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Abstract

In this paper, linear Data Envelopment Analysis models are used to estimate Markowitz efficient
frontier. Conventional DEA models assume non-negative values for inputs and outputs. however,
variance is the only variable in these models that takes non-negative values. Therefore, negative data
models which the risk of the assets had been used as an input and expected return was the output
are utilized . At the beginning variance was considered as a risk measure. However, both theories
and practices indicate that variance is not a good measure of risk. Then value at risk is introduced
as new risk measure. In this paper,we should prove that with increasing sample size, the frontiers
of the linear models with both variance and value at risk , as risk measure, gradually approximate
the frontiers of the mean-variance and mean-value at risk models and non-linear model with negative
data. Finally, we present a numerical example with variance and value at risk that obtained via
historical simulation and variance-covariance method as risk measures to demonstrate the usefulness
and effectiveness of our claim.
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1 Introduction

I
n financial literature, a portfolio is an appro-
priate mix investments held by an institution

or private individuals. For investors, best portfo-
lios or assets selection and risks management are
always challenging topics. Investors typically try
to find portfolios or assets offering less risk and
more return. Evaluation of portfolio performance
has created a large interest among employees also
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academic researchers because of huge amount of
money are being invested in financial markets.
One important idea in portfolio evaluation is the
portfolio frontier approach, which measures per-
formance of a portfolio by some its distances to
the efficient portfolio frontier. In 1952 Markowitz
[20] work, laid the base of the frontier approach
under the mean-variance (MV) framework. This
model was due to the nature of the variance in
quadratic form, and tries to decrease variance
as a risk parameter in all levels of mean. This
model results in an area with a frontier called ef-
ficient frontier. Data Envelopment Analysis has
proved the efficiency for assessing the relative ef-
ficiency of Decision Making Units (DMUs) that
employs multiple inputs to produce multiple out-
puts (Charnes et al. 1978 [9]). Mean-variance
idea has been much extended afterwards, and the
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models further being developed along this idea
are often referred as nonlinear DEA models.

In 1999 Morey and Morey [23] proposed mean-
variance framework based on Data Envelopment
Analysis, in which variance of the portfolio is used
as an input to DEA models and expected return
is used as an output. In 2004 Briec et al. [6]
tried to project points in a preferred direction
on efficient frontier and evaluate points’ efficien-
cies by their distances. Demonstrated model by
Briec et al. [7] which is also known as a short-
age function, has some advantages. For example
optimization can be done in any direction of a
mean-variance space according to the investors’
ideal. Furthermore, in shortage function, effi-
ciency of each security is defined as the distance
between the asset and its projection in a pre-
assumed direction. As an instance in variance
direction optimization it is equal to the ratio be-
tween variance of projection point and variance of
asset. Based on this definition if distance equals
to zero, that security is on the frontier area and
its efficiency equals to 1. This number, in fact,
is the result of shortage function which tries to
summarize value of efficiency by a number. Simi-
lar to any other model, mean-variance model has
its own assumptions. Normality is one of its im-
portant assumptions. In mean-variance model,
distribution of mean of securities in a particu-
lar time horizon should be normal. In contrast
Mandelbrot [19] showed, not only empirical dis-
tributions are widely skewed, but they also have
thicker tails than normal. Ariditti [2] and Kraus
and Litzenberger [17] also showed that expected
return in respect of third moment is positive.
Ariditti [2], Kane [15], Ho and Chang [12] showed
that most investors prefer positive skewed assets
or portfolios, which means that skewness is an
output parameter and same as mean or expected
return, should be increased. Based on Mitton and
Vorkink [22] most investors scarify mean-variance
model efficiencies for higher skewed portfolios.
In this way Joro and Na [14] introduced mean-
variance-skewness framework, in which skewness
of returns considered as outputs. Also, Joro and
Na reported that the linear DEA estimation of
portfolio efficiency is not consistent with the re-
sults from their non-linear model. Briec et al. [7]
introduced a new shortage function which obtains
an efficiency measure which looks to improve both
mean and skewness and decreases variance. Kers-

tence et al. [16] introduced a geometric represen-
tation of the MVS frontier related to new tools
introduced in their paper. In the new models in-
stead of estimating the whole efficient frontier,
only the projection points of the assets are com-
puted. In these models a non-linear DEA-type
framework is used where the correlation structure
among the units is taken into account. Nowadays,
most investors think consideration of skewness
and kurtosis in models are critical. Mhiri and
Prigent [21] analyzed the portfolio optimization
problem by introducing higher moments of return
– the main financial index. However, using this
approach needs variety of assumptions hold, there
is not a general willingness to incorporate higher
order moments. Up to this point the assumption
is that variance is a parameter that evaluates risk
and it is preferred to be decreased, although, not
everybody wants this. For example a venture cap-
italist prefers risky portfolios or assets, followed
by more return than normal. In mean-variance
models evaluation,such situations are considered
as undesirable situations. But they are not really
undesirable for those who are interested in risk for
higher returns. There are some approaches, try-
ing to address such ambiguities by introducing
other parameters, such as semi variance. How-
ever, each approach has its own disadvantage
which makes it less desirable. A new approach
to manage and control risk is value at risk (VaR)
approach. This new approach focuses on the
left hand side of the range of normal distribu-
tion where negative returns come with high risk.
Value at risk was first proposed by Baumol [4].
The goal is to measure loss of return on left side
of the portfolio’s return distribution by report-
ing a number. Based on VaR definition, it is as-
sumed that securities have a multivariate normal
distribution but they also work on non-normal
securities. Silvapulle and Granger [28] estimated
VaR by using ordered statistics and nonparamet-
ric kernel estimation of density function. Chen
and Tang [10] investigated another nonparamet-
ric estimation of VaR for dependent financial re-
turns. Bingham et al. [5] studiedVaR by using
semi-parametric estimation of VaR based on nor-
mal mean-variance mixtures framework. A fully
nonparametric estimation of dynamic VaR is also
developed by Jeong and Kang [13] basedon the
adaptive volatility estimation and the nonpara-
metric quantiles estimation. Angelidis and Benos
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[3] calculated VaR for Greek Stocks by employing
nonparametric methods, such as historical and
filtered historical simulation. Recently, the non-
parametric quantile regression, along with the ex-
treme value theory, is applied by Schaumburg [25]
to predict VaR. All together Using VaR as a risk
controlling parameter is the same as variance; a
similar framework is applied: variance is replaced
by VaR and then it is decreased in a mean-VaR
space. In this study value at risk is decreased in a
mean-value at risk framework with negative data.
Note that value at risk can be negative, so it is
unlikely that variance to get non-negative values.

Conventional DEA models, as used by Morey
and Morey [23], assume non-negative values for
inputs and outputs. These models cannot be used
for the case in which DMUs include both nega-
tive and positive inputs and/or outputs. Portela
et al. [24] consider a DEA model which can be ap-
plied in cases where input/output data take pos-
itive and negative values. There are also other
models can be used for negative data such as
Modified slacks-based measure model (MSBM),
Sharp et. al. [26], semi-oriented radial measure
(SORM), Emrouznejad [11]. In 2015 Lio et al.
[18] demonstrated that the linearized diversifica-
tion models can provide an effective way to ap-
proximate portfolio efficiency (PE or Markowitz
frontier) provided that the frontier is concave. In
this paper,we should prove that with increasing
sample size, the frontiers of the linear models with
both variance and value at risk , as risk measure,
gradually approximate the frontiers of the mean-
variance and mean-value at risk models and non-
linear model with negative data.

The rest of the paper is organized as follows:
Section 2 briefly reviews the portfolio perfor-
mance literature and have quick look at value
at risk as a substitute of variance as a risk pa-
rameter. Section 3 goes through the convergence
property of the RDM models under the mean-
variance framework, which indicates that suitable
RDM models with sufficient data can be used to
effectively approximate the Portfolio Efficiency
(PE). Section 4 presents computational results
using Iranian stock companies data and finally
conclusions are given in section 5.

2 Background

Portfolio theory to investing is published by
Markowitz [20]. This approach starts by assum-
ing that an investor has a given sum of money to
invest at the present time. This money will be
invested for a time as the investor’s holding pe-
riod. The end of the holding period, the investor
will sell all of the assets that were bought at the
beginning of the period and then either consume
or reinvest. Since portfolio is a collection of as-
sets, it is better that to select an optimal port-
folio from a set of possible portfolios. Hence the
investor should recognize the returns (and port-
folio returns), expected (mean) return and stan-
dard deviation of return. This means that the
investor wants to both maximize expected return
and minimize uncertainty (risk). Rate of return
(or simply the return) of the investor’s wealth
from the beginning to the end of the period is
calculated as follows:

Return =
(end-of-period wealth)-(beginning-of-period wealth)

beginning-of-period wealth

(2.1)

Since Portfolio is a collection of assets, its return
rp can be calculated in a similar manner. Thus
according to Markowitz, the investor should view
the rate of return associated to any one of these
portfolios as what is called in statistics a random
variable. These variables can be described ex-
pected the return (mean or rp) and standard de-
viation of return. Expected return and deviation
standard of return are calculated as follows:

rp =

n∑
j=1

λjrj , σp =

 n∑
i=1

n∑
j=1

λiλjΩij

 1
2

(2.2)

Where:
n = The number of assets in the portfolio
rp = The expected return of the portfolio
λj = The proportion of the portfolio’s initial
value invested in asset i
rj = The expected return of asset i
σp = The deviation standard of the portfolio
Ωij = The covariance of the returns between asset
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i and asset j

minσp =

 n∑
i=1

n∑
j=1

λiλjΩij


1
2

n∑
j=1

λjrj ≥ α

n∑
j=1

λj = 1

λj ≥ 0 j = 1, . . . , n

(2.3)

In the above, optimal portfolio from the set of
portfolios will be chosen that maximum expected
return for varying levels of risk and minimum risk
for varying levels of expected return [27]. Data
Envelopment Analysis is a nonparametric method
for evaluating the efficiency of systems with mul-
tiple inputs and multiple outputs. In this sec-
tion we present some basic definitions, models
and concepts that will be used in other sections
in DEA. They will not be discussed in details.
Consider j , (j = 1, . . . , n) where each consumes
m inputs to produce s outputs. Suppose that
the observed input and output vectors of j are
Xj = (x1j , . . . , xmj) and Yj = (y1j , . . . , ysj) re-
spectively, and let Xj ≥ 0 and Xj ̸= 0, Yj and
Yj ̸= 0. A basic DEA formulation in input orien-
tation is as follows:

min θ − ε

 s∑
r=1

s+r + m∑
i=1

s−i


s.t n∑

j=1

λjxij + s−i = θxio i = 1, . . . ,m,

n∑
j=1

λjyrj + s+r = yro r = 1, . . . , s,

(2.4)
Where λ is a n-vector of λ variables, s+ as-vector
of output slacks, s− an m-vector of input slacks
and set Λ is defined as follows:

Λ =


{λ ∈ Rn

+ with constant RTS,

{λ ∈ Rn
+, 1λ ≤ 1} with non-increasing RTS,

{λ ∈ Rn
+, 1λ = 1} with variable RTS

(2.5)

Note that subscript ’o’ refers to the unit under
the evaluation. A is efficient if θ = 1 and all slack
variables s−, s+ equal zero; otherwise it is inef-
ficient. In the DEA formulation above, the left
–hand sides in the constraints define an efficient
portfolio. θ is a multiplier defines the distance
from the efficient frontier. The slack variables

are used to ensure that the efficient point is fully
efficient. This model is used for asset selection.
The portfolio performance evaluation literature
is vast. In recent years these models have been
used to evaluate the portfolio efficiency. Also in
the Markowitz theory, it is required to character-
ize the whole efficient frontier but the proposed
models by Joro & Na do not need to characterize
the whole efficient frontier but only the projec-
tion points. The distance between the asset and
its projection which means the ratio between the
variance of the projection point and the variance
of the asset is considered as an efficiency measure
(θ). In this framework, there is n assets, λj is
the weight of asset j in the projection point, rj is
the expected return of asset j, µo and δ2o are the
expected return and variance of the asset under
evaluation respectively. Efficiency measure θ can
be solved via following model:

min θ − ε(s1 + s2)

s.t. E

 n∑
j=1

λjrj

− s1 = µo,

E


 n∑

j=1

λj(rj − µj)


2+ s2 = θδ2o

n∑
j=1

λj ≤ 1 ∀λ ≥ 0

(2.6)
Model (2.6) is revealed by the non-parametric
efficiency analysis Data Envelopment Analysis
(DEA). Fig 1 illustrates different projection that

Figure 1: Different projections (input oriented,
output oriented, combinationoriented).

consist of input oriented, output oriented and
combination oriented in models of data envelop-
ment analysis. C is the projection point obtained
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via fixing expected return and minimizing vari-
ance, B via maximizing return and minimizing
variance simultaneously, and D via fixing vari-
ance and maximizing return.

In the conventional DEA models, each j (j =
1, . . . , n) is specified by a pair of non-negative in-
put and output vectors (xj , yj) ∈ Rm+s

+ , in which
inputs xij (i = 1, . . . ,m) are utilized to pro-
duce outputs, yrj (r = 1, . . . , s). These models
can not be used for the case in which DMUs in-
clude both negative and positive inputs and/or
outputs. Poltera et al. (2004) [24] consider a
DEA model which can be applied in the cases
where input/ output data take positive and neg-
ative values. Rang Directional Measure (RDM)
model proposed by Poltera et al. goes as follows:

max β
s.t. n∑

j=1

λjxij ≤ xio − βRio i = 1, . . . ,m,

n∑
j=1

λjyrj ≥ yro + βRro r = 1, . . . , s,

n∑
j=1

λj = 1,

(2.7)
Ideal point (I) within the presence of negative
data, is I = (maxj{yrj : r = 1, . . . , s},minj{xij :
i = 1, . . . ,m}) where

Rio = xio −min
j

{xij : j = 1, . . . , n}, i = 1, . . . ,m,

Rro = max
j

{yrj : j = 1, . . . , n} − yro, r = 1, . . . , s.

(2.8)

Here, according to used inputs and outputs, vari-
ance (risk parameter) is used as input and mean
of returns is used as output in RDM model.

The other models solve negative data such as
Modified slacks-based measure model (MSBM),
Emrouznejad [11], semi-oriented radial measure
(SORM), Sharp et al. [26] and etc. Extremely, we
present following non-linear mean-variance RDM

model on the basis of negative data:

max β

s.t. E

 n∑
j=1

λjrj

 ≥ µo + βRµo

E


 n∑

j=1

λj(rj − µj)


2 ≤ σ2

o − βRσ2
o

n∑
j=1

λj = 1 λ ≥ 0

(2.9)
Ideal point (I) within the presence of negative
data, is I = (minj{σ2

j },maxj{µj}) where

Rµo = max
j

{µj : j = 1, . . . , n} − µo

Rσ2
o

= σ2
o −min

j
{σ2

j : j = 1, . . . , n}.(2.10)

The above model can be expressed as following:

max β
s.t. E[r(λ)] ≥ µo + βRµo

Var[r(λ)] ≤ σ2
o − βRσ2

o
n∑

j=1

λj = 1 λ ≥ 0
(2.11)

However, it can be shown that as n increases ,
model (2.7) Converges to models (2.3) & (2.9).

Beside variance as a risk parameter which has
its positive and negative sides, value at risk (VaR)
is another risk parameter with different charac-
teristics. To calculate VaR generally there is no
need that return’s distributions come from a nor-
mal basis, although, the way which is used to
obtain VaR, is important.

Value at Risk (VaR) is defined as maximum
amount of invest that one may loss in a specified
time period. Statistically VaR is defined as the
percentile of a distribution.

p(∆Pk > VaR) = 1− α

Calculation of VaR can be done through differ-
ent methods. Historical and Monte Carlo simu-
lations and variance-covariance are three mostly
used methods. This paper uses Historical sim-
ulation and variance-covariance method to cal-
culate VaR and tries to compare portfolios effi-
ciencies by using mean-VaR models. Mean-VaR
models basically are same as mean-variance mod-
els. However, method used to calculate VaR de-
termines that the model is linear or non-linear.
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In historical simulation VaR is calculated based
on what happened before. In this method there
is no need to be aware of returns distributions
over time. Simply returns are order in an ascend-
ing way and preferred percentile is value at risk.
In fact this method is completely based on what
happened before and this is its downside point.
When no historical data is available or data have
trend, using this method is either impossible or
leads to inaccurate results. In contrast with his-
torical simulation, variance-covariance method is
based on returns distributions. In this method,
in the first step, a normality check should be used
to get sure, returns come from normal distribu-
tion. On the next step, VaR or appropriate per-
centile is calculated through formulas obtained
based on normal distribution. Value at risk which
is calculated from variance covariance method
has its own negative aspects. Wrong distribu-
tion assumption, non-stationary variables causes
by changes happen over time are two of this meth-
ods negative points. To calculate VaR from nor-
mally distributed returns, consider VaR formulas.

p(∆Pk > −VaR) = 1− α
∆hPt = Pt+h − Pt

(2.12)

By normalizing equation (2.12) we have:

P

(
∆hPt − µt

σt
<

−VaR− µt

σt

)
= α (2.13)

where Zα = ∆hPt−µt

σt
and Zα ≡ Φ−1(α), 1

2 < α <
1, therefore,

−Zα =
−VaRα − µt

σt
,

and so,
VaRα = σtZα − µt (2.14)

In later sections mean-Var models are introduced
and are used to evaluate portfolios efficiencies.

3 Theoretical foundation of
RDM approach: Conver-
gence property

Linear DEA models can’t obtain true solution
for estimating portfolio efficient and non-linear
RDM frontier. As know, non-linear RDM and
Markowitz frontier are concave; therefore we
should prove that with increasing sample size,

the frontiers of the RDM linear models gradually
approximate the frontiers of the mean-variance
model and RDM non-linear model.

Assumption: Suppose there exists a proba-
bility density function p(x) of x ∈ Ω satisfying
∀x0 ∈ Ω, there exists a set S(x0)?U(x0, ξ) ∩ Ω
such that

∫
S(x0)

p(x)dx > 0, where U(x0, ξ) is a

neighborhood of x0x.

Let Ψ =
{
(r, σ) | n∑

j=1

λjrj ≥ r, n∑
j=1

λjσj ≤

σ, n∑
j=1

λj = 1, λj ≥ 0, j = 1, . . . , n
}
, then the

RDM frontier is formed by the outer envelope
(upper left boundary) of Ψ as show in Figure 2.

Theorem 3.1 Let rp = h(σp) be the portfolio
frontier without risk-free assets and r∗p + βRr∗p =
h∗n(σp − βRσp) be the RDM frontier with n port-
folio samples. Then h∗n(σp − βRσp) converges to
h(σp) in probability when n → +∞.

Proof. For any A = (σa
p , h(σ

a
p)) on the efficient

portfolio frontier, there exists xa ∈ Ω, such that
(σp(x

a), rp(x
a)) = (σa

p , h(σ
a
p)).

Since k(x) ∈ (σp(x), rp(x)) is continuous on x,
there exists ε > 0, such that k−1(U(A, ε)) is an
open set, where U(A, ε) is a neighborhood of A
and

xa ∈ k−1(U(A, ε))

Thus

∃ξ > 0, s.t. S(xa) = U(xa, ξ)∩Ω ⊆ k−1(U(A, ε)).

Due to the assumption on the probability density
function p(x), we have

q(U(A, ε)) =

∫
k−1(U(A,ε))

p(x)dx > 0

≥
∫
S(xa)

p(x)dx > 0

Let T represents the event that the expected re-
turns and standard derivations of all the n port-
folio samples that are not in U(A, ε). Therefore,
the probability of T can be expressed as

Pr(T ) = (1− q(U(A, ε)))n

It follows from the definition of the concavity of
efficient portfolio frontier and RDM frontier that
Pr{|h(σa

p), h
∗
n(σ

a
p − βRσa

p
)|> ε} =
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Pr{h(σa
p), h

∗
n(σ

a
p − βRσa

p
) > ε} ≤ Pr(T ) =

(1− q(U(A, ε)))n → 0, when n → ∞.
Because σa

p is arbitrary, we obtain the conclu-
sion that h∗n(σp − βRσp) converges to h = (σp) in
probability, as shown in Figure 2.

Figure 2: Convergence explanation. It can be
seen as n increases RDM frontier converges to
Markowitz frontier.

4 Application in Iranian Stock
Companies

In this section, we verify the validity of the above-
discussed results using illustrative examples. 15
stocks from the Iranian stock companies are se-
lected, which are monthly data from 21 April
2014 to 21 June 2014. Their statistical properties
are shown in Table ??. We then randomly gen-
erated n = 10, 50, 100 weights using MATLAB to
construct portfolio samples. Efficiencies of sam-
ple portfolios are evaluated with model (2.7). In

Figure 3: Portfolios with different sample sizes.

Figure 3, portfolios with sample sizes 10, 50 and
100 constructed by random weights are shown. In
this figure blue curve shows efficient frontier ob-
tained by Markowitz model (non-linear model).

By evaluating portfolios’ efficiencies using linear
models, it can be seen linear efficient frontier
converges to non-linear efficient frontier as n in-
creases (Figure 3). In Table 1 statistics of 10

Table 1: Basic statistics of 10 random portfolios
made by 15 under evaluation asstes.

Portfolio Mean variance Efficiency
number Mean-var

model (β)
1 -0.0013 0.00012 0.00
2 -0.0001 0.00018 0.18
3 -0.0006 0.00016 0.33
4 -5.5E-05 0.00022 0.30
5 -0.0002 0.00012 0.00
6 -0.0007 0.00017 0.40
7 0.0010 0.00028 0.00
8 6.08E-05 0.00069 0.76
9 -0.0006 0.00017 0.36
10 8E-05 0.00018 0.07

sample portfolios are provided. Statistics for 50
and 100 samples can be calculated in a same way.
As we can see in Table 1 portfolios 1, 5 and 7
are efficient ones. In fact these portfolios are yel-
low dots in Figure 3, where the efficient frontier
breaks. In Figure 4 efficient RDM frontier for 50

Figure 4: This figure shows as number of samples
increases, linear efficient frontier gets closer to non-
linear efficient frontier (Portfolio Frontier).

and 100 samples of portfolios are shown. It is
obvious by increasing number of samples, linear
RDM frontier converges to non-linear frontier.

The three polylines in Figure 4 and 5 are the
envelope frontiers constructed by RDM linear
models with 10, 50 and 100 samples. The top
curve is the efficient frontier calculated by the
Markowitz mean-variance model.

Figure 5 also shows projection of under eval-
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Figure 5: Purple dots represent projection of un-
der evaluation assets on the efficient frontier.

Figure 6: Mean-VaR region and portfolios. In
this plot value at risk is calculated in confidence
level of 99%.

uation assets on the efficient frontier which are
obtained by solving of non-linear RDM model.

As mentioned in section 2, one may uses value
at risk as a risk parameter due to its positive as-
pect. In continue, value at risk through two dif-
ferent methods for 15 under evaluation assets are
calculated. First of all, VaR is calculated by us-
ing historical simulation. In this method returns
are sorted in an ascending way and appropriate
percentile is calculated. Statistics are provided in
Table 2. Means are calculated through equation
(2.2).

In Table 2, it can be found as the level of value
at risk confidence level increases, amount of value
at risk gets larger. It illustrates by increasing con-
fidence level investor gets more sure how much
money may lose in a specified period of invest-
ment. Same results for 10 sample portfolios made
by 15 assets are provided below. (Table 3)

Figures 6-8 show portfolios position in a mean-
value at risk region. In figures 9-11, we can see as
the number of samples increases same as mean-

Figure 7: Mean-VaR region and portfolios. In
this plot value at risk is calculated in confidence
level of 95%.

Figure 8: Mean-VaR region and portfolios. In
this plot value at risk is calculated in confidence
level of 90%.

Table 2: Mean and value at risk on under evaluation
asstes.

Asset Mean Value at Risk
number 90% 95% 99%

1 -0.0007 0.0158 0.0173 0.0217
2 -0.0003 0.0286 0.0370 0.0524
3 -0.0007 0.0347 0.0470 0.0542
4 0.0007 0.0197 0.0269 0.0451
5 0.0001 0.0243 0.0296 0.0439
6 0.0001 0.0373 0.0420 0.0731
7 -0.0053 0.0271 0.0420 0.0729
8 -0.0006 0.0299 0.0405 0.0559
9 -0.0004 0.0191 0.0222 0.0503
10 -0.0011 0.0139 0.0194 0.0298
11 0.0001 0.0210 0.0294 0.0454
12 0.0011 0.0198 0.0273 0.0431
13 -0.0025 0.0233 0.0315 0.0432
14 -0.0003 0.0291 0.0411 0.0545
15 -0.00144 0.0288 0.0321 0.0377

variance framework linear efficient frontier con-
verges to non-linear frontier.
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Figure 9: In this figure it can be seen that same
as mean-variance models as the number of samples
increases linear efficient converges to non-linear
frontier. In this figure value at risk is calculated
on 99% confidence level.

Figure 10: In this figure it can be seen that
same as mean-variance models as the number of
samples increases linear efficient converges to non-
linear frontier. Value confidence level in this figure
is 95%.

Table 3: Mean and value at risk of 10 portfolios made
by under evaluation assets are calculated. Three last
columns are their efficiencies and mean-VaR models
outputs. Based on this model assets 5 and 8 are effi-
cient.

Portfolio Mean Value at Risk Efficiency Mean-VaR model (β)
number 90% 95% 99% 90% 95% 99%

1 -0.0007 0.0282 0.0372 0.0540 0.84 0.81 0.68

2 -0.0005 0.0238 0.0274 0.0417 0.74 0.36 0.28

3 -0.0010 0.0263 0.0310 0.0398 0.82 0.68 0.24

4 -0.0035 0.0260 0.0377 0.0633 0.84 0.85 0.82

5 -0.0017 0.0181 0.0247 0.0357 0.00 0.00 0.00

6 6.84E-05 0.0219 0.0280 0.0458 0.61 0.37 0.43

7 -0.0040 0.0264 0.0392 0.0658 0.85 0.86 0.83

8 0.0011 0.0198 0.0274 0.0430 0.00 0.00 0.00

9 9.43E-05 0.0238 0.0300 0.0448 0.72 0.57 0.38

10 -0.0006 0.0331 0.0447 0.0529 0.89 0.88 0.66

In all mentioned figure, value at risk is calcu-
lated through historical method, and it was clear
that linear frontier is convergence to non-linear
frontier. However in some cases frontiers cross

Figure 11: In this figure it can be seen that
same as mean-variance models as the number of
samples increases linear efficient converges to non-
linear frontier. Value confidence level in this figure
is 90%.

Figure 12: Sample portfolios in mean-VaR re-
gion. Value at risk in calculated based on a 99%
confidence level.

each other, mainly they ordered in the way we
expect.

Same results are obtained if values at risks are
calculated via variance-covariance method. In
this method, returns have to come from nor-
mal distribution. First of all by using Anderson-
Darling normality test [1], distributions of returns
of under evaluation assets are checked. Returns
of 13 assets were normally distributed. For nor-
mally distributed assets, expected returns and
their value at risks are calculated by using formu-
las (2.2). Results are provided in Table 4. Mean
and values at risks of normally distributed assets
on all level of risk confidence.. Same as histori-
cal method, as the risk confidence level increases
value at risk of an assets gets larger. Therefore,
investor gets surer the amount of risk that may
face.

As said before three series of portfolios are
made to show by increasing number of samples,
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Figure 13: Sample portfolios in mean-VaR re-
gion. Value at risk in calculated based on a 95%
confidence level.

Figure 14: Sample portfolios in mean-VaR re-
gion. Value at risk in calculated based on a 90%
confidence level.

Table 4: Mean and values at risks of normally dis-
tributed assets on all level of risk confidence.

Asset Mean Value at Risk
number 90% 95% 99%

1 -0.0007 0.0154 0.0197 0.0275
2 -0.0003 0.0309 0.0397 0.0560
3 -0.0007 0.0319 0.0410 0.0576
4 0.0007 0.0234 0.0303 0.0431
5 0.0001 0.0272 0.0351 0.0497
6 0.0001 0.0374 0.0482 0.0682
7 -0.0053 0.0311 0.0386 0.0523
8 -0.0006 0.0350 0.0450 0.0633
9 -0.0004 0.0228 0.0293 0.0412
10 0.0011 0.0212 0.0277 0.0396
11 -0.0025 0.0250 0.0315 0.0434
12 -0.0003 0.0278 0.0358 0.0504
13 -0.0014 0.0254 0.0323 0.0451

linear frontier converges to non-linear one. In Ta-
ble 5 efficiencies of 10 random portfolios made by
normal assets are provided.

In Figures 15-17, linear efficient frontier of each

Figure 15: Linear and non-linear frontiers with
different sample size of portfolios. Linear frontier
converges to non-linear frontier and n increases.
Value at risk in this figure is calculated in a 99%
confidence level.

Figure 16: Linear and non-linear frontiers with
different sample size of portfolios. Linear frontier
converges to non-linear frontier and n increases.
Value at risk in this figure is calculated in a 95%
confidence level.

series of sample portfolios are shown.

Table 5: Mean, value at risk and efficiencies of 10
sample portfolios.

Portfolio Mean Value at Risk Efficiency Mean-VaR model (β)
number 90% 95% 99% 90% 95% 99%

1 -0.0039 0.0253 0.0314 0.0428 0.90 0.89 0.88

2 -0.0012 0.0225 0.0287 0.0400 0.80 0.78 0.77

3 -0.0006 0.0196 0.0251 0.0352 0.63 0.61 0.59

4 -0.0004 0.0168 0.0216 0.0303 0.00 0.00 0.00

5 -0.0016 0.0187 0.0236 0.0327 0.72 0.70 0.69

6 -0.0002 0.0236 0.0303 0.0428 0.76 0.75 0.73

7 7.6E-05 0.0313 0.0403 0.0570 0.87 0.86 0.85

8 -0.0010 0.0178 0.0226 0.03162 0.57 0.54 0.53

9 0.0003 0.0188 0.0243 0.0345 0.00 0.00 0.00

10 0.0001 0.0363 0.0469 0.0662 0.90 0.90 0.89

In Table 5 Mean, value at risk and efficiencies
of 10 sample portfolios. it can be seen that port-
folios number 4 and 9 are efficient on all levels of
risk confidence. In figures 12-14 all sample port-
folios and non-linear efficient frontier are shown.
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Figure 17: Linear and non-linear frontiers with
different sample size of portfolios. Linear frontier
converges to non-linear frontier and n increases.
Value at risk in this figure is calculated in a 90%
confidence level.

5 Conclusion

In this paper, under section 2, mean-variance, lin-
ear and non-linear RDM models are discussed.
In later parts value at risk as a new risk param-
eter was discussed. We had also a quick review
over methods of VaR calculation and talked about
positive and negative aspects of each method. In
section 3 a theorem discussed and proved that by
increasing number of samples linear RDM fron-
tier convergence to Markowitz frontier. So RDM
linear models can be used to estimate portfolios
efficiencies and actual efficient frontier.

In the last section, all discussed topics, with a
random sample of stocks data from Tehran stock,
was tested. 15 stocks from Tehran stock were ran-
domly gathered and their prices over 60 days were
gathered. It was shown, as the number of sam-
ples increase, whether consider variance or value
at risk as a risk parameter, RDM linear frontier
converges to Markowitz frontier.
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