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Abstract

In this paper, we investigate the problem of solving nonlinear equation and present a
new family of combined iterative methods by the composition of Latus method and other
higher-order iterative methods. Two new sixth and seventh order methods are developed.
Meanwhile, the convergence analysis of the new methods is discussed and some examples
are given to illustrate its efficiency.
Keywords : Latus method; Order of convergence; Root finding; Iterative methods; Combined

iterative methods
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1 Introduction

We consider the problem of finding a numerical method to solve a real root α of nonlinear
equation

f(x) = 0; f :⊂ R → R.

The best known numerical method for solving the so-called equation is the classical New-
ton’s method given by

xn+1 = xn −
f(xn)

f ′(xn)
.
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Efforts have resulted into many modifications of Newton’s [1-12]. Danfu Han and Peng
Wu [13] considered the following iteration as a fifth order method

xn+1 = zn −
f ′(xn − f(xn)

f ′(xn)) + f ′(xn)

3f ′(xn − f(xn)
f ′(xn)) − f ′(xn)

(f(zn))

(f ′(xn))
, (1.1)

where zn is defined by

zn = xn −





2f(xn)

f ′(xn) + f ′(xn − f(xn)
f ′(xn))



 . (1.2)

Also they represented a sixth order method

xn+1 = zn −
f(zn)

f ′(xn) + L(xn)
(

f(xn) − 2
3

f(xn)
f ′(xn)

)

− f ′(xn))
, (1.3)

where zn and L(xn) are defined by

zn = xn −
1

2

f(xn)

f ′(xn)
+

f(zn)

f ′(xn) + L(xn)
(

f ′
(

xn − 2
3

(f(xn))
(f ′(xn))

)

− f ′(xn))
) , (1.4)

and

L(xn) =
3

4
−

3

2

f ′(xn)

f ′(xn) − 3f ′
(

xn − 2
3 . f(xn)

f ′(xn)

) . (1.5)

Compared with the other five or six-order methods, (1) and (2) are not required to evaluate
second or higher derivatives. Motivated by this fact, we investigate the problem that how
can we compose the so called methods with Latus method represented in this paper. We
find that, in general, the convergent order will be improved and increased 1 above the
original level without the evaluation of the second derivative.

Definition 1.1. Let the sequence {xn} tend to α such that

lim
n→∞

(xn+1 − α)

(xn − α)p
= C 6= 0, n ≥ 1 (1.6)

The order of convergence of the sequence {xn} is p, and C is known as the asymptotic
error constant. If p = 1, p = 2 or p = 3 , the sequence is said to converge linearly,
quadratically or cubically, respectively.It can be concluded that the error of a method with
the rate of convergence p≥ p in step n is

en ≤ 10−pnen−1, (1.7)

where
en = (α − an). (1.8)

Definition 1.2. The computational order of convergence can be approximated using the
formula [12]

p = lim
n→∞

| ln(xn+1 − α)/ ln(xn − α)|

| ln(xn − α)/ ln(xn−1 − α)|
. (1.9)



T. Allahviranloo et al. / IJIM Vol. 2, No. 3 (2010) 237-244 239

2 Latus method

Let
f(α) = 0, α ∈ [a, b]. (2.10)

Adopting a function, named g(x), we suppose:

1) ∀x1, x2 ∈ [a, b] : f ′(x1).f
′(x2) ≥ 0, g′(x1).g

′(x2) ≥ 0, (Assumption 2.1)

2) f(x), g(x) : [a, b] ⊂ R → R, (Assumption 2.2)

3) ∀x1, x2 ∈ [a, b] : f ′(x1).g
′(x2) ≤ 0, (Assumption 2.3)

4) ∃x0 ∈ [a, b] : g(x0) = f(x0), (Assumption 2.4)

Consider x0 as the initial point, suppose

∀x0 ∈ [a, b], ∃x1 ∈ [a, b] : g(x1) − g(x0) = f(x1).

Now for n ≥ 1

∀xn ∈ [a, b],∃xn+1 ∈ [a, b] : g(xn+1) − g(xn) = f(xn+1).

Hence
{(xn, f(xn)}∞n=0 , lim

n→∞
xn = α,

for arbitrary ǫ : |xn+1 − xn| < ǫ.

3 Analysis of convergence

The behavior of the convergence of Latus and the combined methods are considered in
the following theorems.

Theorem 3.1. If |α−xn+1|
|α−xn|

< 1, then ∃h ∈ R : |α−xn+1|
|α−xn|

≤= h < 1.

Proof: Let
|α − xn+1|

|α − xn|
= q

hence 1 − q > 0. Also, let 1 − q = δ , then q + δd = 1, so we have q ≤= q + δdr, and
0 ≤ r < 1, hence, h = q + δdr. In conclusion, according to assumption of Theorem (3.1)
|α−xn+1|
|α−xn|

≤ h < 1. Then the proof is completed.

Theorem 3.2. According to (Assumption 2.1) and (Assumption 2.2), for {(xn, f(xn)}∞n=0

we have
lim

n→∞
xn = α. (3.11)

Proof: For the points (α, 0), (xn, 0) and m = (xn+1, f(xn+1) = g(xn+1)) according to
(Assumption-2.2) we have

f ′.g′ ≤ 0 →

{

f ′ ≥ 0, g′ ≤ 0

f ′ ≤ 0, g′ ≥ 0
,
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for f ′ ≥ 0 and g′ ≤ 0, we obtain

f ′ ≥ 0 →
f(xn+1)

(xn+1 − α)
≥ 0

and

g′ ≤ 0 →
(−g(xn+1))

(xn − xn+1)
≤ 0

hence
f(xn+1)

(xn+1 − αa)
.
(−g(xn+1))

(xn − xn+1)
≤ 0,

and
(−f(xn+1)

2)

((xn+1 − α).(xn − xn+1))
≤ 0.

Therefore

(xn+1 − α).(xn − xn+1) > 0 →

{

(xn+1 − α) > 0, (xn − xn+1) > 0

(xn+1 − α) < 0, (xn − xn+1) < 0

then,
{

xn+1 > α, xn > xn+1

xn+1 < α, xn < xn+1

→

{

α < xn+1 < xn

xn < xn+1 < α

hence,
|α − xn| > |α − xn+1|

so,
|α − xn+1|

|α − xn|
< 1

Using Theorem (3.1), we have

∃h ∈ R :
|α − xn+1)|

|α − xn|
≤ h < 1,

therefore
|α − x1| ≤ h|α − x0|,

...

|α − xn| ≤ h|α − xn+1|

Having multiplied these respects, we have |αa − xn| ≤ hn|αa − x0|, and also we have
0 < h < 1 then

lim
n→∞

(hn) = 0

consequently limn→∞(α − xn) = 0, hence

lim
n→∞

(xn) = α

So, the proof is complete.
The same result is drawn by the assumption of

f ′ ≤ 0, g′ ≥ 0.



T. Allahviranloo et al. / IJIM Vol. 2, No. 3 (2010) 237-244 241

Theorem 3.3. The point m if exist, is unique.

Proof: Suppose that f(x) and g(x) have n ≥ 2 number of intersection points. Without
the loss of generality, let two points A and B be distinct consecutive intersection points.
According to Mean Value Theorem we have

∃β ∈ [a, b] : f(B) − f(A) = f ′(β)(B − A),

∃γ ∈ [a, b] : g(B) − g(A) = g′(γ)(B − A),

therefore
f(B) − f(A)

B − A
=

g(B) − g(A)

B − A
6= 0, (3.12)

and
f(B) − f(A)

B − A
=

g(B) − g(A)

B − A
= 0. (3.13)

According to (3.12), we have f ′(β) = g′(γ) 6= 0 then, f ′(β).g′(γ) > 0. So, it does not
satisfy the (Assumption 2.2). According to (3.13) and Rolle’s Theorem, we have

f(A) = f(B), g(A) = g(B) →

{

∃m1,m2 ∈ [a, b] : f ′(m1).f
′(m2) < 0

∃m3,m4 ∈ [a, b] : g′(m3).g
′(m4) < 0

And it means they are not monotonic. Therefore, n ≤ 1. So, the proof is complete.

Theorem 3.4. Considering the following condition,

• tanθ1 = f(xn+1)
L1

,

• tanθ3 = f(xn+1)
L3

,

• k = (tanθ1)
(tanθ3) ,

• |α − xn+1| = L3,

• |α − xn| = L1 + L3.

Then the order convergence of Latus method is 1.

Proof: According to the assumption and Eq. (1.9), we have

p ∼=
ln |1/

(

1 + 1
k

)

|

ln |1/
(

1 + 1
k

)

|
= 1 (3.14)

Consider {cn} as a sequence of the points achieved by a p= p order iterative method.
Then

|a1 − a0| = k′
0(α − a0)

then
|α − a1| = (1 − k′

0).(α − a0).

Therefore, according to (1.7) and (1.8), we have

k′
n = 1 − 10−pn

+ 10−pn

k′
0, n = 0, 1, .. (3.15)

and
kn = 1 − 10−1 + 10−1k0, n = 0, 1, .. (3.16)

and the proof is complete.



242 T. Allahviranloo et al. / IJIM Vol. 2, No. 3 (2010) 237-244

Theorem 3.5. Suppose {xn} as the sequence of points achieved by a combinational
method. If the rate of convergence of the SS method is p, and the order of convergence of
the OS method is 1, then the order of convergence of a combinational method is 1 + pn.

Proof: For the step n of the combinational method we have

cn+1 − cn = (c′n − cn) + (cn+1 − c′n)

= kn(α − cn) + k′
n(α − (cn + kn(α − cn)))

= (k′
n(1 − kn) + kn).(α − cn).

Considering (3.15), (3.16), we have

(k′
n(1 − kn) + kn) = (1 − 10−pn

+ 10−pn

k′
0)(1 − (1 − 10−1 + 10−1k0)) + (1 − 10−1 + 10−1k0)

= 10−1−pn

(−1 + k0 + k′
0 − k′

0k0) + 1

Let k′
n(1 − kn) + kn = k′′

n, hence

10−1−pn

(−1 + k′′
0 ) + 1 = 1 − 10−1−pn

+ 10−1−pn

)k′′
0

Therefore
pn < 1 + pn ≤ (1 + p)n.

The proof is complete.

Finally, the following iterative methods have been presented as the combinations of
Latus method and the so called methods in [13].

∀xn ∈ [a, b], ∃ x′
n ∈ [a, b] : g(x′

n) − g(xn) = f(x′
n) (3.17)

and

xn+1 = zn −
f ′

(

xn − f(x′

n
)

f ′(x′

n
)

)

+ f ′(xn))

3f ′(xn − f(x′
n)/f ′(x′

n)) − f ′(xn)
.
(f(zn))

(f ′(x′
n))

, (3.18)

where zn is defined by

zn = x′
n −

2f(x′
n)

f ′(x′
n) + f ′

(

x′
n − f(x′

n
)

f ′(x′

n
)

) . (3.19)

And Also
∀xn ∈ [a, b], ∃ x′

n ∈ [a, b] : g(x′
n) − g(xn) = f(x′

n) (3.20)

and

xn+1 = zn −
f(zn)

f ′(x′
n) + L(x′

n)(f ′(x′
n − 2/3 f(x′

n
)

f ′(x′

n
) − f ′(x′n))

(3.21)

where zn and L(xn) are defined by

zn = xn −
1

2

f(x′n)

f ′(x′n)
+

f(zn)

f ′(x′
n) + L(x′

n).
(

f ′
(

x′
n − 2

3
(f(x′

n
))

(f ′(x′

n
))

)

− f ′(x′
n))

) (3.22)

and

L(xn) =
3

4
−

3

2
.

f ′(x′
n)

f ′(x′n) − 3f ′
(

x′n − 2
3

f(x′

n
)

f ′(x′

n
)

) (3.23)
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4 Numerical results and conclusion

We have proved that it is possible to obtain a class of iterative methods with higher
convergence order (more than three) by the composition of Latus and some other different
methods. The present iterative formulas defined by (1.1) and (1.3) only add one evaluation
of the function at another iterated point, while their order of convergence can be improved
effectively. The most important characteristic of such methods is that they are not required
to evaluate second or higher derivatives of the function in iterative processes. Thus the
complexity of calculation is decreased greatly especially in high dimensioned case.

Finally, we have applied our new iterative methods to the following two examples,
and have chosen Newton’s method and Kou’s method named NNM and NJM which are
defined in [ 13 ] to compare with our methods (3.18)(LNNM) and (3.21)(LNJM).The stop-
ping criterion used is 0 < |xn+1−xn| < 10−16. One of the possible functions of g(x) is given
in front of each function. All numerical tests agree with the theoretical results of this work.

Table 1
The numerical results of applying the iterative methods.

Function x0 i

N NNM NJM LNNM LJNM

(a) −2 220 7 5 4 2

(b) 2 6 4 3 2 2

Test functions

(a) f(x) = xex2

− sin2x + 3cosx + 5, g(x) = f(x) − 10x2, α = −1.207647827130919,

(b) f(x) = sin2x − x2 + 1, g(x) = sin2(x), α = −1.404491648215341.

i− the number of iterations to approximate the root to 16 decimal places.
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