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Abstract

In this paper, we study the separtion axioms T0, T1, T2 and T5/2 on topological and semitopological
residuated lattices and we show that they are equivalent on topological residuated lattices. Then
we prove that for every infinite cardinal number α, there exists at least one nontrivial Hausdorff
topological residuated lattice of cardinality α. In the follows, we obtain some conditions on (semi)
topological residuated lattices under which this spaces will convert into regular and normal spaces.
Finally by using of regularity and normality, we convert (semi)topological residuated lattices into
metrizable topological residuated lattices.

Keywords : Topological residuated lattice; Filter; Regular space; Normal space; (locally) Compact
space.
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1 Introduction

R
esiduated lattices have been introduced by
M.Ward and R.P. Dilworth [9] as generaliza-

tion of ideal lattices of rings with identity. They
are a common structure among algebras associ-
ated with logical systems. The main examples
of residuated lattices related to logic are MV-
algebras and BL-algebras. In recent years some
mathematicians have endowed algebraic struc-
tures associated with logical systems with a topol-
ogy and have found some their propertises. For
example, Borzooei et.al. in [3] introduced (semi)
topological BL-algebras and in [4] and [5] studied
metrizability and separation axioms on them. In
[11] Kouhestani and Borzooei defined the notion
of (semi) topological residuated lattices and stud-
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ied separation axioms T0, T1 and T2 on them. For
a topological space, metrizability is a highly de-
sirable property, for the existence of a such a dis-
tance function gives one a valuable tool for prov-
ing theorems about the space. In the section 3
of this paper, we deal with relations between Ti

spaces, for i = 0, 1, 2, 5/2 and (semi)topological
residuated lattices. We will prove that they are
equivalent and will show that there are nontrivial
Hausdorff topological residuated lattices of infi-
nite cardinality. Then in section 4 we will find
some conditions under which a (semi)topological
residuated lattice convert into a regular or nomal
space. Finally, metrizable topological residuated
lattices will be obtained by using of regularity and
normality.

2 Preliminaries

Recall that a set A with a family U of its subsets
is called a topological space, denoted by (A,U),
if A, ∅ ∈ U , the intersection of any finite num-
bers of members of U is in U and the arbitrary
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union of members of U is in U . The members of
U are called open sets of A and the complement
of U ∈ U , that is A \U , is said to be a closed set.
If B is a subset of A, the smallest closed set con-
taining B is called the closure of B and denoted
by B (or cluB). A subfamily {Uα : α ∈ I} of U
is said to be a base of U if for each x ∈ U ∈ U ,
there exists an α ∈ I such that x ∈ Uα ⊆ U , or
equivalently, each U in U is the union of members
of {Uα}. A subset P of A is said to be a neigh-
borhood of x ∈ A, if there exists an open set U
such that x ∈ U ⊆ P . Let Ux denote the totality
of all neighborhoods of x in A. Then a subfamily
Vx of Ux is said to form a fundamental system
of neighborhoods of x, if for each Ux in Ux, there
exists a Vx in Vx such that Vx ⊆ Ux. A directed
set I is a partially ordered set such that, for any i
and j of I, there is a k ∈ I with k ≥ i and k ≥ j.
If I is a directed set, then the subset {xi : i ∈ I}
of A is called a net. A net {xi; i ∈ I} converges
to x ∈ A if for each neighborhood U of x, there
exists a j ∈ I such that for all i ≥ j, xi ∈ U. If
B ⊆ A and x ∈ B, then there is a net in B that
is converges to x.
Topological space (A,U) is said to be a:
(i) T0-space if for each x ̸= y ∈ A, there is at
least one in an open neighborhood excluding the
other,
(ii) T1-space if for each x ̸= y ∈ A, each has an
open neighborhood not containing the other,
(iii) T2-space if for each x ̸= y ∈ A, there two
disjoint open neighborhoods U, V of x and y, re-
spectively.
A T2-space is also known as a Hausdorff space.[
see, [7]]

Definition 2.1 [9] A residuated lattice is an
algebra L = (L,∧,∨,⊙,→, 0, 1) of type
(2, 2, 2, 2, 0, 0) such that (L,∧,∨, 0, 1) is a
bounded lattice, (L,⊙, 1) is a commutative
monoid and for any a, b, c ∈ L,

c ≤ a → b ⇔ a⊙ c ≤ b.

A residuated lattice L is divisible if for each a, b ∈
L, a⊙ (a → b) = a ∧ b.

Let L be a residuated lattice. We set a′ = a → 0
and denote (a′)′ by a′′. We call the map p : L → L
by p(a) = a′, for any a ∈ L, the negation map.
Also, for each a ∈ L, we define a0 = 1 and an =
an−1 ⊙ a, for each natural numbers n.

Example 2.1 [9](i) Let ⊙ and → on the real
unit interval I = [0, 1] be defined as follows:

x⊙ y = min{x, y} & x → y =

{
1, x ≤ y,
y, x > y.

Then I = (I,min,max,⊙,→, 0, 1) is a residuated
lattice,
(ii) Let ⊙ be the usual multiplication of real num-
bers on the unit interval I = [0, 1] and x →
y = 1 iff, x ≤ y and y/x otherwise. Then
I = (I,min,max,⊙,→, 0, 1) is a residuated lat-
tice.
(iii) Let L = {0, a, b, c, 1}. Define ⊙ and → as
follows :

⊙ 0 a b c 1

0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

→ 0 a b c 1

0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Easily we can check that (L,⊙,→, 0, 1) is a
residuated lattice, whose lattice (L,∧,∨, 0, 1) is
given by the partial order 0 < a < c < 1, 0 < b <
c < 1 and x∧ y = min{x, y}, x∨ y = max{x, y},
a ∧ b = 0 and a ∨ b = 1.

Proposition 2.1 [9] Let (L,∧,∨,⊙,→, 0, 1) be
a residuated lattice. The following properties
hold.
(R1) x → (y → z) = (x⊙ y) → z,
(R2) x ≤ y iff, x → y = 1,
(R3) 1 ∗ x = x, where ∗ ∈ {∧,⊙,→},
(R4) x⊙ 0 = 0, 1′ = 0, 0′ = 1,
(R5) x⊙ y ≤ x ∧ y ≤ x, y, and y ≤ (x → y),
(R6) (x → y)⊙ x ≤ y,
(R7) x ≤ y → (x⊙ y),
(R8) x ≤ y implies x ∗ z ≤ y ∗ z, where
∗ ∈ {∧,∨,⊙},
(R9) x ≤ y implies z → x ≤ z → y and
x → z ≥ y → z,
(R10) x → y = x → (x ∧ y),
(R11) x ≤ y implies x ≤ z → y,
(R12) z ⊙ (x ∧ y) ≤ (z ⊙ x) ∧ (z ⊙ y),
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(R13) x → y ≤ (x⊙ z) → (y ⊙ z),
(R14) (x → y)⊙ (y → z) ≤ x → z,
(R15) x⊙ x′ = 0,
(R16) x → y′ = (x⊙ y)′,
(R17) x⊙ (y ∨ z) = (x⊙ y) ∨ (x⊙ z),
(R18) (x ∨ y) → z = (x → z) ∧ (y → z),
(R19) x → (y ∧ z) = (x → y) ∨ (x → z),
(R20) (x ∨ y)′ = x′ ∧ y′, and (x ∧ y)′ ≥ x′ ∨ y′,
(R21) if x ∨ y = 1, then x → y = y and
x⊙ y = x ∨ y,
(R22) x

′′′ = x′,
(R23) (a → x)⊙(b → y) ≤ (a∗b) → (x∗y), where
∗ ∈ {∧,∨}.

Let (L,∧,∨,⊙,→, 0, 1) be a residuated lattice.
Then a filter of L is a nonempty subset F ⊆ L
which satisfies the following conditions:
(a) x, y ∈ F implies x⊙ y ∈ F ,
(b) if x ∈ F and x ≤ y, then y ∈ F.
Let F be a filter of L. Then the relation x ≡F y
iff, x → y, y → x ∈ F is a congruence relation
on L. Moreovere, if for each x ∈ L, F (x) = {y ∈
A : y ≡F x}, then for each ∗ ∈ {∧,∨,⊙,→},
F (x) ∗ F (y) = F (x ∗ y). Thus, the set L/F =
{F (x) : x ∈ L} is a residuated lattice which called
quotient residuated lattice.[See, [9]]

Notation. From now on, in this paper we let
L be a residuated lattice and U be a topology on
L, unless otherwise state.

3 Hausdorff topological residu-
ated lattice

Definition 3.1 [11] Let U be a topology on resid-
uated lattice L and ∗ ∈ {∧,∨,⊙,→}. Then:
(i) the operation ∗ is continuous in the first (sec-
ond) variable if for each a ∈ L, the mapping
x ↪→ x ∗ a(x ↪→ a ∗ x) from L into L is con-
tinuous.
(ii) (L, ∗,U) is semitopological residuated lattice
if ∗ is continuous in the first and second variable,
(iii) (L, ∗,U) is topological residuated lattice if ∗
is continuous,
(iv) (L,U) is (semi) topological residuated lattice
if for any ∗ ∈ {∧,∨,⊙,→}, (L, ∗,U) is (semi)
topological residuated lattice.

Proposition 3.1 Let (L, ,U) be a semitopologi-
cal residuated lattice.Then (L,U) is T0 iff, it is
T1.

Proof. Let (L,U) be T0 and x ̸= y. Then xy ̸= 1
or yx ̸= 1. W.L.O.G let xy ̸= 1. Then there exists
U ∈ U such that xy ∈ U and 1 ̸∈ U or xy ̸∈ U and
1 ∈ U. First suppose xy ∈ U and 1 ̸∈ U. Since
is continuous in each variable separately, there
are open neighborhoods V and W of x and y,
respectively, such that V y ⊆ U and xW ⊆ U. But
x ̸∈ W because if x ∈ W, then 1 = xx ∈ xW ⊆ U
which is a contradiction. Similarly, y ̸∈ V. Now
let 1 ∈ U and xy ̸∈ U. Since xx = yy = 1 ∈ U,
there are V,W ∈ U such that x ∈ V, y ∈ W,
xV ⊆ U and Wy ⊆ U. If x ∈ W, then xy ∈ Wy ⊆
U which is a contradiction. So x ̸∈ W. Similaly,
y ̸∈ V. Hence (L,U) is a T1 space. Convesely is
clear.

Proposition 3.2 Let (L, ,U) be a topological
residuated lattice.Then (L,U) is T1 iff, it is Haus-
dorff.

Proof. Let (L,U) be T1 and x ̸= y. Then xy ̸= 1
or yx ̸= 1. W.L.O.G let xy ̸= 1. Then there exists
U, V ∈ U such that xy ∈ U, 1 ∈ V, xy ̸∈ V
and 1 ̸∈ U. Since is continuous, there are open
neighborhoods V0 and V1 of x and y, respectively,
such that V0V1 ⊆ U. We prove that V0 ∩ V1 is
empty. Suppose z ∈ V0 ∩ V1, then 1 = zz ∈
V0V1 ⊆ U which is a contradiction. So (L,U) is
Hausdorff. Conversely is clear.

Corollary 3.1 Let (L, ,U) be topological residu-
ated lattice. Then (L,U) is T0 iff, it is T1 iff, it
is Hausdorff.

Proof. By Propositions 3.1, 3.2, the proof is
clear.

Theorem 3.1 Let (L,⊙, ,U) be topological
residuated lattice. Then (L,U) is Hausdorff iff,
{1} or {0} is closed.

Proof. Let {1} be closed. We show that for each
a ∈ L, the set {a} is closed. Suppose a ∈ L. Since
⊙ is continuous, ⊙−1(1) = {(1, 1)} is closed in L×
L. On the other hand, as is continuous, the map
h : L ↪→ L × L by h(x) = (ax, xa) is continuous.
Hence h−1{(1, 1)} = {x : xa = ax = 1} = {a}
is closed in L. This implies that (L,U) is T1. By
Proposition 3.2, it is Hausdorff. If {0} is closed,
since the negation map p : L ↪→ L by p(x) = x′ is
continuous and 1 = p−1(0), the set {1} is closed
and so (L,U) is Hausdorff. Conversely is clear.
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Definition 3.2 Let L be a residuated lattice.
Then for each a ∈ L and any V ⊆ L, we define

V (a) = {x ∈ L : xa ∈ V, ax ∈ V },

and
V [a] = {x ∈ L : xa ∈ V }.

Proof. Let (L, ,U) be a semitopological residu-
ated lattice. Then for each a ∈ L and V ∈ U the
sets V (a) and V [a], both, are open.
Proof. Let a ∈ L and V ∈ U . Suppose x ∈ V (a),
then xa ∈ V and ax ∈ V. Since is continuous in
each variable, there is W ∈ U such that x is in
W and Wa and aW are the subsets of V. Clearly,
x ∈ W ⊆ V (a). Similarly, V [a] ∈ U .

Proposition 3.3 Let (L,U) be a topological
residuated lattice. Then it is Hausdorff iff, for
each 0 ̸= x ∈ L there is V ∈ U such that 1 ∈ V
and x′ ̸∈ V.

Proof. First let (L,U) be Hausdorff and x ̸= 0.
Then x′ ̸= 1 and so there is an open set V such
that 1 ∈ V and x′ ̸∈ V. Conversely, let x ∈ {0}.
If x ̸= 0, then there is an open set V such that
1 ∈ V and x′ ̸∈ V. By Proposition 3, V (x) is an
open neighborhood of x, so 0 ∈ V (x). This im-
plies that x′ ∈ V, a contradiction. Hence {0} is
closed. By Theorem 3.1, (L,U) is Hausdorff. Re-
call that a topological space (X,U) is an Uryshon
space if for each x ̸= y ∈ L, there exist two open
neighborhoods U and V of x and y, respectively,
such that U ∩ V = ϕ. An Uryshon space is also
known as a T5/2 space.[See, [7]]

Proposition 3.4 Let (L,→,U) be a topological
residuated lattice. Then L is an Uryshon space
iff, for each x ̸= 1, there exist two open neighbor-
hoods U and V of x and 1, respectively, such that
U ∩ V = ϕ.

Proof. If (L,U) is an Uryshon space, the proof
is clear. Conversely, let for each x ̸= 1, there ex-
ist two open neighborhoods U and V of x and 1,
respectively, such that U ∩ V = ϕ. Let x, y ∈ L
and x ̸= y. Then x → y ̸= 1 or y → x ̸= 1.
W.O.L.G, let x → y ̸= 1 and U and V be two
open neighborhoods of x → y and 1 such that
U ∩V = ϕ. Since (L,→,U) is a topological resid-
uated lattice, there are two open neighborhoods
W1 and W2 of x and y, respectively, such that
W1 → W2 ⊆ U. We prove that W1 and W2 are
disjoint. Let z ∈ W1 ∩W2. Then there exist two

nets {xi} and {yi} in W1 and W2, respectively,
such that both converge to z. Since the operation
→ is continuous, the net {xi → yi} converges to
z → z = 1. Hence 1 ∈ W1 → W2 ⊆ U, which is a
contradiction.

Theorem 3.2 Let (L,→,U) be a topological
residuated lattice. Then the following statements
are equivalent:
(i) (L,U) is a T0 space,
(ii) (L,U) is a T1 space,
(iii) (L,U) is a Hausdorff space,
(iv) (L,U) is an Uryson space,
(v)

∩
U∈N U = 1, where N is a fundamental sys-

tem of neighborhoods of 1.

Proof. By Corollary 3.1, the statements (i), (ii)
and (iiii) are equivalent.
(iii) =⇒ (iv) Let (L,U) be a Hausdorff space and
1 ̸= x. Then there are two disjoint open sets U
and V such that x ∈ U and 1 ∈ V. Since 1x =
x ∈ U, there are two open neighborhoods W and
W1 of x and 1, respectively, such that W1W ⊆ U.
We prove that W ∩ W1 = ϕ. Let z ∈ W ∩ W1.
Then there are nets {xi : i ∈ I} ⊆ W1 and {yi :
i ∈ I} ⊆ W such that both converges to z. Hence
{xiyi : i ∈ I} is a net in U which converges to
zz = 1. This implies that 1 ∈ U. Since 1 ∈ V ∈
U , V ∩ U ̸= ϕ, a conteradiction. Therefore, by
Proposition 3.4, (L,U) is an Uryson space.
(iv) =⇒ (v) Let (L,U) be an Uryson space and
x ̸= 1. By Proposition 3.4, there are open sets U
and V such that 1 ∈ U, x ∈ V and U ∩ V = ϕ.
Hence x ̸∈ U and so x ̸∈

∩
U∈N U.

(v) =⇒ (ii) Let
∩

U∈N U = 1, and 1 ̸= x. Then
there is a V ∈ N such that x ̸∈ V. Hence 1 ̸∈
V (x). By [[11], Proposition 4.6], (L,U) is a T1

space.

Proposition 3.5 Let L be a noncountable set
and 0, 1 ∈ L. Then there are operations ∧,∨,⊙
and on L such that (L,∧,∨,⊙, , 0, 1) is a resid-
uated lattice.

Proof. Let L0 = {x0 = 0, x1, x2, ...} ∪ {1} ⊆ L.
Define ⇝,⊕,⊼ and ⊻ on L0 as follows:

xy :=


[0, x], if x ≤ y,
(0, y], if x > y ̸= 0,
{x}, if y = 0

1⇝ xi = xi, xi ⇝ 1 = 1,
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xi ⇝ xj =

{
1, if i ≤ j,
xj , if otherwise

x⊕ y = min{x, y} = x ⊼ y, x ⊻ y = max{x, y},

where x0 ≤ x1 ≤ x2 ≤ ... ≤ 1. It is easy to see
that (L0,⊼,⊻,⊕,⇝, 0, 1) is a residuated lattice.
Given a ∈ L \ L0 and put L1 = L0 ∪ {a}. Let
⋏,⋎,⊗ and ↪→ on the L1 be defined as follows:

x⋏ y =

{
x ⊼ y, if x, y ∈ L0,
min{x, y}, if otherwise

x⋎ y =

{
x ⊻ y, if x, y ∈ L0,
max{x, y}, if otherwise,

x⊗ y =

{
x⊕ y, if x, y ∈ L0,
min{x, y}, if otherwise,

x ↪→ y =


x⇝ y, if x, y ∈ L0,
1, v x ∈ L1 \ {1}, y = a,
a, if x = 1, y = a,
y, if x = a, y ∈ L0,

where x0 ≤ x1 ≤ x2 ≤ ... ≤ a ≤ 1.Then
(L1,⋏,⋎,⊕, ↪→, 0, 1) is a residuated lattice. Now
consider the operations ∧,∨,⊙ and on L as fol-
lows:

x ∧ y = x⊙ y =

{
min{x, y}, if x or y ∈ L1,
a, if otherwise,

x ∨ y =

{
max{x, y}, if x or y ∈ L1,
1, if otherwise,

xy =



x ↪→ y, if x, y ∈ L1,
1, if x ∈ L1 \ {1}, y ̸∈ L1,
y, if x = 1, y ̸∈ L1,
y, if x ̸∈ L1, y ∈ L1,
1, if x = y ̸∈ L1,
y, if x ̸= y ̸∈ L1,

where x ≤ y if and only if xy = 1. Then it is easy
to claim that (L,∧,∨,⊙, , 0, 1) is a residuated lat-
tice.

Theorem 3.3 Let L0 and L1 be residuated lat-
tices in Proposition 3.5. Then there are two
topologies V and W on L0 and L1, respectively,
such that (L0,V) and (L1,W) are Hausdorff topo-
logical residuated lattices.

Proof. Let Fk = {xk, xk+1, ...} ∪ {1}, for each
k ∈ {0, 1, 2, 3, ...}. Then F = {Fk : k = 0, 1, 2, ...}
is a family of filters in L0 which is closed under
finite intersections. Let V = {V ⊆ L0 : ∀x ∈
V ∃Fk s.t Fk(x) ⊆ V }. It is easy to prove that

V is closed under finite intersections and arbi-
trary unions. Also, for each x ∈ L and each
Fk ∈ F , Fk(x) belongs to V. Hence V is a non-
trivial topology on L0. We prove that (L0,V)
is a topological resiuated lattice. For this, let
∗ ∈ {⊼,⊻,⊕,⇝}, x, y ∈ L0 and Fk ∈ F . If
z1 ∈ Fk(x) and z2 ∈ Fk(y), since ≡F is a con-
gruence relation, then z1 ∗ z2 ≡Fk x ∗ y. Hence
Fk(x)∗Fk(y) ⊆ Fk(x∗y). This proves that the op-
eration ∗ is continuous and so (L0,V) is a topolog-
ical residuated lattice. Now suppose x ∈ L0 and
x ̸= 1. Then there is a Fk ∈ F such that x ̸∈ Fk.
This implies that x ∈ Fk(x) and 1 ̸∈ Fk(x). By
[[11], Proposition 4.4] (L0,V) is a T1 space. By
Theorem 3.2, (L0,V) is a Hausdorff space.
In continue we will find a topology W on L1

such that (L1,W) is a Hausdorff topological resid-
uated lattice. Let Jk = Fk ∪ {a}. We show
that Jk is a filter in L1. Let x, y ∈ Jk. Then
x⊗y ∈ {x, y, a} ⊆ Jk. Suppose x ∈ Jk and x ≤ y.
If y = a, then y ∈ Jk. If y ̸= a, then x ∈ Fk,
since Fk is a filter, y ∈ Fk ⊆ Jk. Hence Jk is
a filter for each k and J = {Jk : k = 0, 1, , ...}
is a family of filters in L1 which is closed un-
der finite intersections. In a similar way with the
above paragraph we can prove that W = {W ⊆
L1 : ∀x ∈ W ∃Jk s.t Jk(x) ⊆ W} is a nontrivial
topology on L1 such that (L1,W) is a topological
residuated lattice. Since L1 \ {0} = J1 ∈ W, the
set {0} is closed in L1. By Theorem 3.1, (L1,W)
is Hausdorff.

Theorem 3.4 Let α be an infinite cardinal
number. Then there is a Hausdorff topological
residuated lattice of cardinality α.

Proof. Let L be a set of cardinality α and
0, 1 ∈ L. If L is a countable set, then take L = L0,
where L0 is the residuated lattice in Proposition
3.5. Then by Theorem 3.3, there is a nontrivial
topology V on L such that (L,V) is a Hausdorff
topological residuated lattice. Let L be a non-
countable set and L0 = {x0 = 0, x1, ....}∪{1} ⊆ L
and L1 = L0∪{a}, where a ∈ L\L0. As the proof
of Proposition 3.5, there are operations ⊼,⊻,⊕⇝
on L0 and operations ⋏,⋎,⊗, ↪→ on L1 and op-
erations ∧,∨,⊙, on L such that (L0,⊼,⊻,⊕ ⇝)
and (L1,⋏,⋎,⊗, ↪→) and (L,∧,∨,⊙, ) are resid-
uated lattices. Suppose for each k ∈ {0, 1, 2, ...},
Fk = {xk, xk+1, ...}, Jk = Fk ∪ {a} and Hk =
Jk ∪ (L \L1), then Fk is a filter in L0 and Jk is a
filter in L1. We prove that Hk is a filter in L. Let
x, y ∈ Hk, then x⊙ y ∈ {a, x, y} ⊆ Hk. Let x ≤ y
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and x ∈ Hk. If y ∈ L \ L1, then clearly y ∈ Hk.
If y ∈ L1, then x ∈ L1. Since Jk is a filter in L1,
y ∈ Jk ⊆ Hk. Since H = {Hk : k = 0, 1, 2, ...} is
closed under finite intersections, as the proof of
Theorem 3.3, there is a topology U on L such that
(L,U) is a topological residuated lattice. Since
L \ {0} = H1 ∈ U , the set {0} is closed in (L,U).
By Theorem 3.1, (L,U) is Hausdorff.

4 Regular and normal
(semi)topological residuated
lattices

In this section we study regularity and normality
on (semi)topological residuated lattices. First we
show that for each residuated lattice L there ex-
ists a topology U such that (L,U) is a regular and
normal topological residuated lattice. In Exam-
ple 4.1, we show that there exist residuated lat-
tices that are not regular or normal. Then we find
some conditions under which a (semi)topological
residuated lattice becomes regular or normal.
Recall that a topological space (X,U) is regular
if for each x ∈ U ∈ U , there exists an open set
H such that x ∈ H ⊆ H ⊆ U. Also, (X,U) is
normal if for each closed set S and each open set
U contains S, there is an open set H such that
S ⊆ H ⊆ H ⊆ U. [See, [7]]

Theorem 4.1 Let F be a familly of filters in L
which is closed under intersections. Then there is
a nontrivial topology U on L such that (L,U) is a
regular and normal topological residuated lattice.

Proof. Let U = {U ⊆ L : ∀x ∈ U ∃F ∈
F s.t F (x) ⊆ U}. It is easy to prove that U is
closed under arbitrary intersections and unions.
Also, for each x ∈ L and each F ∈ F , F (x) be-
longs to U . Hence U is a nontrivial topology. We
prove that (L,U) is a topological resiuated lat-
tice. For this, let ∗ ∈ {∧,∨,⊙,→}, x, y ∈ L and
F ∈ F . If z1 ∈ F (x) and z2 ∈ F (y), since ≡F

is a congruence relation, then z1 ∗ z2 ≡F x ∗ y.
Hence F (x) ∗ F (y) ⊆ F (x ∗ y). This proves that
the operation ∗ is continuous and so (L,U) is a
topological residuated lattice. Now we will prove
that (L,U) is a regular and normal space. First
we show that for each x ∈ L and F ∈ F , the
set F (x) is closed. Let x ∈ L, F ∈ F and
y ∈ F (x). Since F (y) is an open neighborhood
of y, there is a z ∈ L such that y ≡F z ≡F x.

Hence y ∈ F (x) and so F (x) = F (x). To prove
regularity, let x ∈ U ∈ U . Then there is a F ∈ F
such that F (x) ⊆ U. Since F (x) is clsoed, we
get that x ∈ F (x) ⊆ F (x) ⊆ U, which implies
that (L,U) is a regular space. To complete the
proof, we have to show that (L,U) is a normal
space. Let S be a closed set, U be an open set
and S ⊆ U. For each x ∈ S there exits a F ∈ F
such that F (x) ⊆ U. Let H =

∪
x∈S,F∈F F (x).

Then H is a closed and open set because for each
x ∈ S and F ∈ F , the set F (x) is a closed and
open set. Thus S ⊆ H ⊆ H ⊆ U, which implies
that (L,U) is a normal space.

Example 4.1 (i) Let L be a nontrivial
residuated lattice and for each a ∈ L,
La = {x ∈ L : a ≤ x}. Then the set
B = {La : a ∈ L} is a base for a topology
U on L. We show that (L,U) is not a reg-
ular space. If (L,U) is a regular space and
1 ∈ L1 = {1} ∈ U , then there is an open set H
such that 1 ∈ H ⊆ H ⊆ L1. Hence {1} = H = H.
On the other hand, {1} = L, so L = H = {1},
which is a contradiction.
(ii) Let L be the residuated lat-
tice in Example 2.1(iii). Then U =
{{0, 1, a}, {0, 1}, {0, 1, b, c}, L, ϕ} is a topol-
ogy on L. Clearly, S = {b, c} is a closed set
and U = {0, 1, b, c} is an open set contains
{b, c} which is not a closed set because a ∈ U.
Obviously, there is not any open set H such that
S ⊆ H ⊆ H ⊆ U.

Theorem 4.2 For each n ≥ 3 there exist a nor-
mal and regular topological residuated lattice of
order n.

Proof. Let L3 = {0, a, 1}. Define the operations
,⊙,∧ and ∨ on L3 as follows:

⊙ 0 a 1

0 0 0 0
a 0 a a
1 0 a a

0 a 1

0 1 1 1
a 0 1 1
1 0 a 1

x ∧ y = min{x, y} x ∨ y = max{x, y}

It is easy to prove that (L3,∧,∨,⊙, , 0, 1) is a
residuated lattice and F = {a, 1} is a filter in
L3. By Theorem 4.1, U = {ϕ, {0}, {1, a}, L3} is
a topology on L3 such that (L3,U) is a normal
and regular topological residuated lattice. Now
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suppose L4 = L3 ∪ {b}, where b ̸∈ L3. Consider
the operations ∧,∨,⊙ and ↪→ on L as follows:

x ∧ y = x⊙ y =

{
min{x, y}, if x or y ∈ L1,
a, if otherwise,

x ∨ y =

{
max{x, y}, if x or y ∈ L1,
1, if otherwise,

x ↪→ y =


xy, if x, y ∈ L3,
1, if x ∈ L4 \ {1}, y = b,
b, if x = 1, y = b,
y, if x = b, y ∈ L3

where x ≤ y if and only if xy = 1. Then it is
easy to claim that (L,∧,∨,⊙, , 0, 1) is a residu-
ated lattice. If F = {1, a, b}, then F is a filter
in L4. By Theorem 4.1, U = {ϕ, {0}, {1, a, b}, L4}
is a topology on L4 such that (L4,U) is a nor-
mal and regular topological residuated lattice of
order 4. In a similar way we can make a normal
and regular topological residuated lattice of order
n, for each n ≥ 4.

Theorem 4.3 For every infinte cardinal num-
ber α there is a normal, regular and Hausdorff
topological residuated lattice of order α.

Proof. If α is countable cardinal number, then
by Theorem 4.1, Hausdorff topological residuated
lattice (L0,V) in Theorem 3.3, is a normal and
regular space. If α is noncuontable cardinal num-
ber, then by Theorem 4.1, Hausdorff topological
residuated lattice (L,U) in Theorem 3.4, is a nor-
mal and regular space.

Theorem 4.4 Let F be a nontrivial filter in L.
Then:
(i) there exists a nontrivial topology U on L such
that (L,⊙,U) is a T0 topological residuated lattice
and F is a closed and open set,
(ii) (L,U) is a regular space iff, for each x ∈ U ∈
U , the set F ⊙ x is a closed set,
(iii) (L,U) is a normal space iff, for each closed
set S, the set

∪
x∈S F ⊙ x is a closed set.

Proof. (i) By [[11], Proposition 4.1(ii)] the set
U = {U ⊆ L : ∀x ∈ U F ⊙ x ⊆ U} is a nontrivial
topology on L such that (L,U) is a T0 topological
residuated lattice. We prove that F is closed and
open. Since for each x ∈ F, F ⊙ x ⊆ F, we get
that F ∈ U . If x ∈ F, then F ⊙ x∩F ̸= ϕ. Hence
there is a f ∈ F such that f ⊙ x ∈ F. Since F is
a filter by (R5), we conclude that x ∈ F. So F is
a closed set.

(ii) Let (L,U) be regular and x ∈ U ∈ U . Since
F ⊙ x is an open neighborhood of x, there is an
open set H such that x ∈ H ⊆ H ⊆ F ⊙ x. Since
x ∈ H, the set F ⊙ x is contained in H. Hence
F ⊙ x = H, which implies that F ⊙ x is closed.
Conversely, let x ∈ U ∈ U . Since F ⊙ x is closed,
hence x ∈ F ⊙x = F ⊙ x ⊆ U, which implies that
(L,U) is a regular space.
(iii) Let (L,U) be normal and S be a closed set
in L. Since

∪
x∈S F ⊙x is an open set contains S,

there is an open set H such that S ⊆ H ⊆ H ⊆∪
x∈S F ⊙ x. Since S ⊆ H, the set

∪
x∈S F ⊙ x is

contained inH. Hence
∪

x∈S F⊙x = H is a closed
set. Conversely, let S be a closed set in L and U
be an open set contains S. Now

∪
x∈S F ⊙ x is a

closed and open set such that S ⊆
∪

x∈S F ⊙ x =∪
x∈S F ⊙ x ⊆ U. Therefore, (L,U) is a normal

space.

Definition 4.1 Let L be a residuated lattice. A
nonempty subset V of L is a prefilter if for each
x, y ∈ L, x ≤ y and x ∈ V imply y ∈ V.

Example 4.2 (i) Let I be the residuated lattice
in Example 2.1(ii). Then for each a ∈ I the set
[a, 1] is a prefilter. It is clear that it is not filter.
(ii) Let L be residuated lattice in Example
2.1(iii). Then V = {a, b, c, 1} is a prefilter. It
is not filter because a⊙ b = 0 ̸∈ V.

Proposition 4.1 Let L be a residuated lattice
and V be a prefilter in L. Then:
(i) FV = {x ∈ V : ∀y ∈ V x⊙ y ∈ V } is a filter,
(ii) for each x ∈ V, FV (x) ⊆ V (x),
(ii) for each x, y ∈ L, FV (x) ∗ FV (y) ⊆ V (x ∗ y),
when ∗ ∈ {⊙, ,∧,∨}.

Proof. (i) Clearly, 1 ∈ FV . Let x, y ∈ FV and
z ∈ V. Then y⊙z ∈ V and so x⊙(y⊙z) ∈ V. This
implies that (x ⊙ y) ⊙ z ∈ V. Hence x ⊙ y ∈ FV .
Now suppose x ≤ y and x ∈ FV . If z ∈ V, then
by (R8), x⊙z ≤ y⊙z. Since x⊙z ∈ V, y⊙z ∈ V.
Hence y ∈ FV .
(ii) The proof is easy.
(iii) First we prove that FV (x)⊙FV (y) ⊆ V (x⊙
y). For this, let a ∈ FV (x) and b ∈ FV (y). We
have

(xa)((x⊙ y)(a⊙ b))

= (xa)(x(y(a⊙ b)))

= (x⊙ (xa))(y(a⊙ b))

≥ a(y(a⊙ b))

= y(aa⊙ b) ≥ yb
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Since yb and xa, both, belong to FV , by (i), (x⊙
y)(a⊙b) ∈ FV ⊆ V. In a similar way, we can show
that (a⊙ b)(x⊙ y) ∈ V. Hence a⊙ b ∈ V (x⊙ y).

This implies that FV (x) ⊙ FV (y) ⊆ V (x ⊙ y).
Now we show that FV (x)FV (y) ⊆ V (xy). Let a ∈
FV (x) and b ∈ FV (y). We have

(yb)((xy)(ab))

= [(xy)⊙ (yb)](ab)

≥ (xb)(ab)

= a((xb)b) ≥ ax

Since yb and ax, both, belong to FV , (xy)(ab) ∈
FV ⊆ V. In a similar way, we can show
that (ab)(xy) ∈ V. Hence ab ∈ V (xy). Thus
FV (x)FV (y) ⊆ V (xy). In continue we will show
that FV (x) ∧ FV (y) ⊆ V (x ∧ y). Let a ∈ FV (x)
and b ∈ FV (y). By (R5) and (R9), (x ∧ y)a ≥ xa
and (x ∧ y)b ≥ yb. Hence (x ∧ y)a and (x ∧ y)b,
both, are in FV and so [(x∧y)a]∨ [(x∧y)b] ∈ FV .
By (R19),

(x ∧ y)(a ∧ b) = [(x ∧ y)a] ∨ [(x ∧ y)b].

Hence
(x ∧ y)(a ∧ b) ∈ FV ⊆ V.

By the similar way, we get that (a∧b)(x∧y) ∈ V.
Therefore, a∧b ∈ V (x∧y). To complete the proof
we have to show that FV (x) ∨ FV (y) ⊆ V (x ∨ y).
Let a ∈ FV (x) and b ∈ FV (y). By (R9), ax ≤
a(x ∨ y) and by ≤ b(x ∨ y). Hence (ax) ∧ (by) is
less than

(a(x ∨ y)) ∧ (b(x ∨ y)).

Since ax and by are in filter FV , (a(x∨y))∧(b(x∨
y)) ∈ FV . By (R18), (a ∨ b)(x ∨ y) ∈ FV . In a
similar way, (x ∨ y)(a ∨ b) ∈ FV . So a ∨ b ∈ FV .

Theorem 4.5 Suppose Ω is a family of pre-
filters in a residuated lattice L such that Ω is
closed under intersections, and for each V ∈ Ω,
FV ∈ Ω.

Then there is a topology U on L such that
(L,U) is a regular topological residuated lattice.
Moreover, Ω is a fundamental system of neigh-
borhoods 1.

Proof. Let U = {U ⊆ L : ∀x ∈ U ∃V ∈
Ω s.t V (x) ⊆ U}. Then it is easy to prove that
U is a topology on L. We show that for any x ∈ L
and V ∈ Ω, the set V (x) is open and closed. Let

y ∈ V (x). By (ii) of Proposition 4.1, FV (xy) ⊆ V
and FV (yx) ⊆ V. Let z ∈ FV (y). By (R6) and
(R1),

yz ≤ (zx)(yx)

and
zy ≤ (yx)(zx).

Hence zx ∈ FV (yx) ⊆ V. By the similar way, we
can show that xz ∈ V. Hence z ∈ V (x). This im-
plies that y ∈ FV (y) ⊆ V (x), and so V (x) ∈ U .
Now let y ∈ V (x), where V ∈ Ω. Then there is
a z ∈ FV (y) ∩ V (x). Since zy ∈ FV and xz ∈ V,
by Proposition 4.1(i), (xz)⊙ (zy) ∈ V. By (R14),
xy ∈ V. Similarly, we can prove that yx ∈ V.
Hence y ∈ V (x). Therefore V (x) is closed. Since
for each x ∈ L and V ∈ Ω, the set V (x) is open,
by (iii) of Proposition 4.1, the operations ∧,∨,⊙
and are continuous. Hence (L,U) is a topologi-
cal residuated lattice. Finally, (L,U) is a regular
space because for any x ∈ U ∈ U , there is a V ∈ Ω
such that x ∈ V (x) = V (x) ⊆ U. Since for each
V ∈ Ω, V (1) = V, it is easy to see that Ω is a
fundamental system of neighborhoods of 1.

Definition 4.2 Let L be a residuated lattice.
Then we call filter F in L satisfies maximum con-
dition if for each x ∈ L, the set F (x) has a max-
imum.

If F is a filter in L which satisfies maximum condi-
tion, then we also call F is a filter with maximum
condition.

Example 4.3 Let I be the residuated lattices in
Example 2.1 (i), and F be a filter in it. Then for
each x ∈ I, F (x) = {x} or F (x) = F, and so F
satisfies the maximum condition.

Lemma 4.1 Let F be a filter with maximum
condition in a divisible residuated lattice L. Then
for each x ∈ L, there exists a x∗ ∈ L such that
F (x) = F ⊙ x∗.

Proof. Let x ∈ L. Since F is a filter with max-
imum condition, there exists x∗ ∈ L such that
x∗ = maxF (x). For each f ∈ F, by (R5), since
x∗⊙f ≤ f and f ≤ x∗ → (x∗⊙f), it follows that
(x∗ ⊙ f) → f = 1 ∈ F and x∗ → (x∗ ⊙ f) ∈ F.
Hence x∗⊙f ≡F x∗. Since x∗ ∈ F (x), we conclude
that x∗ ⊙ f ∈ F (x). Therefore, F ⊙ x∗ ⊆ F (x).
If z ∈ F (x), since x∗ ∈ F (x), we have z ∈ F (x∗).
Since z = x∗∧z = x∗⊙(x∗ → z) and x∗ → z ∈ F,
we conclude that z ∈ x∗⊙F. Thus, F (x) ⊆ F⊙x∗.
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Theorem 4.6 Let F be a compact filter in a
Hausdorff semitopological divisible residuated lat-
tice (L,⊙,U) which satisfies maximum condition.
If the set L/F is finite, then (L,U) is a normal
and regular space.

Proof. First we prove that for each x, y ∈ L,
F ⊙x = F ⊙y iff, x = y. If x = y, clearly F ⊙x =
F ⊙ y. Let F ⊙ x = F ⊙ y. Since x ∈ F ⊙ x, for
some f ∈ F, x = f⊙y. By (R5), x ≤ y. Similarity,
y ≤ x. Hence x = y. Now since the set L/F is
finite, by Lemma 4.1, there exist x1, ..., xn ∈ L
such that L = (F ⊙ x1)∪ ...∪ (F ⊙ xn). Since the
operation ⊙ is continuous in the first variable,
for each 1 ≤ i ≤ n, F ⊙ xi is compact and so
L is compact. Since L is compact and Hausdorff
space, we conclude that L is normal and regular
space.

Theorem 4.7 Let F be a fiter with maximum
condition in topological divisible residuated lattice
(L,U). If the mapping ta : L ↪→ L by ta(x) = a⊙x
is a closed map and F is a normal subspace of
(L,U), then (L,U) is a normal space.

Proof. Since for each a ∈ L, the mapping
ta(x) = a ⊙ x is a closed continuous map of F
onto F ⊙ a, it follows that F ⊙ a is a normal
subspace of (L,U). Also by Lemma 4.1, for each
x ∈ L there is a x∗ ∈ L such that F (x) = F ⊙x∗.
Thus L = ∪F ⊙ x∗ is a union of disjoint normal
spaces which implies that L is normal.

Proposition 4.2 Let (L, ,U) be a T1 semitopo-
logical residuated lattice. Then {1} is closed.

Proof. Let x ∈ {1}. If x ̸= 1, then there is
an open set U such that 1 ∈ U and x ̸∈ U. By
Proposition 3, U(x) is an open neighborhood of
x. Since x ∈ {1}, 1 ∈ U(x). Hence x = 1x ∈ U
which is a contradiction.

Proposition 4.3 Let (L,→,U) be a second
countable semitopological residuated lattice. If J
is an open nontrivial filter in L, then there is a
nontrivial topology V on L caorser than U such
that (L,V) is a metrizable topological residuated
lattice.

Proof. Let F be a family of open fiters which
contains J and is closed under intersection. It
is easy to prove that the set B = {F (x) : F ∈
F , x ∈ L} is a base for the topology V = {V ⊆

L : ∀x ∈ V ∃F ∈ F s.t F (x) ⊆ V } on L. Since J
is a nontrivial filter and for each x ∈ J, J(x) ⊆ J,
hence J ∈ V which implies that V is a nontrivial
topology on L. By Proposition 3, F (x) is in U , for
all F ∈ F and x ∈ L. Hence V is coarser than U .
As the proof of Proposition 4.1, we can show that
(L,V) is a regular topological residuated lattice.
By Proposition 4.2, {1} is closed and by Propo-
sition 3.1, (L,V) is Hausdorff. Since (L,V) is a
T2 second countable regular topological space, it
is metrizable.

Proposition 4.4 Let Ω be a family of prefilters
in residuated lattice L which is closed under in-
tersection. If
(i) for each U ∈ Ω there is a W ∈ Ω such that
W [W ] ⊆ U,
(ii) for each x ̸= 0 there is a V ∈ Ω such that
x′ ̸∈ V,
then there is a topology U on L such that
(L,⊙, ,U) is a Hausdorff compact topological
residuated lattice. Moreover, if (L,U) is second
countable, it is metrizable.

Proof. First we prove that the set B = {V [x] :
V ∈ Ω, x ∈ L} is a base for a topology U on
L. Clearly, L ⊆

∪
B. Let V [x] and U [y], both,

be in B and a ∈ V [x] ∩ U [y]. By (i), there is a
W ∈ Ω such that W [W ] ⊆ V ∩ U. We show that
W [a] ⊆ V [x] ∩ U [y]. Suppose z ∈ W [a]. By (R5),
(zx)(za) ≥ za, so zx ∈ W [za] ⊆ W ]W ] ⊆ V.
Similarly, zy ∈ U. Hence W [a] ⊆ V [x] ∩ U [y].
Therefore, B is a base for a topology U on L. Now
we show that V (x) is open, for any V ∈ Ω and
x ∈ L. For this, suppose y ∈ V (x) and W [W ] ⊆
V, for some W ∈ Ω. Let z ∈ W [y]. By (R5), zx ∈
W [zy] ⊆ W [W ] ⊆ V. Similarly, xz ∈ V. Hence
y ∈ W [y] ⊆ V (x). This shows that V (x) ∈ U . Let
x, y ∈ L, V ∈ Ω. Then there exists a W ∈ Ω such
that W [W ] ⊆ V. As the proof of Proposition 4.1,
we can prove that W [x] ⊙ W [y] ⊆ V [x ⊙ y]. We
show that W (x)W [y] ⊆ V [xy]. For this, suppose
a ∈ W (x) and b ∈ W [y]. We have

(by)((ab)(xy))

= (ab)[(by)](xy)]

= (ab)[x((by)y)]

≥ (ab)(xb)

= x((ab)b)

≥ xa

Hence (ab)(xy) ∈ W [by] ⊆ V and soW (x)W [y] ⊆
V [xy]. Therefore is continuous. Let {Ui : i ∈ I}
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be an open cover of L. Then for some V ∈ Ω
and i ∈ I, 1 ∈ V [1] ⊆ Ui. It is easy to see that
L = V [1]. Hence L ⊆ Ui, which shows that L is
compact. Now, we show that {0} is closed. Let
x ∈ {0}. If x ̸= 0, by (ii) there is a V ∈ Ω such
that x′ ̸∈ V. Since V (x) is an open neighborhood
of x, 0 ∈ V (x) which implies that x′ ∈ V, a con-
tradiction. Hence {0} is closed. By Proposition
3.1, (L,U) is Hausdorff. Finally, if (L,U) is sec-
ond countable, then it is metrizable because it is
Hausdorff compact second countable.

Proposition 4.5 Let F be a closed filter with
maximum condition in a second countable
topological Hausdorff divisible residuated lattice
(L,U). If F is a normal subspace of (L,U) and
the mapping ta(x) = a ⊙ x is a closed map of L
into L, then (L,U) is metrizable.

Proof. Since (L,U) is a topological residuated
lattice, the mappings la(x) = a → x and ra(x) =
x → a of L into L are continuous and so for each
x ∈ L, F (x) = l−1

x (F ) ∩ r−1
x (F ) is a closed set in

L. Since L is divisible, by Lemma 4.1, for each
x ∈ L, there is a x∗ ∈ L such that F (x) = F ⊙x∗.
On the other hand, for each x ∈ L, the mapping
ϕ(y) = y ⊙ x∗ is a closed continuous map of F
onto F ⊙ x∗. Hence F (x) = F ⊙ x∗ is a normal
subspace of (L,U). Let C be the family of pairwise
disjoint sets {F (x)}. Since L = ∪C, residuated
lattice L is normal. Since (L,U) is Hausdorff, it
is a regular space. Finally, since (L,U) is regular
second countable, it is metrizable.

Proposition 4.6 Let (L,U) be a second count-
able topological residuated lattice and let for each
a ∈ L the mapping ta(x) = a⊙ x be an open and
closed map of L into L. Then (L,U) is metriz-
able iff, for each x ̸= 1 and each open neighbor-
hood U of 1, there exists an open set V such that
1 ∈ V ⊆ V ⊆ U and x ̸∈ V.

Proof. (⇐) Let for each x ̸= 1 and each open
neighborhood U of 1, there exists an open set V
such that 1 ∈ V ⊆ V ⊆ U and x ̸∈ V. Then
by [[11], Proposition 4.10,] (L,U) is a T1 space.
By Theorem 3.2, (L,U) is a Hausdorff space. We
prove that it is regular. For this, let x ∈ U ∈ U .
Clearly, if x = 1, then there is a V ∈ U such that
1 ∈ V ⊆ V ⊆ U. Hence we suppose that x ̸= 1.
Since the operation ⊙ is continuous, there is an
open neighborhood W of 1 such that x⊙W ⊆ U.
Let V be an open set such that 1 ∈ V ⊆ V ⊆ W.

Since tx is an open and closed map, the set x⊙V
is an open neighborhood of x and x⊙V is a closed
set. So we have

x ∈ x⊙ V ⊆ x⊙ V = x⊙ V ⊆ x⊙W ⊆ U

which prove that (L,U) is a regular space. Since
(L,U) is second countable, it is metrizable.
(⇒) Let (L,U) be metrizable, U be induced topol-
ogy by metric d and x ̸= 1. If U is an open neigh-
borhood of 1, then there exists a ϵ > 0 such that
{x ∈ L : d(x, 1) < ϵ} ⊆ U. Let V = {x ∈ L :
d(x, 1) < ϵ

2}. Then clearly, 1 ∈ V ⊆ V ⊆ U and
x ̸∈ V.

Proposition 4.7 Let (L,→,U) be a second
countable topological residuated lattice and let for
each a ∈ L the mapping ra(x) = x → a be an
open map of L into L. Then (L,U) is metriz-
able iff, for each x ̸= 1 and each open neighbor-
hood U of 1, there exists an open set V such that
1 ∈ V ⊆ V ⊆ U, V is compact and x ̸∈ V.

Proof. (⇐) Let for each x ̸= 1 and each open
neighborhood U of 1, there exists an open set V
such that 1 ∈ V ⊆ V ⊆ U, V is compact and
x ̸∈ V. Then by [[11], Proposition 4.11,] (L,U) is
a Hausdorff space. We prove that it is regular.
For this, let x ∈ U ∈ U . Clearly, if x = 1, then
there is a V ∈ U such that 1 ∈ V ⊆ V ⊆ U. Hence
we suppose that x ̸= 1. Since the operation → is
continuous, there is an open neighborhood W of
1 such that W → x ⊆ U. Let V be an open set
such that 1 ∈ V ⊆ V ⊆ W. Since rx is an open
and continuous map, the set V → x is an open
neighborhood of x and V → x is a compact set.
Since (L,U) is Hausdorff, the set V → x is closed.
So we have

V → x ⊆ V → x = V → x ⊆ W → x ⊆ U

which prove that (L,U) is a regular space. Since
(L,U) is second countable, it is metrizable.
(⇒) The proof is similar to the proof of Theorem
4.6. Recall, a topological space (X,U) is locally
compact if for each x ∈ X there is an open neigh-
borhood U of x such that U is compact. If (X,U)
is Hasudorff, then X is locally compact iff, for
each x ∈ U ∈ U there is an open set V such that
x ∈ V ⊆ V ⊆ U and V is compact. It is easy to
see that any compact set is locally compact.[See,
[7]]
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Proposition 4.8 Let (L,U) be a second count-
able Hausdorff residuated lattice and for each
a ∈ L, ta(x) = a ⊙ x be an open map of L into
L. Then (L,U) is metrizable iff, there is a locally
compact open neighborhood of 1.

Proof. (⇐) Let U be a locally compact open
neighborhood of 1. Let a ∈ L. Since ta(x) = x⊙a
is an open map of U onto U ⊙a, by [[7], Theorem
3.3.15] U⊙a is an open locally compact subset of
L. As L = ∪x∈LU ⊙ x is a union of open locally
compact subspaces of L, then by [[7], Exercise
3.3.A] it is a locally compact space. Since (L,U)
is Hausdorff and second countable, it is regular
and so metrizable.
(⇒) Let (L,U) be metrizable and U be topol-
ogy induced by metric d. Then clearly, the set
{x ∈ L : d(x, 1) < r} is a locally compact open
neighborhood of 1.

Proposition 4.9 Let (L,→,U) be a second
countable Hausdorff semitopological residuated
lattice. If F is a locally compact closed filter, then
(L,U) is metrizable.

Proof. Let for each a ∈ L, ra(x) = x → a and
la(x) = a → x be two maps of L into L. Then ra
and la, both, are continuous. Since F is locally
compact, r−1

a (F ) is locally compact because if x ∈
r−1
a (F ), then ra(x) ∈ F and so there is an open
set V such that ra(x) ∈ V ∩F ⊆ V ∩ F ⊆ F. Now

x ∈ r−1
a (V ∩ F ) ⊆ r−1

a (V ∩ F ) ⊆ r−1
a (F )

proves that r−1
a (F ) is locally compact. Simi-

larity l−1
a (F ) is locally compact. Since F (a) =

r−1
a (F )∩ l−1

a (F ), and F is locally compact closed,
so F (a) is locally compact closed for each a ∈ L.
Now since L = ∪a∈LF (a) is a union of locally
compact closed subspaces of L, by [[7], Exercise
3.3.B] (L,U) is locally compact. Since (L,U) is
Hausdorff and second countable, (L,U) is regular
and then metrizable.

Definition 4.3 Let U be a topology on a residu-
ated lattice L and W ⊆ L. We call:
(i) W is a n-quasifilter if x ∈ Wn and x ≤ y im-
ply y ∈ Wn,
(ii) W is a quasifilter if for each n ≥ 1, W is a
n-quasifilter,
(iii) W is a quasifilter neighborhood of 1 if W is
a neighborhood of 1 which is quasifilter,
(iv) W is a QN-fundamental system, if W is
a fundamental system of open neighborhoods 1
which all are quasifilter.

Example 4.4 (i) Every open filter is a quasifil-
ter neighborhood.
(ii) In Example 2.1, W = {1, a, b, c} is a quasifil-
ter neighborhood of 1 which is not a filter.
(iii) Let I be residuated lattice in Example 2.1
(ii). Let 0 ̸= a ∈ I and W = (a, 1]. Then for each
n ≥ 1, Wn = (an, 1]. If U is subspace topology
induced by real number, then W is a quasifilter
neighborhood of 1 which is not a filter. Moreover,
W = {(a, 1] : a ∈ I} is a QN-fundamental sys-
tem.

Proposition 4.10 Let W be a QN-fundamental
system in the second countable Hausdorff topo-
logical residuated lattice (L,U). If for each a ∈ L,
ta(x) = a ⊙ x is an open map of L into L, then
(L,U) is metrizable provided there exists a com-
pact open neighborhood of 1.

Proof. Let U be a compact open neighborhood
of 1 and x ∈ U. Since the operation ⊙ is continu-
ous, there exist two open neighborhoods Vx and
Hx of 1 such that x⊙Vx ⊆ U and Hx⊙Hx ⊆ Vx.
Clearly, {x ⊙ Hx : x ∈ U} is an open covering
of U. Since U is compact, the union of a finite
number sets {xi ⊙Hxi : 1 ≤ i ≤ n} covers U. Let
V =

∩n
i=1Hxi . Then V is an open neighborhood

of 1 such that

U ⊙ V ⊆ (
n∪

i=1

xi ⊙Hxi)⊙ V ⊆
n∪

i=1

xi ⊙ Vxi ⊆ U.

Since U ∩ V is an open neighborhood of 1, there
is a W ∈ W such that W ⊆ U ∩ V. Thus W 2 ⊆
U⊙V ⊆ U. But then by induction, Wn = Wn−1⊙
W ⊆ U ⊙ V ⊆ U. Let F = ∪n≥1W

n. If x, y ∈ F,
then for some n and m, x ∈ Wn and y ∈ Wm.
Hence x ⊙ y ∈ Wn+m ⊆ F. If x ∈ F and x ≤ y,
then for some n ≥ 1, x ∈ Wn. Since W is a
quasifilter, y ∈ Wn and so y ∈ F. Thus F is a
filter. Since for each a ∈ L, ta is an open map,
F is an open set. If y ∈ F, then since F ⊙ y is
an open neighborhood of y, there is a f ∈ F such
that f ⊙ y ∈ F. Since F is a filter, y ∈ F. Thus
F is a closed set in the compact Hausdorff space
U and so F is compact. Now by Proposition 4.9,
(L,U) is metrizable.

5 Conclusion

In this paper, we studied separation axioms on
topological residuated lattices. In Theorem 3.2
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we showed that axioms T0, T1, T2 and T5/2 are
equivalence. In Theorem 3.4 we proved that there
is a Hausdorff topological residuated lattice of
each infinite cardinality. Axioms regularity and
normality were studied in section 4. For the fu-
ture we suggest to study metrizability, uniformity,
quasi-uniformity on this structure.
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