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Abstract

Mathematical modeling of supply chain operations has proven to be one of the most complex tasks
in the field of operations management and operations research. Despite the abundance of several
modeling proposals in the literature; for vast majority of them, no effective universal application is
conceived. This issue renders the proposed mathematical models inapplicable due largely to the fact
that real-life supply chain problems are set forth in restrained terms or represented less strikingly than
they would bear out. This paper is triggered to bridge this gap by proposing a universal mixed integer
linear programming (MILP) framework which to large extent simulates many realistic considerations
in vehicle routing scheduling problems in cross-docking systems which might have separately been
attempted by other researchers. The developed model is pioneer in excogitating the vehicle routing
scheduling problem with the following assumptions: a) multiple products are transported between
pick-up and delivery nodes, b) delivery time-intervals are imposed on each delivery node, c) multiple
types of vehicles operate in the system, d) capacity constraints exists for each vehicle type, and
finally e) vehicles arrives simultaneously at cross-docking location. Moreover, to solve the model a
hybrid solution methodology is presented by combining fuzzy possibilistic programming and stochastic
programming. Finally, in order to demonstrate the accuracy and efficiency of the proposed model, an
extensive sensitivity analysis is performed to scrutinize its parameters’ demeanors.

Keywords : Cross docking; Vehicle routing scheduling; Fuzzy possibilistic programming; Stochastic
programming.

—————————————————————————————————–

1 Literature review

R
ohrer [22] presents one of the earliest techni-
cal papers outlining modeling methods and

issues in cross-docking systems. In his study, he
is more focused on describing theoretical aspects
of cross-docking than its practical implementa-
tion. Mosheiov [12] proposed a mathematical

∗Corresponding author. b.vahdani@gmail.com
†Young Researchers and Elite Club, Qazvin Branch,

Islamic Azad University, Qazvin, Iran.
‡Department of Mathematics, Islamic Azad University,

Qazvin Branch, Qazvin, Iran.

model along with two heuristic algorithms for ve-
hicle routing problem consisting of pickup and
delivery processes aiming at minimizing trans-
portation costs and maximizing vehicle efficiency.
Afterwards, a heuristic algorithm based on a
neighbourhood algorithm and a Tabu Search al-
gorithm was proposed for the optimization of
transportation planning with one delivery cen-
ter [10]. Apte and Viswanathan [18] proposed a
framework for understanding and designing cross-
docking systems, including techniques for improv-
ing the overall efficiencies of logistics and distri-
bution networks. Thus, they present technical
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issues associated to the network structures used
for warehousing, the design of physical and infor-
mation flows in cross-docking, and analysis and
management systems. A new Tabu Search was
developed on a classical traveling salesman prob-
lem [10]. They showed that their algorithm is able
to find optimal solutions in a relatively short com-
putational time. Another version of Tabu Search
algorithm was proposed by Lau et al. [14] to min-
imize the transportation costs for vehicle routing
during specified time windows and for a finite
number of vehicles. Jia et al. [13] presented a
modified GA, which is capable of solving tradi-
tional scheduling problems as well as distributed
scheduling problems. The capability of the mod-
ified GA was also evaluated for solving the dis-
tributed scheduling problems. Li et al. [31] de-
signed and implemented two heuristics to study a
central problem for cross-docking, namely, elim-
inating or minimizing storage and order picking
activity. They used JIT scheduling and thereby
solved the NP-hard problem for real-time appli-
cations. In two studies, Lim et al. [2, 3] con-
sider truck dock assignment problems with time
windows and capacity constraints in the trans-
shipment network. They first formulate an in-
teger programming model and propose a Tabu
Search and a genetic algorithm, and then, to
minimize the operational cost of the cargo ship-
ments and the total number of unfulfilled ship-
ments, they formulate another integer program-
ming model and propose a different genetic algo-
rithm that uses integer programming constraints.
A study on cross-docking scheduling problems ac-
cording to total completion time for JIT logistics
was conducted [8]. They developed a branch and
bound algorithm heuristics on the basis of the
different characteristics of the problem. Another
similar research is studied by [7] on the cross-
docking scheduling problem with total comple-
tion time, but this time with a dynamic program-
ming method. An integrated cross-docking with
the pickup and delivery process is studied by [32].
To modelize foregoing problem, they introduced
a mathematical model to determine an optimal
vehicle routing schedule. Since the problem was
NP-hard they developed a tabu search algorithm
for that problem. Waller et al. [23] developed
several models to predict managerially important
changes in a retailer’s system wide inventory lev-
els due to cross-docking. Chen and Song [9] con-

sidered a two-stage hybrid cross-docking schedul-
ing problem. In their paper, they point out that
the job in the second stage can be executed only
when its precedent jobs in the first stage are done,
and at least one stage must contain more than
one machine. They solved their problem by pre-
senting a mixed integer programming model for
small-sized instances. They also presented four
heuristics to investigate the performance of their
algorithms in large-size instances. In contrast,
a cross-docking system with a temporary stor-
age area in front of the shipping dock was sug-
gested by Yu and Egbelu [30]. In their prob-
lem, they determine product assignments from
inbound trucks to outbound trucks simultane-
ously according to the trucks’ docking sequences.
Thus, they develop two solution techniques: a
mathematical model to minimize makespan in
small-sized problems but it fails to solve large-
sized instances, and heuristic algorithms to en-
hance the solution efficiency. Wang and Regan
[16] use real-time information about freight trans-
ferring within a cross-docking system to schedule
waiting inbound trailers and in order to reduce
the time freight spends in the cross-dock. Their
dynamic simulation models enable them to com-
pare the performance of several rule-based sim-
ulations. Their simulation results indicate that
the time-based algorithms save more time than
the first-come, first-served or look-ahead poli-
cies. Boysen et al. [24] propose a base model
for scheduling trucks at cross-docking terminals.
Their model is a building block solution proce-
dure that helps solve more complex, real-world,
truck scheduling problems. Dong et al. [11] deals
with a vehicle routing and scheduling problem
taking place in Flight Ticket Sales Companies for
the service of free pickup and delivery of airline
passengers to the airport. They modelize this
problem under the framework of Vehicle Rout-
ing Problem with Time Windows (VRPTW),
aims at minimizing the total operational costs,
i.e., fixed start-up costs and variable traveling
costs. They propose a mixed integer program-
ming model in which service quality is factored in
constraints by introducing passenger satisfaction
degree functions that limit time deviations be-
tween actual and desired delivery times. A novel
hybrid genetic algorithm (HGA) is proposed by
Wang and Lu [6] for solving a capacitated vehi-
cle routing problem (CVRP). The proposed HGA
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is mainly used to solve practical problems. Boy-
sen [25] considers a new truck scheduling prob-
lem, which synchronizes inbound and outbound
flows of goods at the zero-inventory cross dock-
ing terminals of the food industry. He presents
a new multi-objective formulation for this prob-
lem which is solved by dynamic programming
and simulated annealing approaches. Tang and
Yan [28] propose two new application of a cross-
docking system in which two approaches are im-
plemented: (1) pre-distribution cross-docking op-
erations (Pre-C) and (2) post-distribution cross-
docking operations (Post-C). Because, each of
these approaches has its own advantages and dis-
advantages, decision makers are encountered with
a difficult option in that the operations costs
at the cross-dock in Pre-C are lower than the
Post-C, while the transshipment’s quantity in
Pre-C is higher than the Post-C. Vahdani and
Zandieh [5] apply five meta-heuristic algorithms:
genetic algorithm (GA), tabu search (TS), simu-
lated annealing (SA), electromagnetism-like algo-
rithm (EMA) and variable neighbourhood search
(VNS) to schedule the trucks in cross-dock sys-
tems such that the total operation time is mini-
mized when there is a temporary storage buffer
located at the shipping dock. As was pointed out,
few researches have been conducted regarding ve-
hicle routing scheduling in the literature. Among
those few researches, all of them have assumed
that the considered cross-docking system is single
product. This issue obviously violates the multi-
product nature of cross-docking systems and it is
not sensible at all. Another issue that has exten-
sively been researched in vehicle routing schedul-
ing is the time constraints for transportation ac-
tivities in delivery nodes. The foregoing assump-
tion is considered in the proposed model. Con-
sidering the nature of vehicles’ actitives in deliv-
ery nodes and inasmuch as timely delivery is very
critical problem for retailers; interval time con-
straints have been included in the proposed model
on top of the other assumptions. The authors of
this research believe that the simultaneous con-
sideration of the foregoing assumptions make the
problem considered in this paper more realistic.

Contributions of this paper to the location-
allocation area of research are articulated as fol-
lows:

■ Incorporation of time window constraints in
cross-docking vehicle routing scheduling problem.

■ Consideration of multi-products in pick-up
and delivery processes in cross-docking system.

■ Including different vehicles with different ca-
pacities to solve the problem more realistically.

■ Investigation of time constraints for vehicles’
activities in each node.

■ Proposal of a new mixed integer linear
programming model to realistically solve vehicle
routing scheduling problems in cross-docking sys-
tem through embracing above-cited assumptions.

2 Mathematical formulation

In this paper, assume we have multiple products
in our pick-up and delivery processes. A set of
different vehicles are used to transport products
from suppliers to retailers through a cross-dock.
Supplies and demands are taken as deliveries and
pickups within duration constraints on vehicle
routes. Supplies are taken as deliveries within
time windows. Split deliveries and pickup are not
allowed. Additionally, we consider unlimited ca-
pacity for cross-dock center in our problem. Each
supplier and retailer can be visited only once and
the total quantity of products in a vehicle must
be less than its capacity. Another assumption is
that the total demanded quantity in each deliv-
ery node must be equal or less than total trans-
ported quantity in delivery process. The objec-
tive of developing such a mathematical model is
to minimize both total transportation cost and
fixed operational cost of vehicles in pickup and
delivery process. In order to solve our problem,
we develop a comprehensive mathematical model
with following notations.

2.1 Notations

S: Set of suppliers in the pickup process (i =
1, 2, , n).

R: Set of retailers in the delivery process (i
′
=

1, 2, ,m).

G: Number of product type (g = 1, 2, , G).

K: Vehicle types are labeled by k(k = 1, 2, ,K)
in the pickup process and the number of vehicles
of type k is noted Lk.

K
′
: Vehicle types are labeled by k

′
(k

′
=

1, 2, ,K
′
) in the delivery process and the number

of vehicles of type k
′
is noted Lk

′ .

0: Cross docking center.

n: Number of nodes in pick-up process.
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m: Number of nodes in delivery process.

2.2 Parameters

pig: Loaded amount of product type g in node i
in pick-up process.

di′g: Unloaded amount of product type g in

node i
′
in delivery process.

cijk: Transportation cost for vehicle type k
from node i to node j in pick-up process.

c̃i′j′k′ : Transportation cost for vehicle type k
′

from node i
′
to node j

′
in delivery process.

c̃k: Operational cost of the vehicle k in pick-up
process.

c̃
′
k: Operational cost of the vehicle k

′
in delivery

process.

t̃kij : Time for the vehicle k to move from node
i to node j in pick-up process.

t̃k
′

i′j′
: Time for the vehicle k

′
to move from node

i
′
to node j

′
in delivery process.

T̃ s
k : Maximum working time of vehicle k in

pick-up process.

T̃ s
k
′ Maximum working time of vehicle k

′
in de-

livery process.

l̃i′ , ũi′ : Minimum and maximum times defin-
ing the time horizon in delivery process.

C̃Ak: Volume capacity of vehicle k in pick-up
process.

C̃Ak
′ Volume capacity of vehicle k

′
in delivery

process.

ṽg: Unit volume of product g.

2.3 Decision variables

xijkl : 1 if the lth vehicle of type k travels directly
from node i to node j (i ̸= j) in pickup process
and equal 0 otherwise;

xi′j′k′ l′ : 1 if the l
′
th vehicle of type k

′
trav-

els directly from node i
′
to node j

′
(i

′ ̸= j
′
) in

delivery process and equal 0 otherwise;

yikl: 1 if node i is visited by the lth vehicle of
type k in pickup process and equal 0 otherwise;

yi′k′ l′ : 1 if node i
′
is visited by the l

′
th vehicle

of type k
′
in delivery process and equal 0 other-

wise;

zk,l : 1 if the lth vehicle of type k is used in
pickup process and 0 otherwise;

zk′ ,l′ : 1 if the l
′
th vehicle of type k

′
is used in

delivery process and 0 otherwise;

wik: Volume of products to be collected by the
vehicle of type k upon arriving at i in pickup pro-
cess.

wi′k′ : Volume of products remaining to be de-

livered by the vehicle of type k
′
upon arriving at

i
′
in delivery process.
atki : Arrival time of vehicle k at node i in

pickup process.

atk
′

i
′ : Arrival time of vehicle k

′
at node i

′
in

delivery process.

2.4 Model

min z =
∑n

i=0

∑n
j=0

∑K
k=1

∑Lk
l=1 c̃ijk xijkl+

∑m
i′=0

∑m
j′=0

∑K
′

k′=0
c̃i

′
j
′
k

′
xi′j′k′ l′+

∑K
k=1

∑LK
l=1 c̃k zk,l +

∑K
′

k′=1

∑L
K

′

l′=1
c̃k′ zk′ ,l′

(2.1)

∑K
k=1

∑Lk
l=1 yikl = 1, i ∈ (1, 2, ..., n). (2.2)

∑K
′

k
′
=1

∑L
k
′

l
′
=1

yi′k′ l′ = 1, i
′ ∈ (1, 2, ...,m).

(2.3)

∑n
i=0 xirkl =

∑n
j=0 xrjkl,

r ∈ (1, 2, ..., n), k ∈ (1, 2, ...,K),

l ∈ (1, 2, ..., Lk).

(2.4)

∑m
i′=0

xi′r′k′ l′ =
∑m

j′=0
xr′j′k′ l′ ,

r
′ ∈ (1, 2, ...,m), k

′ ∈ (1, 2, ...,K
′
),

l
′ ∈ (1, 2, ..., Lk

′ ).

(2.5)

∑n
j=0 xijkl = yikl,

i ∈ (1, 2, ..., n), k ∈ (1, 2, ...,K),

l ∈ (1, 2, ..., Lk).

(2.6)

∑m
j′=0

xi′j′k′ l′ = yi′k′ l′ ,

i
′ ∈ (1, 2, ...,m), k

′ ∈ (1, 2, ...,K
′
),

l
′ ∈ (1, 2, ..., Lk

′ ).

(2.7)
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∑n
j=1 x0jkl ≤ 1,

k ∈ (1, 2, ...,K), l ∈ (1, 2, ..., Lk). (2.8)∑n
i=1 xi0kl ≤ 1,

k ∈ (1, 2, ...,K), l ∈ (1, 2, ..., Lk). (2.9)∑n
j
′
=1

x0j′k′ l′ ≤ 1,

k
′ ∈ (1, 2, ...,K

′
), l

′ ∈ (1, 2, ..., Lk
′ ). (2.10)∑n

i′=1
xi′0k′ l′ ≤ 1,

k
′ ∈ (1, 2, ...,K

′
), l ∈ (1, 2, ..., Lk

′ ). (2.11)∑n
i=1 yikl ≤ Mzkl,

k ∈ (1, 2, ...,K), l ∈ (1, 2, ..., Lk). (2.12)

∑m
i′=1

yi′k′ l′ ≤ Mzk′ l′ , k
′ ∈ (1, 2, ...,K

′
),

l
′ ∈ (1, 2, ..., Lk′ ).

(2.13)

∑n
i=0

∑n
j=0 t̃

k
ijxijkl ≤ T̃ s

k ,

k ∈ (1, 2, ...,K), l ∈ (1, 2, ..., Lk).

(2.14)

∑m
i
′
=0

∑m
j
′
=0

t̃k
′

i
′
j
′xijkl ≤ T̃ s

k
′ ,

k
′ ∈ (1, 2, ...,K

′
), l

′ ∈ (1, 2, ..., Lk
′ ).

(2.15)

atk
′

i′
≥ t̃k

′

0i′
, k

′ ∈ (1, 2, ...,K
′
), i

′ ∈ (1, 2, ...,m).

(2.16)

atki ≥ t̃k0i, k ∈ (1, 2, ...,K), i ∈ (1, 2, ..., n).
(2.17)

atk
′

i
′ + t̃k

′

i
′
j
′ − atk

′

j
′ ≤ (1−

∑L
k
′

l
′
=1

xi′j′k′ l′ ) T̃
s
k
′ ,

i
′
, j

′ ∈ (1, 2, ...,m), k
′ ∈ (1, 2, ...,K

′
).

(2.18)

atki + t̃kij − atk ≤ (1−
∑Lk

l=1 xijkl) T̃
s
k ,

i, j ∈ (1, 2, ..., n), k ∈ (1, 2, ...,K).

(2.19)

l̃i′ ≤ atk
′

i′
≤ ũi′ ,

i
′ ∈ (1, 2, ...,m), k

′ ∈ (1, 2, ...,K
′
).

(2.20)

w0k ≤ C̃Ak, k ∈ (1, 2, ...,K). (2.21)

wik +
∑G

g=1 ṽgpig − wjk

≤ (1−
∑Lk

l=1 xijkl)C̃Ak, i ∈ (0, 1, ..., n),

j ∈ (1, 2, ..., n), k ∈ (1, 2, ...,K).
(2.22)

w0k′ ≤ C̃Ak′ , k
′ ∈ (1, 2, ...,K

′
). (2.23)

wi
′
k
′ +

∑G
g=1 ṽgpi′g − wj

′
k
′

≤ (1−
∑L

k
′

l′=1
xi′j′k′ l′ )C̃Ak

′ , i
′ ∈ (0, 1, ...,m),

j
′ ∈ (1, 2, ...,m), k

′ ∈ (1, 2, ...,K
′
).

(2.24)

atk0 = atk
′′

0 , k ̸= k
′′
. (2.25)

atk
′

0 = atk
′′′

0 , k
′ ̸= k

′′′
. (2.26)

xijkl, xi′j′k′ l′ , zkl, zk′ l′ , yikl, yi′k′ l′ ∈ {0, 1}.
(2.27)

wik, wi′k′ , at
k
i , at

k
′

i
′ ≥ 0. (2.28)

Objective function Eq.(2.1) minimizes the to-
tal costs including transportation costs and op-
erational costs. constraints Eq.(2.2) and Eq.(2.3)
specify that each supplier and retailer is visited
exactly once in pickup and delivery process ,
respectively and while constraints Eq.(2.4) and
Eq.(2.5) are flow conservation equations. Con-
straints Eq.(2.6) and Eq.(2.7) express the yikl and
yi′k′ l′ variables in terms of the xijkl and xi′j′k′ l′

variables, respectively. Whether or not a vehi-
cle arrives at and leaves a cross-dock is shown in
Eq.(2.8), Eq.(2.9), Eq.(2.10) and Eq.(2.11). Con-
straints Eq.(2.12) mean that no supplier can be
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visited by the lth vehicle of type k if this vehicle is
not used in pickup process. Constraints Eq.(2.13)
mean that no retailer can be visited by the l

′
th ve-

hicle of type k
′
if this vehicle is not used in deliv-

ery process. Constraints Eq.(2.14) and Eq.(2.15)
specify the duration constraints on vehicle routes
in pickup and delivery process, respectively. Con-
straints Eq.(2.16), Eq.(2.17), Eq.(2.18), Eq.(2.19)
and Eq.(2.20) ensure that all time windows are re-
spected. Moreover, these constraints ensure that
every supplier or retailer is on a route connected
to the set of cross docks. Constraints Eq.(2.21),
Eq.(2.22), Eq.(2.23) and Eq.(2.24) expresses that
the quantity of loaded and unloaded products in
a certain vehicle cannot exceed the maximum ca-
pacity of the vehicle in pickup and delivery pro-
cess. Constraints for simultaneous arrival to a
cross-dock are given in Eq.(2.25) and Eq.(2.26).
Finally, Constraints Eq.(2.27) and Eq.(2.28) en-
force the binary and non-negativity restrictions
on decision variables.

3 Solution Methodology

The proposed mathematical model is a fuzzy
possibilistic-stochastic programming problem.
To solve the model, a hybrid solution methodol-
ogy is developed based on fuzzy possibilistic pro-
gramming and stochastic programming. For this
purpose, the original model under uncertainty
is transformed into an equivalent auxiliary crisp
model by utilizing an efficient fuzzy possibilistic-
stochastic solution approach resulted from the
hybridization of the recent effective methods pre-
sented by Liu et al. [17], Jimenez et al. [19]
and Pishvaee and Torabi [21]:(a) fuzzy possibilis-
tic programming and (b) chance-constraint pro-
gramming. The proposed solution methodology
is employed to find the final preferred compromise
solution under uncertainty [26].

3.1 Hybrid solution methodology

In order to write equivalent auxiliary crisp
model, the chance-constrained programming is
integrated within the fuzzy possibilistic frame-
work for taking account of distribution informa-
tion of the model’s right-hand sides. Also, ap-
propriate possibility distributions of the parame-
ters in the objective function and constraints are
determined according to the definition of the ex-

pected interval (EI) and expected value (EV) of
fuzzy numbers. Finally, it results in a hybrid
FPSP model as follows:

min f = C̃X
S.t :

(3.29)

ÃX ≥ B̃, (3.30)

D̃X = F̃ . (3.31)

With

B̃ = (b1, b2, ..., bm1 , b
(p1)
m1+1, b

(p2)
m1+2, ..., b

(pm−m1)
m ),

xj ≥ 0, xj ∈ X, j = 1, 2, ..., n.

where that C̃ is a triangular fuzzy number,
Eq.(3.32) can be expressed as the membership
function of C̃:

µ̃C(x) =


fc(x) =

x−cp

cm−cp ifcp ≤ x ≤ cm

1 ifx = cm

gc(x) =
co−x
co−cm ifcm ≤ x ≤ co

0 ifx ≤ cp or x ≥ co

(3.32)
The EI and EV of triangular fuzzy number C̃

can be obtained as follows [19, 21]:

EI(C̃)
= [Ec

1, E
c
2]

= [
∫ 1
0 f−1

c (x) dx,
∫ 1
0 g−1

c (x) dx]
= [12(c

p + cm), 12(c
m + co)],

and

EV (C̃) =
Ec

1+Ec
2

2 = cp+2cm+co

4 ,
ED

1 = 1
2(D

p +Dm), ED
2 = 1

2(D
m +Do),

EF
1 = 1

2(F
p + Fm),

EF
2 = 1

2(F
m + F o).

For details on the method, the reader can refer
to [21]. Constraints in Eq.(3.30)have fuzzy left
hand-side and right hand-side coefficients. In ad-
dition, some of the right-hand sides in Eq.(3.30),

(i.e., b
(p1)
m1+1, b

(p2)
m1+2, ..., b

(pm−m1)
m ) are presented as

probability distributions. Hence, if below condi-
tions hold in terms of level sets,

{µAij (aij) | aij ∈ [0, 1]} = {αi1, αi2, ..., αik},
0 ≤ αi1 ≤ αi2 ≤ ... ≤ αik ≤ 1, i = 1, 2, ...m.

(3.33)
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Then, fuzzy constraints in Eq.(3.30) can be re-
placed by the following 2k precise inequalities, in
which k indicates k levels of α-cut.

A
l
X ≤ B

l
, l = 1, 2, ..., k, (3.34)

AlX ≤ Al, l = 1, 2, ..., k, (3.35)

where

A
l
= sup(Al),

B
l
= sup(Bl),

Al = inf(Al),

Bl = (Bl).

Eq.(3.29) can be transformed into a conven-
tional linear programming problem based on [19,
21, 26] as follows:

min f = EV (C̃X (3.36)

S.t :∑n
j=1(ã

s
ij) ≤ B̃s

i ,
(3.37)

with

B̃s
i =


b
s
i ∀i = 1, 2, ..., k1,

b
s(pi)i ∀i = m1 + 1,m1 + 2, ...,m;
s = k1 + 1, k1 + 2, ..., k.

n∑
j=1

(asijX) ≥ Bs
i , (3.38)

with

Bs
i =


bsi ∀i = 1, 2, ..., k1,

bs(pi)i ∀i = m1 + 1,m1 + 2, ...,m;
s = k1 + 1, k1 + 2, ..., k.

[(1− α
2 )E

D
2 + α

2E
D
1 ]x ≥ α

2E
F
2

+(1− α
2 )E

F
1

(3.39)

[α2E
D
2 + (1− α

2 )E
D
1 ]x ≥ (1− α

2 )E
F
2

+α
2E

F
1 ,

(3.40)

xj ≥ 0, j = 1, 2, ..., n. (3.41)

For the right-hand side of constraint, bound-
aries of its fuzzy intervals under any α -cut levels

have random characteristics. They can be pre-
sented as normal distributions as follows:

p[b2(s)] =
1√
2πσ

exp{− [b2(s)−µ]2

2σ2 }, (3.42)

and

p[b2(s)] =
1√
2πσ

exp{− [b2(s)−µ]2

2σ2 }, (3.43)

where µ and µ are expected values of b2(s) and

b2(s), respectively; Also, σ2 and σ2 are the rele-
vant variances [17].

3.2 The equivalent auxiliary crisp
model

According to above descriptions, the equivalent
auxiliary crisp model can be formulated as fol-
lows:

min z =∑n
i=0

∑n
j=0

∑K
k=1

∑Lk
l=1(

cpijk+2cmijk+coijk
4 )xijkl

+
∑m

i′=0

∑m
j′=0

∑K
′

k′=1

∑L
k
′

l′=1

(
cp
i
′
j
′
k
′+2cm

i
′
j
′
k
′+co

i
′
j
′
k
′

4 )xi′j′k′ l′

+
∑K

k=1

∑Lk
l=1(

cpk+2cmk +cok
4 )zkl

+
∑K

′

k
′
=1

∑L
k
′

l
′
=1

(
cp
k
′+2cm

k
′+co

k
′

4 )zk′ l′

(3.44)

∑K
k=1

∑Lk
l=1 yikl = 1, i ∈ (1, 2, ..., n). (3.45)

∑K
′

k′=1

∑L
k
′

l′=1
yi′k′ l′ = 1, i

′ ∈ (1, 2, ...,m).

(3.46)

∑n
i=0 xirkl =

∑n
j=0 xrjkl,

r ∈ (1, 2, ..., n), k ∈ (1, 2, ...,K),
l ∈ (1, 2, ..., Lk).

(3.47)

∑m
i
′
=0

xi′r′k′ l′ =
∑m

j
′
=0

xr′j′k′ l′ ,

r
′ ∈ (1, 2, ...,m), k

′ ∈ (1, 2, ...,K
′
),

l
′ ∈ (1, 2, ..., Lk′ ).

(3.48)

∑n
j=0 xijkl = yikl,

i ∈ (1, 2, ..., n), k ∈ (1, 2, ...,K),
l ∈ (1, 2, ..., Lk).

(3.49)
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∑m
j
′
=0

xi′j′k′ l′ = yi′k′ l′ ,

i
′ ∈ (1, 2, ...,m), k

′ ∈ (1, 2, ...,K
′
),

l
′ ∈ (1, 2, ..., Lk′ ).

(3.50)

∑n
j=1 x0jkl ≤ 1, k ∈ (1, 2, ...,K),

l ∈ (1, 2, ..., Lk).
(3.51)

∑n
i=1 xi0kl ≤ 1, k ∈ (1, 2, ...,K),

l ∈ (1, 2, ..., Lk).
(3.52)

∑n
j
′
=1

x0j′k′ l′ ≤ 1, k
′ ∈ (1, 2, ...,K

′
),

l
′ ∈ (1, 2, ..., Lk

′ ).
(3.53)

∑n
i′=1

xi′0k′ l′ ≤ 1, k
′ ∈ (1, 2, ...,K

′
),

l ∈ (1, 2, ..., Lk
′ ).

(3.54)

∑n
i=1 yikl ≤ Mzkl, k ∈ (1, 2, ...,K),

l ∈ (1, 2, ..., Lk).
(3.55)

∑m
i
′
=1

yi′k′ l′ ≤ Mzk′ l′ ,

k
′ ∈ (1, 2, ...,K

′
),

l
′ ∈ (1, 2, ..., Lk′ ).

(3.56)

∑n
i=0

∑n
j=0(sup{(tkoij − α(tkoij − tkmij )),

(tkpij + α(tkmij − tkpij ))})xijkl

≤ sup{(T ok − α(T 0
k − Tm

k )),

(T pk + α(Tmk − T p
k ))}

pk ,

∈ (1, 2, ...,K), l ∈ (1, 2, ..., Lk).

(3.57)

∑n
i=0

∑n
j=0(inf{(tkoij − α(tkoij − tkmij )),

(tkpij + α(tkmij − tkpij ))})xijkl

≥ inf{(T ok − α(T 0
k − Tm

k )),

(T pk + α(Tmk − T p
k ))}

pk ,

k ∈ (1, 2, ...,K), l ∈ (1, 2, ..., Lk).

(3.58)

∑m
i′=0

∑m
j′=0

(sup{(tk
′
o

i′j′
− α(tk

′
o

i′j′
− tk

′
m

i′j′
)),

(tk
′
p

i′j′
+ α(tk

′
m

i′j′
− tk

′
p

i′j′
))})xi′j′k′ l′

≤ sup{(T o
k
′ − α(T 0

k′
− Tm

k′
)),

(T p
k
′ + α(Tm

k
′ − T p

k
′ ))}pk′ ,

k
′ ∈ (1, 2, ...,K

′
), l ∈ (1, 2, ..., Lk

′ ).
(3.59)

∑m
i′=0

∑m
j′=0

(inf{(tk
′
o

i′j′
− α(tk

′
o

i′j′
− tk

′
m

i′j′
)),

(tk
′
p

i′j′
+ α(tk

′
m

i′j′
− tk

′
p

i′j′
))})xi′j′k′ l′

≥ inf{(T o
k
′ − α(T 0

k
′ − Tm

k
′ )),

(T p
k
′ + α(Tm

k
′ − T p

k
′ ))}pk′ ,

k
′ ∈ (1, 2, ...,K

′
), l ∈ (1, 2, ..., Lk

′ ).
(3.60)

atk
′

i
′ ≥ α(

tm
′

oi
′+tok

′

oi
′

2 ) + (1− α)(
tpk

′

oi
′ +tmk

′

0i
′

2 ),

k
′ ∈ (1, 2, ...,K

′
), i

′ ∈ (1, 2, ...,m).
(3.61)

atki ≥ α(
tmoi+tokoi

2 ) + (1− α)(
tpkoi +tmk

0i
2 ),

k ∈ (1, 2, ...,K), i ∈ (1, 2, ..., n).

(3.62)

atk
′

j
′ + (sup[(tk

′
o

i
′
j
′ − α(tk

′
d

i
′
j
′ − tk

′
m

i
′
j
′ )),

(tk
′
p

i
′
j
′ + α(tk

′
m

i
′
j
′ )− tk

′
p

i
′
j
′ ))])− atk

′

i
′

≤ (1−
∑L

k
′

l′
xi′j′k′ l′ )(sup[(T

o
k′
− α(T o

k′
− Tm

k′
)),

(T p

k
′ + α(Tm

k
′ − T p

k
′ ))]

p
k
′ ),

∀i′ , j′
= 1, 2, ...,m, k

′
= 1, 2, ...,K

′
.

(3.63)
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atk
′

j′
+ (inf[(tk

′
o

i′j′
− α(tk

′
d

i′j′
− tk

′
m

i′j′
)),

(tk
′
p

i′j′
+ α(tk

′
m

i′j′
)− tk

′
p

i′j′
))])− atk

′

i′

≥ (1−
∑L

k
′

l
′ xi′j′k′ l′ )(inf[(T

o
k
′ − α(T o

k
′ − Tm

k
′ )),

(T p

k
′ + α(Tm

k′
− T p

k
′ ))]

p
k
′ ),

∀i′ , j′
= 1, 2, ...,m, k

′
= 1, 2, ...,K

′
.

(3.64)

atkj + (sup[(tkoij − α(tkdij − tkmij )),

(tkpij + α(tkmij )− tkpij ))])− atki

≤ (1−
∑Lk

l xijkl)(sup[(T
o
k − α(T o

k − Tm
k )),

(T p
k + α(Tm

k − T p
k ))]

pk),

∀i, j = 1, 2, ...,m, k = 1, 2, ...,K.
(3.65)

atkj + (inf[(tkoij − α(tkdij − tkmij )),

(tkpij + α(tkmij )− tkpij ))])− atki

≥ (1−
∑Lk

l xijkl)(inf[(T
o
k − α(T o

k − Tm
k )),

(T p
k + α(Tm

k − T p
k ))]

pk),

∀i, j = 1, 2, ...,m, k = 1, 2, ...,K.
(3.66)

α(
lmi +loi

2 ) + (1− α)(
lpi +lmi

2 ) ≤ atk
′

i′

≤ (1− α)(
um
i +uo

i
2 ) + α(

up
i+um

i
2 ),

∀i′ = 1, 2, ...,m, k
′
= 1, 2, ...,K

′
.

(3.67)

w0k ≤ (1− α)(
CAm

k +CAo
k)

2 )+

α(
CAp

k+CAm
k

2 ), ∀k = 1, 2, ...,K.

(3.68)

w0k
′ ≤ (1− α)(

CAm

k
′+CAo

k
′ )

2 )+

α(
CAp

k
′+CAm

k
′

2 ), ∀k′
= 1, 2, ...,K

′
.

(3.69)

wik +
∑G

g=1[α(
vmg +vog

2 )+

(1− α)(
vpg+vmg

2 )]pig−

wjk ≤ (1−
∑Lk

l=1 xijkl)[(1− α)

(
CAm

k +CAo
k

2 ) + α(
CAp

k+CAm
k

2 )],

∀i = 0, 1, ..., n, j = 1, 2, ..., n, k = 1, 2, ...,K.
(3.70)

wi
′
k
′ +

∑G
g=1[α(

vmg +vog
2 )

+(1− α)(
vpg+vmg

2 )]di′g−

wj′k′ ≤ (1−
∑L

k
′

l
′
=1

xi′j′k′ l′ )[(1− α)

(
CAm

k
′+CAo

k
′

2 ) + α(
CAp

k
′+CAm

k
′

2 )],

∀i′ = 0, 1, ...,m, j
′
= 1, 2, ...,m,

k
′
= 1, 2, ...,K

′
.

(3.71)

atk0 = atk
′′

0 , k ̸= k
′′
. (3.72)

atk
′

0 = atk
′′′

0 , k
′ ̸= k

′′′
. (3.73)

xijkl, xi′j′k′ l′ , zkl, zk′ l′ , yikl,

yi′k′ l′ ∈ {0, 1}.
(3.74)

wik, wi
′
k
′ , atki , at

k
′

i′
≥ 0. (3.75)

4 Numerical Example

To illustrate the validity and applicability of the
proposed mathematical model, several numerical
experiments are considered and the related re-
sults are provided in this section. For this pur-
pose, five test problems are designed that their
sizes are given in Table 1. According to Ta-
ble 2, the proposed fuzzy possibilistic-stochastic
MILP model is solved and reported by GAMS op-
timization software. The numerical experiments
for each size are calculated under three α-cut lev-
els (α = 0.2, 0.4, 0.6). It is pointed out that the
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Table 1: Parameters values.

Parameters Test problem 1 Test problem 2

n 4 5
m 6 7
G 3 3
K 4 4

K
′

4 4

T̃ k
s , T̃

k
′

s Uniform(800, 1300) Uniform(800, 1300)
pig Uniform(8, 30) Uniform(15, 35)
di′g Uniform(5, 30) Uniform(5, 30)

c̃ij Uniform(300, 500) Uniform(250, 500)
c̃i′ j′ Uniform(110, 530) Uniform(100, 530)

c̃k Uniform(600, 800) Uniform(600, 800)
c̃k′ Uniform(600, 800) Uniform(600, 800)

t̃kij Uniform(6, 16) Uniform(4, 16)

t̃k
′

i′ j′
Uniform(9, 20) Uniform(10, 20)

C̃Ak, C̃Ak′ Uniform(900, 1200) Uniform(9, 1200)
ṽj Uniform(1.2, 2.3) Uniform(1.2, 2.3)

l̃i′ Uniform(3, 5) Uniform(3, 5)
ũi′ Uniform(20, 35) Uniform(20, 35)

(Continue Table 1).

Test problem3 Test problem 4 Test problem 5

6 7 8
8 9 10
3 4 4
4 5 6
4 5 6
Uniform(800, 1300) Uniform(800, 1300) Uniform(800, 1300)
Uniform(10, 35) Uniform(8, 35) Uniform(5, 35)
Uniform(5, 35) Uniform(5, 25) Uniform(5, 20)
Uniform(90, 500) Uniform(150, 500) Uniform(110, 500)
Uniform(90, 500) Uniform(80, 50) Uniform(90, 490)
Uniform(600, 800) Uniform(600, 800) Uniform(600, 800)
Uniform(600, 800) Uniform(600, 800) Uniform(600, 800)
Uniform(4, 16) Uniform(4, 16) Uniform(4, 18)
Uniform(8, 20) Uniform(6, 20) Uniform(7, 200)
Uniform(1200) Uniform(900) Uniform(1200)
Uniform(1.2, 2.3) Uniform(1.2, 2.3) Uniform(1.2, 2.3)
Uniform(3, 5) Uniform(3, 5) Uniform(3, 5)
Uniform(20, 35) Uniform(20, 35) Uniform(20, 35)

boundaries of fuzzy intervals for the right-hand
side of constraint under α-cut levels have ran-
dom characteristics, and they can be presented
as normal distributions. Also, the values of the
probability (pk, pk′ ) set to 0.1 and 0.3 in the five
test problems. Finally, the computational results
for the proposed model are reported in Table 2.
In order to demonstrate the accuracy and effi-
ciency of the proposed model, an extensive sen-

sitivity analysis is performed to scrutinize its pa-
rameters’ demeanor. The parameters include the
numbers of both pick-up and delivery nodes as
well as transportation costs. Additionally, the
sensitivity analysis has been done on the final so-
lution of both single-product and multi-product
cross-docking systems.
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Table 2: Computational results under different combination of α and pk, p− k
′

Test problem Probability values Objective function under different values α-cut levels

0.2 0.4 0.6

ProblemNo.1 pk = pk′ = 0.1 5715.7 5512.5 53109.1
ProblemNo.1 pk = pk′ = 0.3 5431.5 5365.3 5201.8
ProblemNo.2 pk = pk′ = 0.1 6232.7 5365.3 5201.8
ProblemNo.2 pk = pk′ = 0.3 6039.9 6012.6 5879.2
ProblemNo.3 pk = pk′ = 0.1 6980.6 5943.5 5633.9
ProblemNo.3 pk = pk′ = 0.3 6706.2 6608.6 6451.4
ProblemNo.4 pk = pk′ = 0.1 7550.7 7214.8 7087.3
ProblemNo.4 pk = pk′ = 0.3 7335.6 7146.9 6819.2
ProblemNo.5 pk = pk′ = 0.1 8420 8166.5 7931.7
ProblemNo.5 pk = pk′ = 0.3 8124.9 7866.1 7544.7

4.1 Increase in the numbers of pick-up
nodes:

As can be seen in Figure 1, the value of objective
function consistently increases as the numbers of
pick-up nodes increase. Possibly, this is because
of the facts that as the numbers of pick-up nodes
increase, higher numbers of vehicles are required
for pick-up activities. Consequently, the costs of
renting or buying new vehicles are added to the
supply chain cost. On the other hand, it is natu-
ral that as the numbers of pick-up nodes increase,
the distance that each vehicle has to traverse to
cover the added nodes increases. This issue di-
rectly contributes to transportation cost increase.
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Figure 1: Objective function and number
of pickup nodes.

4.2 Increase in the numbers of deliv-
ery nodes:

As can be seen in Figure 2, the value of objec-
tive function consistently increases as the num-
bers of delivery nodes increase. Most likely, this
is because of the facts that as the numbers of
delivery nodes increase, higher numbers of vehi-
cles are required for delivery activities. Conse-
quently, the costs of renting or buying new ve-
hicles are added to the supply chain cost. On
the other hand, it is natural that as the numbers
of delivery nodes increase, the distance that each
vehicle has to traverse to cover the added nodes
increases. This issue also directly contributes to
transportation cost increase. Figure 2 obviously
demonstrates that increase in the numbers of de-
livery nodes causes the objective function value to
increase by a higher coefficient as opposed to the
case in which the numbers of pick-up nodes in-
crease. This issue is perfectly normal in our case
because no time constraints have been imposed
on pick-up nodes, whereas in delivery nodes, ve-
hicles are subject to time constraints for deliver-
ing their products within their pre-specified de-
livery time. This issue mandates decision makers
to dispatch more vehicles to fulfill the delivery
requirements of a node if the delivery time ex-
ceeds the pre-specified delivery time-interval for
that node. Thus, the transportation cost associ-
ated with delivery nodes are substantially higher
than the time the pick-up activities are done.
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Figure 2: Objective function and number
of delivery nodes.

4.3 Increase in the transportation
costs:

As can be seen in Figure 3, the value of objective
function proportionally increases as the trans-
portation costs rise. Therefore, it can be con-
cluded that transportation costs play substantial
role in increasing the objective function value.
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Figure 3: Objective function and trans-
portation costs.

4.4 Solutions of the model in single
and multi-product cases:

As can be seen in Figure 4, the value of objective
function is markedly higher than the one in single
product case. The argument that can be made for
this difference in objective function is that since
the capacity of vehicles are limited, they usually
accommodate for single product case. But in the
case of multi-products, more vehicle capacity is

needed and consequently we require more vehicles
to meet the pick-up and delivery requirements.
As a consequence, both the transportation cost
and rental or purchases of new vehicles increase.
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Figure 4: Objective function and number
product.

5 Conclusion

In this paper, a new Mixed Integer Linear Pro-
gramming formulation was developed and applied
for the problem of vehicle routing scheduling.
The proposed model remedies the shortcomings
of previously developed models in the field. Sev-
eral applicable assumptions for the first time were
incorporated in the proposed formulation: a) ex-
istence of multiple products that are transported
between pick-up and delivery nodes, b) delivery
time-intervals are imposed on each delivery node,
c) multiple types of vehicles operate in the sys-
tem, d) capacity constraints exists for each vehi-
cle type, and finally e) vehicles arrives simultane-
ously at cross-docking location. Moreover, we uti-
lized a hybrid solution methodology by combin-
ing fuzzy possibilistic programming and stochas-
tic programming. Additionally, comprehensive
sensitivity analyses were performed on the pa-
rameter of the model to investigate how the de-
meanor of the model changes with respect to pos-
sible changes in the supply chain network. The
sensitivity analyses help adopt appropriate deci-
sions to better manage the distribution centers in
supply chains. As a direction for future research,
the current study can be extended to incorporate
the existence of multiple cross-docking locations
in the supply chain.
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