8 N(14.78,0.25) Y1,8 N(219.69,19.38) Y2,8 N(35.3,3.92)X1,9 N(36.16,19.59) X2,9 N(361.88,34.11) Y1,9 N(86.25,6.95) Y2,9 N(17.64,1.92)X1,10 N(46.41,23.06) X2,10 N(12.81,0.62) Y1,10 N(194.58,42.15) Y2,10 N(25.9,3.52)Table 2ResultseÆient DMU b RANKDMU3 -1.02 3DMU5 -0.98 4DMU6 -2.08 1DMU10 -1.19 25 ConlusionThere are several models in DEA �eld whih have been formulated for evaluating eÆienyand ranking DMUs in various �elds with di�erent data suh as: deterministi, interval,fuzzy, e.t.. In real world appliation managers may enounter the data whih are notdeterministi. Nowadays the extent of probability has a signi�ant importane. ThereforeDEA models have been extended to stohasti data by researhers. Thus the neessityof having models that are able to rank DMUs has been under onsideration. They havebeen assessed and in suh way they have de�ned the stohasti eÆient DMUs. In thispaper on basis of the eÆieny reliability of eÆient DMUs, a model for ranking stohastieÆient DMUs has been presented. This model is a quadrati programming model and theobjetive funtion is a funtion of �, whih is the level of error that should be determined bythe managers. In this paper we have applied normal distributions. Di�erent distributionsas well as normal distribution an be onsidered from this point of view.Referenes[1℄ P. Anderson, N.C. Petersen, A proedure for ranking eÆient units in data envelop-ment analysis, Management Siene 39 (10) (1993) 1261-1264.[2℄ M. H. Behzadi, N. Nematollahi and M. Mirbolouki, Ranking EÆient DMUs withstohasti data by Considering IneÆient Frontier, International Journal of IndustrialMathematis 1(3) (2009) 219-226.[3℄ A. Charnes, W.W. Cooper, E. Rhodes, Measuring the eÆieny of deision makingunits, European Journal of of Operational Researh 2 (6) (1978) 429-444.
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