

Available online at http://ijim.srbiau.ac.ir/ Int. J. Industrial Mathematics (ISSN 2008-5621) Vol. 8, No. 3, 2016 Article ID IJIM-00580, 4 pages Research Article

A Study on Intuitionistic Fuzzy and Normal Fuzzy M-Subgroup, M-Homomorphism and Isomorphism

M. Oqla Massa'deh *†

Received Date: 2014-08-27 Revised Date: 2015-09-21 Accepted Date: 2015-12-09

Abstract

In this paper, we introduce some properties of an intuitionistic normal fuzzy m-subgroup of m- group with m-homomorphism and isomorphism. We study the image, the pre-image and the inverse mapping of the intuitionistic normal fuzzy m-subgroups.

Keywords : Intuitionistic Fuzzy Sets; M-Groups; Intuitionistic Fuzzy M-Subgroups; Intuitionistic Normal Fuzzy M-Subgroups; M-Homomorphism.

1 Introduction

TN 1971 Rosenfeld. A [8] introduced the con-L cept of fuzzy subgroups. In 1981 Wu [10] studied the normal fuzzy subgroups. Gu. Wx et al [3] further studied in 1994 the fuzzy groups theory and gave some new concepts such as fuzzy m-subgroups, normal fuzzy m-subgroups. Several mathematicians have followed them in investigating the fuzzy m-subgroups in [5, 6, 9]. The intuitionistic fuzzy set idea was first published by Atanassov [1, 2] as a generalization of the fuzzy sets notion. The basic concepts of intuitionistic fuzzy subgroups are in [4, 7]. In this paper, we introduce some properties of an intuitionistic normal fuzzy m-subgroups of m-groups with mhomomorphism and isomorphism and we study the image, pre-image and other properties in this subject.

2 Preliminaries

Definition 2.1 [3] Let G be a group, M be a set, if

- (i) $mx \in G \quad \forall x \in G, x \in M.$
- (ii) $m(xy) = (mx)y = x(my) \quad \forall x, y \in G, x \in M.$

Then m is said to be a left operator of G, M is said to be a left operator set of G. G is said to be a group with operators. We use phrase "G is an M-group" in stead of a group with operators. If a subgroup of M-group G is also M-group, then it is said to be an M subgroup of G.

Definition 2.2 [1] An intuitionistic fuzzy subse μ in a set X is defined as an object of the form $\mu = \{ \langle x, \delta_{\mu}(x), \lambda_{\mu}(x) \rangle; x \in X \}$, where $\delta_{\mu} :$ $X \to [0,1]$ and $\lambda_{\mu} : X \to [0,1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively and for every $x \in X$ satisfying $0 \leq \delta_{\mu}(x) + \lambda_{\mu}(x) \leq 1$. All the intuitionistic fuzzy sets on X are written as IFS(X) for short.

 $^{^{*}}$ Corresponding author. Moradoqla2000@yahoo.com

[†]Department of Applied Science, Ajloun College, Al-Balqa'Applied University, Jordan.

Definition 2.3 [11]Let X, Y be a non empty classical sets, $\Phi : X \to Y$ be a mapping and $\mu = \{y \in Y, \delta_{\mu}(y), \lambda_{\mu}(y)\}$ be an intuitionistic fuzzy set on Y ($\mu \in IFS(Y) \quad \Psi_{\Phi}^{-1}$: $IFS(Y) \to IFS(X)$ is the inverse mapping induced by Φ , the pre- image $\Psi_{\Phi}^{-1}(\mu) =$ $\{x \in X; \quad \Psi_{\Phi}^{-1}(\delta_{\mu})(x), \quad \Psi_{\Phi}^{-1}(\lambda_{\mu})(x)\}$. Where $\Psi_{\Phi}^{-1}(\delta_{\mu}), \quad \Psi_{\Phi}^{-1}(\lambda_{\mu})$ obey the classical extension principle of Zadeh. L. A.

Definition 2.4 [11]Let X, Y be a non empty classical sets, $\Phi : X \to Y$ be a mapping and $\mu = \{y \in Y, \delta_{\mu}(y), \lambda_{\mu}(y)\}$ be an intuitionistic fuzzy set on Y ($\mu \in IFS(Y)$) $\Psi_{\Phi} : IFS(Y) \to IFS(X)$ is the inverse mapping induced by Φ , the image $\Psi_{\Phi}(\mu)$ of μ is an intuitionistic fuzzy set on Y, and define $\Psi_{\Phi}(\mu) = \{y \in Y; \Psi_{\Phi}(\delta_{\mu})(y), \Psi_{\Phi}(\lambda_{\mu})(y)\}$ Where

$$\begin{split} \Psi_{\Phi}(\delta_{\mu})(y) &= \begin{cases} Sup\{\delta_{\mu}(x); \Phi(x) = y, x \in X\}; \\ \Phi^{-1}(y) \neq \phi, \\ 0; \quad \Phi^{-1}(y) = \phi \end{cases} \\ \\ \Psi_{\Phi}(\lambda_{\mu})(y) &= \begin{cases} Inf\{\lambda_{\mu}(x); \Phi(x) = y, x \in X\}; \\ \Phi^{-1}(y) \neq \phi \\ 0; \quad \Phi^{-1}(y) = \phi \end{cases} \end{split}$$

Definition 2.5 Let G be an M-group and μ be an intuitionistic fuzzy group of $\delta_{\mu}(mx) \geq \delta_{\mu}(x)$ and $\lambda_{\mu}(mx) \leq \lambda_{\mu}(x)$ for all $x \in G$ and $m \in M$ then μ is said to be an intuitionistic fuzzy subgroup with operator of G. We use the phrase μ is an intuitionistic fuzzy M-subgroup of G.All the intuitionistic fuzzy M-subgroups on Gare written as IFMS(G) for short.

Example 2.1 Let H be M-subgroup of an M-group G and let μ be an intuitionistic fuzzy set in G defined by.

$$\delta_{\mu}(x) = \begin{cases} 0.8 & ; x \in H, \\ 0 & ; otherwise \end{cases}$$
$$\lambda_{\mu}(x) = \begin{cases} 0.4 & ; x \in H, \\ 0.6 & ; otherwise \end{cases}$$

For all $x \in G$. Then it is easy to verify that μ is an intuitionistic fuzzy M-subgroup of

Proposition 2.1 If μ is an intuitionistic fuzzy M-subgroup of an M-group G, then for any $x, y \in G$ and $m \in M$

 $1-\delta_{\mu} (m(xy)) \geq \min\{\delta_{\mu}(mx) , \delta_{\mu}(my)\} \text{ and } \lambda_{\mu} (m(xy)) \leq \max\{\lambda_{\mu} (mx) , \lambda_{\mu} (my)\} 2-\delta_{\mu} (mx^{-1}) \leq \delta_{\mu}(x) \text{ and } \lambda_{\mu} (mx^{-1}) \leq \lambda_{\mu} (x).$

Definition 2.6 Let G be m-group, μ be an intuitionistic fuzzy m-subgroup of G, then μ is called intuitionistic normal fuzzy m-subgroup if $\delta_{\mu}(m(xyx^{-1})) \geq \delta_{\mu}(my)$ and $\lambda_{\mu}(m(xyx^{-1})) \leq \lambda_{\mu}m(xy)$ for all $x, y \in G$ and $m \in M$. All the intuitionistic fuzzy M-subgroups on Gare written as INFMS(G) for short.

Definition 2.7 [5]Let G1 onto G2 be two mgroups, Ψ be a homomorphism from G1 onto G2. If $\Phi(mx) = m \ \Phi(x)$ for all $x \in G1$ and $m \in M$, then Ψ is called m- homomorphism.

3 M-Homomorphim and isomorphism for intuitionistic fuzzy m-subgroups

Theorem 3.1 Let G1, G2be m-groups, Φ : G1 \longrightarrow G2 be m-homomorphic mapping. If $\mu \in IFMS(G1), \ \gamma \in IFMS(G2)$. Then $\Psi_{\Phi}(\mu) \in IFMS(G2)$ and $\Psi_{\Phi}^{-1}(\gamma) \in IFMS(G1)$.

Theorem 3.2 Let G1, G2be m-groups, Φ : G1 \longrightarrow G2 be m-homomorphic mapping. If μ be intuitionistic fuzzy m-subgroup of G1. Define for any $x \in$ G1, then $\mu^{-1} \in IFMS(G1)$ and $\mu^{-1}; \delta_{\mu^{-1}}(x) = \delta_{\mu}(x^{-1}), \lambda_{\mu^{-1}}(x) = \lambda_{\mu}(x^{-1})$ and $\Psi_{\Phi}(\mu^{-1}) = (\Psi_{\Phi}(\mu))^{-1}$.

Theorem 3.3 Let G1, G2be *m*-groups, Φ : $G1 \longrightarrow G2$ be *m*-homomorphic surjective mapping. $\mu \in IFMS(G1)$ then $\Psi_{\Phi}(\mu) \in IFMS(G2)$.

Proof. By Theorem 3.1, clearly we have $\Psi_{\Phi}(\mu) \in IFMS(G2)$. We need to prove the normality fuzzy for $\Psi_{\Phi}(\mu)$, for any $y1, y2 \in G2, m \in M$ by the extension principle, $\Phi : G1 \longrightarrow G2$ is m-homomorphism surjective mapping. This means that $\Phi(G1) = G2, \Phi^{-1}(my1) \neq \phi$ and $\Phi^{-1}(my2) \neq \phi, \Phi^{-1}(m(y1y2y1^{-1})) \neq \phi$ and we have

$$\Psi_{\Phi}(\delta_{\mu})(m(y1y2y1^{-1})) = \sup_{z \in \Phi^{-1}(m(y1y2y1^{-1}))} \delta_{\mu}(z)$$

 $\sup_{z\in\Phi^{-1}(my2)}\delta_{\mu}(z) \text{ For all } mx2$ $\Psi_{\Phi}(\delta_{\mu})(my2) =$

 $\in \Phi^{-1}(my2)$) and for all $mx1 \in \Phi^{-1}(my1)$, $\in \Phi^{-1}((my1)^{-1})$ since μ $then(mx1)^{-1}$ \in We get $\delta_{\mu} \in (m(x_1x_2x_1^{-1}))$ IFMS(G) . > δ_{μ} (mx2), as Φ is m-homomorphism then $\Phi(m(x1x2x1^{-1})) = m(\Phi(x1)\Phi(x2)\Phi(x1^{-1}) =$ $m(\Phi(x1)\Phi(x2)(\Phi(x1))^{-1} = m(y1y2y1^{-1})$. Consequently $m(x1x2 \ x1^{-1}) \in \Phi^{-1}(m(y1y2y1^{-1})),$ therefore sup $\delta_{\mu}(z)$ \geq $z \in \Phi(m (y \overline{1} y 2 y 1^{-1}))$ $\delta_{\mu}(m(x1x2x1^{-1}))$ \sup $mx1 \in \Phi^{-1}(my1)$. $mx2 \in \Phi^{-1}(my2)$ \sup $\delta_{\mu}(mx2)$ \geq $mx2 \in \Phi^{-1}(my2)$

This means that $\Psi_{\Phi}(\delta_{\mu})(m (y_1y_2y_1^{-1}))$ \geq $\Psi_{\Phi}(\delta_{\mu})(m \ y2)$ for all $y1, y2 \in G2, m \in M$. On the other hand, similarly $y1, y2 \in G2, m \in$ $M\Phi^{-1}(my1) \neq \phi \text{ and } \Phi^{-1}(my2) \neq \phi$ φ, $\Phi^{-1}(m(y_1y_2y_1^{-1})) \neq \phi \text{ and } mx_2 \in \Phi^{-1}(my_2),$ $mx1 \in \Phi^{-1}(my1)$ then $(mx1)^{-1}$ \in $\Phi^{-1}((my1)^{-1})$ and $\lambda_{\mu}(m(x1x2x1^{-1}))$ $\leq \leq$ $\lambda_{\mu}(mx2)$,thus $\int_{z \in \Phi^{-1}(m (y1y2y1^{-1}))} \lambda_{\mu}(z)$ $\inf_{\substack{mx1\in\Phi^{-1}(my1).mx2\in\Phi^{-1}(my2)}}\lambda_{\mu}(m(x1x2x1^{-1}))$ $\leq \inf_{mx2\in \Phi^{-1}(my2)} \lambda_{\mu}(mx2)$

This means that $\Psi_{\Phi}(\lambda_{\mu})(m(y_1y_2y_1^{-1}))$ \in $\Psi_{\Phi}(\lambda_{\mu})(my2)$ for all $y1, y2 \in G2, m$ \in M.Hence $\Psi_{\Phi}(\mu) \in INFMS(G2).$

Theorem 3.4 : Let G1, G2 be m-groups, Φ : $G1 \longrightarrow G2be$ m-homomorphism mapping. If γ $\in INFMS(G2)$, then $\Psi_{\Phi}^{-1}(\gamma) \in INFMS(G1)$.

Proof. By Theorem3.1 $\Psi_{\Phi}^{-1}(\gamma) \in IFMS(G1)$, thus we need to prove the normality fuzzy. Since $\gamma \in INFMS(G2)$ for any $x, y \in G1, m \in M$ from the extension principle, we obtain $\Psi_{\Phi}^{-1}(\delta_{\gamma})(m(xyx^{-1})) = (\delta_{\gamma})(\Phi(m(xyx^{-1}))) =$ $\delta_{\gamma}(m(\Phi(x).\Phi(y).\Phi(x^{-1})))$ = $\delta_{\gamma}(m(\Phi(x),\Phi(y),\Phi(x)^{-1}))$ > $\delta_{\gamma}(m\Phi(y))$ = $\Psi_{\Phi} (\delta_{\gamma})(my).$

Similarly we get $\Psi_{\Phi}^{-1}(\lambda_{\gamma})(m(xyx^{-1}))$ = $(\lambda_{\gamma})(\Phi(m(xyx^{-1})))$ $\lambda_{\gamma}(m(\Phi(x)\Phi(y)\Phi(x^{-1})) = \lambda_{\gamma}(m(\Phi(x)\Phi(y)\Phi(x)^{-1}))$ $\leq \lambda_{\gamma}(\mathrm{m}\Phi(\mathrm{y})) = \Psi_{\Phi}(\lambda_{\gamma})(\mathrm{m}\mathrm{y}), \text{ therefore}\Psi_{\Phi}^{-1}(\gamma)$ \in INFMS(G1).

Theorem 3.5 : Let G1, G2 be m-groups, Φ : $G1 \longrightarrow G2be$ m-homomorphism mapping. If μ \in INFMS(G2), then $\mu^{-1} \in$ INFMS(G1) and $\Psi_{\Phi}(\mu^{-1}) = (\Psi_{\Phi}(\mu))^{-1}$.

Proof.

Let μ be intuitionistic fuzzy m-subgroup of G1, then $\mu^{-1} = \{ \langle x \in G1; \delta_{\mu^{-1}}(mx), \lambda_{\mu^{-1}}(mx), m \in \}$ M > where $\delta_{\mu^{-1}}(mx) = \delta_{\mu}(mx^{-1})$ and $\lambda_{\mu^{-1}}(mx) =$ $\lambda_{\mu}(mx^{-1})$ since $\mu \in INFMS(G1)$ and by Theorem3.1. We know $\mu^{-1} \in IFMS(G1)$, for any $x, y \in G1, m \in M$ we have $\delta_{\mu^{-1}}(m(xyx^{-1})) =$
$$\begin{split} & \delta_{\mu} \quad (m(xyx^{-1})^{-1}) \geq \delta_{\mu}(m(xyx^{-1})) \geq \delta_{\mu}(m(xyx^{-1})) \\ & \delta_{\mu^{-1}}(my^{-1}) \geq \delta_{\mu^{-1}}(my) \text{ and } \lambda_{\mu^{-1}}(m(xyx^{-1})) \\ & \lambda_{\mu}(m(xyx^{-1})^{-1}) \leq \lambda_{\mu}(m(xyx^{-1})) \leq \lambda_{\mu}(my) = \end{split}$$
 $\lambda_{\mu^{-1}}(my^{-1}) \leq \lambda_{\mu^{-1}}(my)$. Then μ is intuitionistic normal fuzzy m-subgroup, consequently we get μ^{-1} $\in INFMS(G1)$ by Theorem 3.3 we have Ψ_{Φ} (μ) \in INFMS(G2), thus $\Psi_{\Phi}(\mu^{-1}) \in INFMS(G2)$ and $\Psi_{\Phi}(\mu) \in IFMS(G2)$, $\Psi_{\Phi}(\mu^{-1}) \in IFMS(G2)$ utilizing Theorem 3.1 we $\Psi_{\Phi}(\mu^{-1})) = (\Psi_{\Phi}(\mu))^{-1}$.

Corollary 3.1 : Let G1, G2 be m-groups, Φ : $G1 \longrightarrow G2be$ m-homomorphism mapping. If $\gamma \in$ INFMS(G2), then $(\Psi_{\Phi}^{-1}(\gamma))^{-1} = \Psi_{\Phi}^{-1}(\gamma^{-1})$

Theorem 3.6 : Let G1, G2 be m-groups, $\Phi: G1 \longrightarrow$ G2be an isomorphic mapping. If $\mu \in INFMS(G1)$, then $\Psi_{\Phi}^{-1}(\Psi_{\Phi}(\mu)) = \mu$,

Proof. Let $x \in G1, m \in M$ and $\Phi(mx) = my$ as Φ is an isomorphic mapping $\Psi^{-1}(my) = \{mx\}$, applying the extension principle we obtain Ψ_{Φ}^{-1} (Ψ_{Φ} $(\delta_{\mu}))(mx) = \Psi_{\Phi}(\delta_{\mu})(\Phi(mx)) = \Psi_{\Phi}(\delta_{\mu})(\Phi(my)) =$ sup $\delta_{\mu}(mx) = \delta_{\mu}(mx)$ $mx \in \Phi^{-1}(my)$ $\Psi_{\Phi} \quad (\Psi_{\Phi} \quad (\lambda_{\mu}))(mx) = \Psi_{\Phi}(\lambda_{\mu})(\Phi(mx)) = \\ \Psi_{\Phi}(\lambda_{\mu})(\Phi(my) = \inf_{mx \in \Phi^{-1}(my)} \lambda_{\mu}(mx) = \lambda_{\mu}(mx)$ Hence Ψ^{-1} (7)

Hence $\Psi_{\Phi}^{-1}(\Psi_{\Phi}(\mu)) = \mu$

Corollary 3.2: Let G1, G2 be m-groups. 1- If

 Φ : G1 \longrightarrow G2be an isomorphic mapping and γ $\in INFMS(G1) \Psi_{\Phi} (\Psi_{\Phi}^{-1}(\gamma)) = \gamma.$

2- If $\Phi: G1 \longrightarrow G2be$ an automorphism mapping and $\mu \in INFMS(G1)$, then $\Psi_{\Phi}(\mu) = \mu$ iff $\Psi_{\Phi}^{-1}(\mu) = \mu$

Conclusion 4

Further work is in progress in order to develop the intuitionistic anti L-normal fuzzy m-subgroups and its applications and properties.

References

- [1] K. T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems 20 (1986) 87-96.
- [2] K. T. Atanassov, H. Prade, New Operations Defned Over the Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems 61 (1994) 137-142.

- [3] Gu. Wx, S. Y. Li, D. G.Chen, Fuzzy Groups With Operators, Fuzzy Sets and Systems 20 (1986) 87-96.
- [4] O.M. Mourad, Structure Properties of Intuitionistic Anti-Fuzzy M-Subgroups, Journal of Applied Computer Science and Mathematics 761 (1994) 137-142.
- [5] O. M. Mourad, On M-Fuzzy Cosets, M-Conjugate, of M-Upper Fuzzy Subgroups Over M-Groups, Journal of Applied Computer Science and Mathematics Global Journal of Pure and Applied Mathematics 8 (2012) 215-218.
- [6] R. Muthuraj, M. Rajinikannan, M. S. Muthuraman, The M-Homomorphism and M-Anti Homomorphism of an M-Fuzzy Subgroup and its Level M-Subgroups, International Journal of Computer Applications 2 (2010) 66-70.
- [7] N. Palaniappan, K. Arjunan, M. S. Anitha, The Homomorphism and Anti-Homomorphism of Lower Level Subgroups of an Intuitionistic Anti-Fuzzy Subgroups, NIFS 15 (2009) 14-19.
- [8] A. Rosenfed, Fuzzy Groups, J. Math. Anal. Appl. 35 (1971) 512-517.
- [9] S. Subramanian, R. Nagarajan, B. Chellappa, Structure Proper- ties of M-Fuzzy Groups, Applied Mathematical Sciences 6 (2012) 545-552.
- [10] M. W. Wu, SNormal Fuzzy Subgroups, Fuzzy Math 1 (1981) 21-23.
- [11] Xiaoping. Li, Wang Guijun, The Intuitionistic Fuzzy Group and its Homomorphic Image, Fuzzy Systems and Mat. 14 (2000) 15-50.

M. Oqla Massa'deh is Ph.D of applied mathematics . He is member of Department of Applied Science, Ajloun College, Al-Balqa'Applied University, Jordan. His research interests include numerical solution of fuzzy functional equations and Fuzzy numerical Anal-

ysis.