

Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621) Vol. 8, No. 3, 2016 Article ID IJIM-00580, 4 pages Re[search Article](http://ijim.srbiau.ac.ir/)

A Study on Intuitionistic Fuzzy and Normal Fuzzy M-Subgroup, M-Homomorphism and Isomorphism

M. Oqla Massa'deh *∗†*

Received Date: 2014-08-27 Revised Date: 2015-09-21 Accepted Date: 2015-12-09 **————————————————————————————————–**

Abstract

In this paper, we introduce some properties of an intuitionistic normal fuzzy m-subgroup of m- group with m-homomorphism and isomorphism. We study the image, the pre-image and the inverse mapping of the intuitionistic normal fuzzy m-subgroups.

Keywords : Intuitionistic Fuzzy Sets; M-Groups; Intuitionistic Fuzzy M-Subgroups; Intuitionistic Normal Fuzzy M-Subgroups; M-Homomorphism.

—————————————————————————————————–

1 Introduction

 $\int_{0}^{N} \frac{1971}{1871}$ Rosenteld. A [8] introduced the con- \mathbf{T}^N 1971 Rosenfeld. A [8] introduced the conied the normal fuzzy subgroups. Gu. Wx et al [3] further studied in 1994 the fuzzy groups theory and gave some new [co](#page-3-0)ncepts such as fuzzy m-subgroups, normal fuzzy m-subgrou[ps.](#page-3-1) Several mathematicians have followed them in inves[tig](#page-3-2)ating the fuzzy m-subgroups in [5, 6, 9].The intuitionistic fuzzy set idea was first published by Atanassov $\begin{bmatrix} 1, 2 \end{bmatrix}$ as a generalization of the fuzzy sets notion. The basic concepts of intuitionistic fuzzy subgroups are in $[4, 7]$. I[n t](#page-3-3)[his](#page-3-4) [p](#page-3-5)aper, we introduce some properties of an intuitionistic normal fuz[zy](#page-2-0) [m](#page-2-1)-subgroups of m-groups with mhomomorphism and isomorphism and we study the image, pre-image and ot[he](#page-3-6)[r p](#page-3-7)roperties in this subject.

2 Preliminaries

Definition 2.1 *[3] Let G be a group,M be a set, if*

- (i) $mx \in G$ $\forall x \in G$, $x \in M$.
- **(ii)** $m(xy) = (mx)y = x(my)$ $\forall x, y \in G, x \in M$.

Then m is said to be a left operator of G, M is said to be a left operator set of G. G is said to be a group with operators. We use phrase "G is an M-group" in stead of a group with operators. If a subgroup of M-group G is also M-group, then it is said to be an M subgroup of G.

Definition 2.2 *[1] An intuitionistic fuzzy subse µ in a set X is defined as an object of the form* $\mu = \{ \langle x, \delta_{\mu}(x), \lambda_{\mu}(x) \rangle; x \in X \},$ where δ_{μ} : $X \rightarrow [0,1]$ *and* $\lambda_{\mu}: X \rightarrow [0,1]$ *define the degree of membership an[d](#page-2-0) the degree of non- membership of the element* $x \in X$ *respectively and for every* $x \in X$ *satisfying* $0 \leq \delta_u(x) + \lambda_u(x) \leq 1$ *. All the intuitionistic fuzzy sets on X are written as IF S*(*X*)*for short.*

*[∗]*Corresponding author. Moradoqla2000@yahoo.com

*[†]*Department of Applied Science, Ajloun College, Al-Balqa'Applied University, Jordan.

Definition 2.3 *[11]Let X, Y be a non empty classical sets,* $\Phi : X \rightarrow Y$ *be a mapping and* $\mu = \{y \in Y, \delta_u(y), \lambda_u(y)\}$ *be an intuitionistic fuzzy set on* Y ($\mu \in IFS(Y)$) Ψ_{Φ}^{-1} : $IFS(Y) \rightarrow IPS(X)$ $IFS(Y) \rightarrow IPS(X)$ $IFS(Y) \rightarrow IPS(X)$ *is the inverse mapping* $induced$ by Φ , the pre- image $\Psi_{\Phi}^{-1}(\mu)$ = ${x \in X; \Psi_{\Phi}^{-1}(\delta_{\mu})(x), \Psi_{\Phi}^{-1}(\lambda_{\mu})(x)}$ *. Where* $\Psi_{\Phi}^{-1}(\delta_{\mu})$ *,* $\Psi_{\Phi}^{-1}(\lambda_{\mu})$ obey the classical extension *principle of Zadeh. L. A.*

Definition 2.4 *[11]Let X, Y be a non empty classical sets,* $\Phi : X \rightarrow Y$ *be a mapping and* $\mu = \{y \in Y, \delta_\mu(y), \lambda_\mu(y)\}$ *be an intuitionistic fuzzy set on* Y ($\mu \in IFS(Y)$) $\Psi_{\Phi}: IFS(Y) \to IFS(X)$ $\Psi_{\Phi}: IFS(Y) \to IFS(X)$ $\Psi_{\Phi}: IFS(Y) \to IFS(X)$ *is the inverse mapping induced by* Φ *, the image* $\Psi_{\Phi}(\mu)$ *of* μ *is an intuitionistic fuzzy set on Y, and define* $\Psi_{\Phi}(\mu) = \{y \in Y; \ \Psi_{\Phi}(\delta_{\mu})(y), \ \Psi_{\Phi}(\lambda_{\mu})(y)\}$ *Where*

$$
\Psi_{\Phi}(\delta_{\mu})(y) = \begin{cases} \operatorname{Sup}\{\delta_{\mu}(x); \Phi(x) = y, x \in X\}; \\ \Phi^{-1}(y) \neq \phi, \\ 0; \quad \Phi^{-1}(y) = \phi \end{cases}
$$

$$
\Psi_{\Phi}(\lambda_{\mu})(y) = \begin{cases} \operatorname{Inf}\{\lambda_{\mu}(x); \Phi(x) = y, x \in X\}; \\ \Phi^{-1}(y) \neq \phi \\ 0; \quad \Phi^{-1}(y) = \phi \end{cases}
$$

Definition 2.5 *Let G be an M-group and µbe an intuitionistic fuzzy group of* $\delta_{\mu}(mx) \geq \delta_{\mu}(x)$ *and* $\lambda_{\mu}(mx) \leq \lambda_{\mu}(x)$ *for all* $x \in G$ *and* $m \in M$ *then µ is said to be an intuitionistic fuzzy subgroup with operator of G. We use the phrase µ is an intuitionistic fuzzy M -subgroup of G.All the intuitionistic fuzzy M-subgroups on Gare written as IFMS*(*G*)*for short.*

Example 2.1 *Let H be M -subgroup of an M group G and let µ be an intuitionistic fuzzy set in G defined by.*

$$
\delta_{\mu}(x) = \begin{cases}\n0.8 & ; x \in H, \\
0 & ; otherwise\n\end{cases}
$$
\n
$$
\lambda_{\mu}(x) = \begin{cases}\n0.4 & ; x \in H, \\
0.6 & ; otherwise\n\end{cases}
$$

For all $x \in G$ *. Then it is easy to verify that* μ *is an intuitionistic fuzzy M-subgroup of*

Proposition 2.1 *If µ is an intuitionistic fuzzy M -subgroup of an M-group G, then for any x, y ∈ G and m ∈ M*

 $1-\delta_\mu$ $(m(xy)) \geq min\{\delta_\mu(mx), \delta_\mu(my)\}$ *and* λ_{μ} (*m*(*xy*)) \leq *max* { λ_{μ} (*mx*), λ_{μ} (*my*) } *2-* δ_{μ} $(mx^{-1}) \leq \delta_{\mu}(x) \text{ and } \lambda_{\mu}(mx^{-1}) \leq \lambda_{\mu}(x).$

Definition 2.6 Let G be m-group, μ be an in*tuitionistic fuzzy m-subgroup of G, then µ is called intuitionistic normal fuzzy m-subgroup if* $\delta_{\mu}(m(xyx^{-1})) \geq \delta_{\mu}(my)$ *and* λ_{μ} $(m(xyx^{-1})) \leq$ λ_{μ} *m*(*xy*)*for all* $x, y \in G$ *and* $m \in M$ *. All the intuitionistic fuzzy M -subgroups on Gare written as INFMS*(*G*)*for short.*

Definition 2.7 *[5]Let G*1 *onto G*2 *be two mgroups,* Ψ *be a homomorphism from G*1 *onto G*2*.* $If \Phi(mx) = m \Phi(x)$ *for all* $x \in G1$ *and* $m \in M$ *, then* Ψ *is called [m-](#page-3-3) homomorphism.*

3 M-Homomorphim and isomorphism for intuitionistic fuzzy m-subgroups

Theorem 3.1 *Let* $G1, G2be$ *m-groups*, Φ : $G1 \rightarrow G2$ *be m-homomorphic mapping.* If μ \in *IFMS*(*G*1)*,* $\gamma \in$ *IFMS*(*G*2)*. Then* $\Psi_{\Phi}(\mu) \in$ *IFMS*(*G*2) *and* $\Psi_{\Phi}^{-1}(\gamma) \in IFMS(G1)$ *.*

Theorem 3.2 *Let* $G1, G2be$ *m-groups*, Φ : $G1 \rightarrow G2$ *be m-homomorphic mapping.* If μ *be intuitionistic fuzzy m-subgroup of G*1*. Define for any* $x \in G1$, then $\mu^{-1} \in IFMS(G1)$ $and \mu^{-1}; \delta_{\mu^{-1}}(x) = \delta_{\mu}(x^{-1}), \lambda_{\mu^{-1}}(x) = \lambda_{\mu}(x^{-1})$ $and \Psi_{\Phi}(\mu^{-1}) = (\Psi_{\Phi}(\mu))^{-1}.$

Theorem 3.3 *Let G*1*, G*2*be m*-groups, Φ *G*1 *−→ G*2 *be m-homomorphic surjective map-* φ *ping.* $\mu \in IFMS(G1)$ *then* $\Psi_{\Phi}(\mu) \in$ *IFMS*(*G*2)*.*

Proof. By Theorem 3.1, clearly we have $\Psi_{\Phi}(\mu) \in$ *IFMS*(*G*2)*.*We need to prove the normality fuzzy for $\Psi_{\Phi}(\mu)$, for any $y1, y2 \in G2, m \in M$ by the extension principle, $\Phi : G1 \longrightarrow G2$ is m-homomorphism surjective mapping. This means that $\Phi(G1) = G2$, $\Phi^{-1}(my1) \neq \phi$ and $\Phi^{-1}(my2) \neq \phi$, $\Phi^{-1}(m (y1y2y1^{-1})) \neq \phi$ and we have

$$
\Psi_{\Phi}(\delta_{\mu})(m(y1y2y1^{-1})) = \sup_{z \in \Phi^{-1}(m(y1y2y1^{-1}))} \delta_{\mu}(z)
$$

 $\Psi_{\Phi}(\delta_{\mu})$ $(my2)$ = *z∈*Φ*−*1(*my*2) $\sin \theta_{\mu}(z)$ For all $mx2$

 $\in \Phi^{-1}(my2)$ and for all $mx1 \in \Phi^{-1}(my1)$, $then(mx1)^{-1}$ *−*1 ((*my*1)*−*¹)since*µ ∈ IFMS*(*G*) . We get $\delta_{\mu} \in (m(x1x2x1^{-1}))$ $\geq \delta_{\mu}$ (*mx*2), as Φ is m-homomorphism then $\Phi(m(x1x2x1^{-1})) = m(\Phi(x1)\Phi(x2)\Phi(x1^{-1})) =$ $m(\Phi(x1)\Phi(x2)(\Phi(x1))^{-1} = m(y1y2y1^{-1})$ *.* Consequently $m(x1x2 x1^{-1}) \in \Phi^{-1}(m(y1y2y1^{-1})),$ therefore sup *z∈*Φ(*m* (*y*1*y*2*y*1*−*1)) *δ^µ* (*z*) *≥* sup *mx*1∈ Φ ⁻¹(*my*1)*.mx*2∈ Φ ⁻¹(*my*2)

> sup δ_{μ} (*mx*2) *δ^µ* (*m*(*x*1*x*2*x*1 *−*1)) ≥ supplied *mx*2*∈*Φ*−*1(*my*2) *δ^µ* (*mx*2)

This means that $\Psi_{\Phi}(\delta_{\mu})$ (*m* (*y*1*y*2*y*1⁻¹) *≥* $\Psi_{\Phi}(\delta_{\mu})$ (*m y*2) for all *y*1*, y*₂ \in *G*2*, m* \in *M.* On the other hand, similarly $y1, y2 \in G2, m \in$ $M\Phi^{-1}(my1)$ \neq ϕ and $\Phi^{-1}(my2)$ \neq ϕ , $\Phi^{-1}(m(y1y2y1^{-1})) \neq \phi$ and $mx2 \in \Phi^{-1}(my2),$ $mx1$ $∈$ $Φ^{-1}(my1)$ then $(mx1)^{-1}$ $∈$ $\Phi^{-1}((my1)^{-1})$ and $\lambda_{\mu}(m(x1x2x1^{-1}))$)) *≤* λ ^{*µ*}(*mx*2)*,thus z ∈* Φ*−*1(*m* (*y*1*y*2*y*1*−*1)) $\lambda_{\mu}(z)$ \leq inf *mx*1*∈*Φ*−*1(*my*1)*.mx*2*∈*Φ*−*1(*my*2) *λµ*(*m*(*x*1*x*2*x*1 *−*1)) *≤* inf *mx*2*∈*Φ*−*1(*my*2) *λµ*(*mx*2)

This means that $\Psi_{\Phi}(\lambda_{\mu})(m(y1y2y1^{-1})) \in$ $\Psi_{\Phi}(\lambda_{\mu})(my2)$ for all $y1, y2 \in G2, m \in$ M .Hence $\Psi_{\Phi}(\mu) \in INFMS(G2)$.

Theorem 3.4 *: Let* $G1, G2$ *be m-groups*, Φ : $G1 \longrightarrow G2be$ *m-homomorphism mapping.* If γ \in *INFMS*(*G*2)*,* then $\Psi_{\Phi}^{-1}(\gamma) \in$ *INFMS*(*G*1)*.*

Proof. By Theorem3.1 $\Psi_{\Phi}^{-1}(\gamma) \in IFMS(G1),$ thus we need to prove the normality fuzzy. Since $\gamma \in INFMS(G2)$ for any $x, y \in G1, m \in M$ from the extension principle, we obtain $\Psi_{\Phi}^{-1}(\delta_{\gamma})(m(xyx^{-1})) = (\delta_{\gamma})(\Phi(m(xyx^{-1}))) =$ *δγ*(*m*(Φ(*x*)*.*Φ(*y*)*.*Φ(*x −*1)) $=$ δ ^{*γ*}(*m*($\Phi(x)$ *.* $\Phi(y)$ *.* $\Phi(x)^{-1}$ δ ² $(m\Phi(v))$ = Ψ_{Φ} $(\delta_{\gamma})(my)$.

Similarly we get $\Psi_{\Phi}^{-1}(\lambda_{\gamma})(m(xyx^{-1}))$ = $(\lambda_{\gamma})(\Phi(m(xyx^{-1})))$))) $=$ λ ^γ(*m*(Φ(*x*)Φ(*y*)Φ(*x*⁻¹))= λ ^γ(*m*(Φ(*x*)Φ(*y*)Φ(*x*)⁻¹) \leq $\lambda_{\gamma}(\text{m}\Phi(y)) = \Psi_{\Phi}(\lambda_{\gamma})(\text{my})$, therefore $\Psi_{\Phi}^{-1}(\gamma)$ \in *INFMS*(*G*1)*.*

Theorem 3.5 *: Let* $G1, G2$ *be m-groups*, Φ : $G1 \rightarrow G2be$ *m-homomorphism mapping.* If μ *∈ INFMS*(*G*2)*, then µ [−]*¹ *∈ INFMS*(*G*1) *and* $\Psi_{\Phi}(\mu^{-1}) = (\Psi_{\Phi}(\mu))^{-1}$.

Proof.

Let μ be intuitionistic fuzzy m-subgroup of $G1$, then $\mu^{-1} = \{ \langle x, x \in G_1; \delta_{\mu^{-1}}(mx), \lambda_{\mu^{-1}}(mx), m \in \mathbb{R} \}$ $M >$ }where $\delta_{\mu^{-1}}(mx) = \delta_{\mu}(mx^{-1})$ and $\lambda_{\mu^{-1}}(mx) =$ $\lambda_{\mu}(mx^{-1})$ since $\mu \in INFMS(G1)$ and by Theorem3.1. We know $\mu^{-1} \in IFMS(G1)$, for any $x, y \in G1, m \in M$ we have $\delta_{\mu^{-1}}(m(xyx^{-1}))$ δ^{μ} $(m(xyx^{-1})^{-1}) \geq \delta^{\mu}(m(xyx^{-1})) \geq \delta^{\mu}(my) =$ $\delta_{\mu^{-1}}(my^{-1})$ *≥* $\delta_{\mu^{-1}}(my)$ and $\lambda_{\mu^{-1}}(m(xyx^{-1}))$ = $\lambda_{\mu}(m(xyx^{-1})^{-1}) \leq \lambda_{\mu}(m(xyx^{-1})) \leq \lambda_{\mu}(my) =$ $\lambda_{\mu^{-1}}(my^{-1}) \leq \lambda_{\mu^{-1}}(my)$. Then μ is intuitionistic normal fuzzy m-subgroup, consequently we get μ^{-1} $∈$ *INFMS*(*G*1) by Theorem 3.3 we have Ψ_{Φ} (μ) $∈$ $INFMS(G2)$, thus $\Psi_{\Phi}(\mu^{-1}) \in INFMS(G2)$ and Ψ_{Φ} $(\mu) \in \text{IFMS}(G2), \Psi_{\Phi}(\mu^{-1}) \in \text{IFMS}(G2)$ utilizing Theorem 3.1 we $\Psi_{\Phi}(\mu^{-1}) = (\Psi_{\Phi}(\mu))^{-1}$.

Corollary 3.1 *: Let G*1*, G*2 *be m-groups,* Φ : $G1 \rightarrow G2be$ *m-homomorphism mapping.* If $\gamma \in$ *INFMS*(*G*2)*, then* $(\Psi_{\Phi}^{-1}(\gamma))^{-1} = \Psi_{\Phi}^{-1}(\gamma^{-1})$

Theorem 3.6 *: Let* $G1, G2$ *be m-groups,* $\Phi : G1 \longrightarrow$ *G*2*be an isomorphic mapping. If* $\mu \in INFMS(G1)$ *, then* $\Psi_{\Phi}^{-1} (\Psi_{\Phi} (\mu)) = \mu$,

Proof. Let $x \in G1, m \in M$ and $\Phi(mx) = my$ as Φ is an isomorphic mapping $\Psi^{-1}(my) = \{mx\}$, applying the extension principle we obtain Ψ_{Φ}^{-1} (Ψ_{Φ} $(\delta_{\mu})\big)(mx) = \Psi_{\Phi}(\delta_{\mu}) (\Phi(mx)) = \Psi_{\Phi}(\delta_{\mu}) (\dot{\Phi}(my)) =$ sup $mx ∈ Φ^{−1}(my)$ δ ^{*μ*} (*mx*) = δ ^{*μ*} (*mx*) Ψ_{Φ}^{-1} $\Psi_{\Phi}(\lambda_{\mu})(\Phi(mx))$ = $\Psi_{\Phi}(\lambda_{\mu})(\Phi(my) = \inf_{mx \in \Phi^{-1}(my)} \lambda_{\mu}(mx) = \lambda_{\mu}(mx)$

Hence $\Psi_{\Phi}^{-1} (\Psi_{\Phi} (\mu)) = \mu$

Corollary 3.2 *: Let G*1*, G*2 *be m-groups. 1- If*

Φ : *G*1 *−→ G*2*be an isomorphic mapping and γ* $\in INFMS(G1) \Psi_{\Phi} (\Psi_{\Phi}^{-1}(\gamma)) = \gamma.$

2- If Φ : *G*1 *−→ G*2*be an automorphism mapping* $and \mu \in INFMS(G1), then \Psi_{\Phi}(\mu) = \mu \text{ iff}$ $\Psi_{\Phi}^{-1}(\mu) = \mu$

4 Conclusion

Further work is in progress in order to develop the intuitionistic anti L-normal fuzzy m-subgroups and its applications and properties.

References

- [1] K. T. Atanassov, *Intuitionistic Fuzzy Sets*, Fuzzy Sets and Systems 20 (1986) 87-96.
- [2] K. T. Atanassov, H. Prade, *New Operations Defned Over the Intuitionistic Fuzzy Sets*, Fuzzy Sets and Systems 61 (1994) 137-142.
- [3] Gu. Wx, S. Y. Li, D. G.Chen, *Fuzzy Groups With Operators*, Fuzzy Sets and Systems 20 (1986) 87- 96.
- [4] O.M. Mourad, *Structure Properties of Intuitionistic Anti-Fuzzy M-Subgroups*, Journal of Applied Computer Science and Mathematics 761 (1994) 137-142.
- [5] O. M. Mourad, *On M-Fuzzy Cosets, M-Conjugate, of M-Upper Fuzzy Subgroups Over M-Groups*, Journal of Applied Computer Science and Mathematics Global Journal of Pure and Applied Mathematics 8 (2012) 215-218.
- [6] R. Muthuraj, M. Rajinikannan, M. S. Muthuraman, *The M-Homomorphism and M-Anti Homomorphism of an M-Fuzzy Subgroup and its Level M-Subgroups*, International Journal of Computer Applications 2 (2010) 66-70.
- [7] N. Palaniappan, K. Arjunan, M. S. Anitha, *The Homomorphism and Anti-Homomorphism of Lower Level Subgroups of an Intuitionistic Anti-Fuzzy Subgroups*, NIFS 15 (2009) 14-19.
- [8] A. Rosenfed, *Fuzzy Groups*, J. Math. Anal. Appl. 35 (1971) 512-517.
- [9] S. Subramanian, R. Nagarajan, B. Chellappa, *Structure Proper- ties of M-Fuzzy Groups*, Applied Mathematical Sciences 6 (2012) 545-552.
- [10] M. W. Wu, *SNormal Fuzzy Subgroups*, Fuzzy Math 1 (1981) 21-23.
- [11] Xiaoping. Li, Wang Guijun, *The Intuitionistic Fuzzy Group and its Homomorphic Image*, Fuzzy Systems and Mat. 14 (2000) 15-50.

M. Oqla Massa'deh is Ph.D of applied mathematics . He is member of Department of Applied Science, Ajloun College, Al-Balqa'Applied University, Jordan. His research interests include numerical solution of fuzzy functional equations and Fuzzy numerical Anal-

ysis.