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Exat Solutions for the Flow of a GeneralizedSeond Grade Fluid due to a LongitudinalQuadrati Time-dependent Shear StressM. Athar a, C. Feteau a; b�, Corina Feteau b, A. U. Awan a(a) Abdus Salam Shool of Mathematial Sienes, GC University, Lahore, Pakistan(b) Department of Theoretial Mehanis, Tehnial University of IASI, R-6600 Iasi, RomaniaReeived 1 Marh 2010; revised 9 Otober 2010; aepted 12 Otober 2010.|||||||||||||||||||||||||||||||-AbstratThe veloity �eld and the adequate shear stress, orresponding to the ow of a generalizedseond grade uid in an annular region, due to a quadrati time-dependent shear stress,are determined by means of the Laplae and the �nite Hankel transforms. The solutionsthat have been obtained satisfy both the governing equations and all imposed initial andboundary onditions. For � ! 1 or � ! 1 and �1 ! 0, the orresponding solutions fora seond grade uid, respetively, for the Newtonian uid, performing the same motion,are obtained from general solutions. Finally, the inuene of the material and frationalparameters on the shear stress as well as a omparison between models is drawn by graph-ial illustrations.Keywords : Generalized seond grade uid; Veloity �eld; Shear stress; Exat solutions.||||||||||||||||||||||||||||||||{1 IntrodutionThe inadequay of the lassial Navier-Stokes theory to desribe the harateristisof many rheologial omplex uids has led to development of several theories of non-Newtonian uids. Among the many models that have been used to desribe the non-Newtonian behavior exhibited by these uids, one lass that has gained support fromboth the experimentalists and the theoretiians is that of Rivlin-Erikson uids of seondgrade. Although there some ritiisms on the appliations of this model [1, 14℄, manypapers have been published and a listing of some of them may be found in the litera-ture. Furthermore, it has been shown by Walters [29℄ that for many types of problemsin whih the ow is slow enough in the visoelasti sense, the results given by Oldroyd-B�Corresponding author. Email address: feteau onstantin�yahoo.om153



154 M. Athar et al. = IJIM Vol. 2, No. 3 (2010) 153-165onstitutive equations will be substantially similar to those of the seond or third-orderRivlin-Erikson onstitutive equations. Thus, if this is the manner of interpreting the so-lutions to problems, it would seem reasonable to use the seond or third-order onstitutiveequations in arrying out the alulations. This is partiularly so in view of the fat thatthe alulation is generally simpler. In this paper, the seond grade model is used.As early as Ting [26℄ provided a set of exat solutions for some ows of seond gradeuids. A listing of some problems that have been solved in the next ten years an befound in [6℄. During this time a lot of unsteady ows of suh uids have been studiedby di�erent authors. However, it is worth pointing out that almost all these studies dealwith motion problems in whih the veloity is given on the boundary. To the best of ourknowledge, the �rst exat solutions for motions of seond grade uids due to a shear stresson the boundary are those of Bandelli and Rajagopal [2℄ in ylindrial domains. Reently,similar problems in ylindrial domains have been also studied in [7℄-[10℄. This is veryimportant as in some problems, what is spei�ed is the fore on the boundary. It is alsoimportant to bear in mind that the \no slip"boundary ondition may not be neessarilyappliable to the ows of polymeri uids that an slip or slide on the boundary. Thus,the shear stress boundary ondition is partiularly meaningful.Our purpose here is to extend the results from ([2℄, Set. 4) to a motion due to atime-dependent shear stress. However, for ompleteness, we shall solve the problem for alarger lass of non-Newtonian uids, namely seond grade uids with frational derivativesor generalized seond grade uids (GSGF). In the last time, the frational alulus hasenountered muh suess in the desription of visoelastiity. Espeially, the rheologialonstitutive equations with frational derivative play an important role in desription ofthe behavior of the polymer solutions and melts. In other ases, it has been shown thatthe onstitutive equations employing frational derivatives are linked to moleular theo-ries [13℄. Furthermore, the one-dimensional frational derivative Maxwell model has beenfound very useful in modeling the linear visoelasti response of polymers in the glasstransition and the glass state [16℄. For a deeper doumentation on this subjet, we alsoreommend the books [18, 20℄ and the reent papers [4℄-[15℄.2 Problem FormulationThe Cauhy stress tensor T for seond grade uids is related to the uid motion in thefollowing manner [2℄ T = �p I+ �A1 + �1A2 + �2A21 ; (2.1)where �p is the hydrostati pressure, I is the unit tensor, � is the oeÆient of visosity, �1and �2 are the normal stress moduli and A1, A2 are the �rst two Rivlin-Eriksen tensors.Sine the uid is inompressible, it an undergo only isohori motions, and henediv v = trA1 = 0 : (2.2)2.1 Governing equationsThe ows to be here onsidered have the veloity �eld of the formv = v(r; t) = v(r; t) ez ; (2.3)



M. Athar et al. = IJIM Vol. 2, No. 3 (2010) 153-165 155where ez is the unit vetor along the z-axis of the ylindrial oordinate system r; � and z.For suh ows the onstraint of inompressibility (2.2) is automatially satis�ed and thegoverning equations, in the absene of a pressure gradient in the ow diretion and ne-gleting the body fores, are [2, 12, 30℄�v(r; t)�t = (� + � ��t)� �2�r2 + 1r ��r�v(r; t); �(r; t) = (�+ �1 ��t)�v(r; t)�r ; (2.4)where � = �=� is the kinemati visosity (� being the onstant density of the uid),� = �1=� and �(r; t) = Srz(r; t) is the non-trivial shear-stress.Generally, the governing equations orresponding to suh a motion of a GSGF, namely(f. [31℄, Eqs. (4) and (7)) or ([26℄, Eq. (8)) with � = 0)�v(r; t)�t = (� + �D�t )� �2�r2 + 1r ��r�v(r; t); �(r; t) = (�+ �1D�t )�v(r; t)�r ; (2.5)are obtained from Eq. (2.4) by replaing the inner time derivatives by the Riemann-Liouville frational operator [24, 25℄D�t f(t) = 1�(1� �) ddt Z t0 f(�)(t� �)� d�; 0 � � < 1 ; (2.6)where �(:) is the Gamma funtion. When � ! 1, Eqs. (2.5) redue to Eq. (2.4) beauseD�t f ! dfdt . Of ourse, the new material onstants � and �1 into Eqs. (2.5) (for simpliity,we kept the same notations) are also going to those from Eq. (2.4) if � ! 1.In this note, we are interested into the motion of a GSGF whose governing equationsare given by Eqs. (2.5). More exatly, we shall determine the veloity �eld v(r; t) andthe shear stress �(r; t) orresponding to the motion between two in�nite oaxial irularylinders, one of them applying a shear stress of the form ft2 to the uid. Similar solutionsfor the motion of generalized Oldroyd-B uids due to an in�nite ylinder that applies aonstant longitudinal/rotational shear stress to the uid have been established in [27, 28℄.2.2 Axial Couette ow between two ylindersSuppose that an inompressible generalized seond grade uid at rest is situated in theannular region between two in�nite oaxial irular ylinders of radii R1 and R2(> R1).At time t = 0+ the inner ylinder is pulled with a quadrati time-dependent shear stressft2 along its axis, while the outer one is held �xed. Due to the shear, the uid betweenylinders is gradually moved, its veloity being of the form (2.3). The governing equationsare given by Eqs. (2.5) and the appropriate initial and boundary onditions are (f. [2℄,Eqs. (4.2)-(4.4))) v(r; 0) = 0 ; r 2 (R1; R2℄; (2.7)�(R1; t) = (�+ �1D�t )�v(r; t)�r jr=R1 = ft2; v(R2; t) = 0; t > 0 ; (2.8)where f is a negative onstant [9, 5℄.The partial di�erential equation (2.5), with the initial and boundary onditions (2.7)and (2.8), an be solved in priniple by several methods. The integral transforms tehniquerepresents a systemati, eÆient and powerful tool. In the following we shall use the



156 M. Athar et al. = IJIM Vol. 2, No. 3 (2010) 153-165Laplae transform to eliminate the time variable and the �nite Hankel transform for thespatial variable. However, in order to avoid the burdensome alulations of residues andontour integrals, as well as in [7, 24, 27, 28, 31℄, we shall apply the disrete inverse Laplaetransform method.3 Analytial solutions3.1 Veloity solutionBy applying the Laplae transform to the �rst equation of (2.5) and Eq. (2.8), we �ndthat qv(r; q) = (� + �q�)� �2�r2 + 1r ��r�v(r; q); (3.9)�(R1; q) = (�+ �1q�)�v(r; q)�r jr=R1 = 2fq3 ; v(R2; q) = 0 ; (3.10)where v(r; q) and �(R1; q) are the Laplae transforms of the funtions v(r; t) and �(R1; t),respetively. We denote by [8℄vH(rn; q) = Z R2R1 r v(r; q)B(rrn) dr; (3.11)the �nite Hankel transform of the funtion v(r; q), whereB(rrn) = J0(rrn)Y1(R1rn)� J1(R1rn)Y0(rrn) ; (3.12)rn being the positive roots of the equation B(R2r) = 0 and Jp(:), Yp(:) are the Besselfuntions of the �rst and seond kind of order p . Using the �rst equation of (3.10) andEq. (3.12) and the known relationJ0(z)Y1(z)� J1(z)Y0(z) = � 2�z ; (3.13)we an prove thatZ R2R1 r� �2�r2 + 1r ��r� v(r; q)B(rrn) dr = �r2n vH(rn; q) + 2�rn �v(r; q)�r jr=R1 : (3.14)From Eqs. (3.9), (3.10) and (3.14), we �nd thatvH(rn; q) = 4f�rn 1q3 1�q+�1q�r2n+� r2n= v1H(rn; q) + v2H(rn; q); (3.15)where v1H(rn; q) = 4f�r3n 1q3(�+�1q�) ;v2H(rn; q) = � 4f�r3n 1(�+�1q�) 1q2(q+�q�r2n+�r2n) : (3.16)



M. Athar et al. = IJIM Vol. 2, No. 3 (2010) 153-165 157Applying the inverse Hankel transform to Eqs. (3.16) and using Eqs. (A1) from theAppendix A, we get v1(r; q) = 2R1f ln � rR2 � 1q3(�+�1q�) ;v2(r; q) = �22 P1n=1 r2nJ20 (R2rn)B(rrn)J21 (R1rn)�J20 (R2rn) v2H(rn; q): (3.17)If we denote by H(q) = 1q2(�+ �1q�) = 1�1 q�2q� + ��1 ; (3.18)then its inverse Laplae transform ish(t) = L�1[H(q)℄= 1�1 G�;�2; 1�� ��1 ; t�= 1�1 P1j=0 �� ��1 �j t(j+1)�+1�[(j+1)�+2℄ ; (3.19)where ([19℄, Eqs. (97) and (101))Ga; b; (d ; t) = L�1� qb(qa�d)� =P1j=0 dj �(+j)�()�(j+1) t(+j)a�b�1�[(+j)a�b℄ ;Re(a� b) > 0;j dqa j < 1: (3.20)By taking the inverse Laplae transform of the �rst equation of (3.17) and using Eq. (3.19)as well as the onvolution theorem, we �nd thatv1(r; t) = 2R1f ln � rR2 �L�1�1q H(q)�= 2R1f ln � rR2 � R t0 h(s)ds= 2R1f�1 ln � rR2 �P1k=0 �� ��1 �k t(k+1)�+2�[(k+1)�+3℄= 2R1f�1 ln � rR2 �G�;�3; 1�� ��1 ; t� : (3.21)
In order to determine the inverse Laplae transform of the funtion v2(r; q), we rewritethe funtion v2H(rn; q) in the formv2H(rn; q) = � 4f�r3n H(q):H1(rn; q);H1(rn; q) = 1q+�q�r2n+�r2n : (3.22)Using the following expansion of the funtion H1(rn; q)H1(rn; q) = q��(q1��+�r2n)+�r2nq��=P1k=0 (��r2n)k q��(k+1)(q1��+�r2n)k+1 ; (3.23)



158 M. Athar et al. = IJIM Vol. 2, No. 3 (2010) 153-165as well as the formula (3.20), we geth1(rn; t) = L�1[H1(rn; q)℄=P1k=o(��r2n)kG1��;��(k+1); k+1(��r2n; t) : (3.24)Applying the inverse Laplae transform to the seond equation of (3.17) and using Eqs.(3.19), (3.22), (3.24) and the propertyL�1[H(q)H1(rn; q)℄ = h(t) � h1(rn; t)= R t0 h(t� s)h1(rn; s)ds;we �nd thatv2(r; t) = L�1[v2(r; q)℄= �2�f�1 P1n=1 J20 (R2rn)B(rrn)rn[J21 (R1rn)�J20 (R2rn)℄�P1k=o(��r2n)k R t0 G�;�2; 1�� ��1 ; t� s�G1��;��(k+1); k+1(��r2n; s)ds : (3.25)Consequently, the veloity �eld v(r; t) is given by the relationv(r; t) = 2R1f�1 ln( rR2 )G�;�3; 1�� ��1 ; t�� 2�f�1 P1n=1 J20 (R2rn)B(rrn)rn[J21 (R1rn)�J20 (R2rn)℄�P1k=o(��r2n)k R t0 G�;�2; 1�� ��1 ; t� s�G1��;��(k+1); k+1(��r2n; s)ds : (3.26)Of ourse, in view of the known relationD�t (ta) = �(a+ 1)�(a� � + 1) ta�� ; 0 � � < 1;it is easy to show that v(r; t) satis�es the seond boundary ondition (2.8). Indeed, using(3.26), we have(�+ �1D�t )�v(r;t)�r jr=R1 = �2fP1j=0 �� ��1�j+1 t(j+1)�+2�[(j+1)�+3℄+2fP1j=0 �� ��1�j tj�+2�[j�+3℄= �2fP1k=1 �� ��1�k tk�+2�[k�+3℄+2fP1j=0 �� ��1�j tj�+2�[j�+3℄= ft2:A simpler but equivalent expression for the veloity �eld v(r; t), an be also obtained byrewriting Eq. (3.15) under the formvH(rn; q) = 4f��r3n 1q3 � 4f��r3n q�2 + �q��3r2nq + �q�r2n + � r2n : (3.27)



M. Athar et al. = IJIM Vol. 2, No. 3 (2010) 153-165 159Indeed, applying the inverse Hankel transform to Eq. (3.27) and following the same wayas before, we �nd for veloity the simpler expressionv(r; t) = R1f� ln� rR2� t2 � 2�f� P1n=1 J20 (R2rn )B(rrn )rn [J21 (R1rn)�J20 (R2rn )℄P1k=0 ���r2n�k� �G1��;��k���2;k+1 ���r2n; t�+ �r2nG1��;��k�3;k+1 ���r2n; t�� : (3.28)3.2 Shear stress solutionBy applying the Laplae transform to the seond equation of (2.5), we �nd that�(r; q) = (�+ �1q�)�v(r;q)�r= (�+ �1q�)��v1(r;q)�r + �v2(r;q)�r � : (3.29)In view of Eqs. (3.16) and (3.17), it results that�(r; q) = 2R1fr 1q3 + 2�f 1Xn=1 J20 (R2rn)B1(rrn)J21 (R1rn)� J20 (R2rn) 1q2(q + �q�r2n + �r2n) ; (3.30)where B1(rrn) = J1(rrn)Y1(R1rn)� J1(R1rn)Y1(rrn)Now taking the inverse Laplae transform of both sides of Eq. (3.30) and using (3.23), we�nd that �(r; t) = R1ft2r + 2�fP1n=1 J20 (R2rn)B1(rrn)J21 (R1rn)�J20 (R2rn)�P1k=o(��r2n)kG1��;��k���2; k+1(��r2n; t) : (3.31)4 The speial ase � ! 1By making � ! 1 into Eqs. (3.26) and (3.31), we obtain the similar solutionsvSG(r; t) = 2R1f�1 ln � rR2 �G1;�3; 1�� ��1 ; t�� 2�f�1 P1n=1 J20 (R2rn)B(rrn)rn[J21 (R1rn)�J20 (R2rn)℄�P1k=o(��r2n)k R t0 G1;�2; 1�� ��1 ; t� s�G0;�k�1; k+1(��r2n; s)ds (4.32)and �SG(r; t) = R1ft2r + 2�fP1n=1 J20 (R2rn)B1(rrn)J21 (R1rn)�J20 (R2rn)P1k=o(��r2n)kG0;�k�3; k+1(��r2n; t) ; (4.33)orresponding to a seond grade uid performing the same motion. These solutions anbe also simpli�ed to give (see also Eqs. (A2)� (A6) from the Appendix A)vSG(r; t) = 2R1f� ln( rR2 )� ��1� �2 n1� exp �� � t�1 �o� �1t� + t22 �+2�f�1�2 P1n=1 J20 (R2rn)B(rrn)rn[J21 (R1rn)�J20 (R2rn)℄� 11+�r2n R t0 �1� ��1 (t� s)� exp n� ��1 (t� s)o�exp �� �r2ns1+�r2n� ds ; (4.34)



160 M. Athar et al. = IJIM Vol. 2, No. 3 (2010) 153-165and �SG(r; t) = R1ft2r + 2�f�2 P1n=1 J20 (R2rn)B1(rrn)r2n[J21 (R1rn)�J20 (R2rn)℄� h1+�r2nr2n nexp� ��r2nt1+�r2n�� 1o+ �ti : (4.35)The above expressions for the veloity vSG(r; t) and the shear stress �SG(r; t) an be alsowritten in the simpler forms asvSG(r; t) = R1f� ln � rR2 �� �t� �1� �2 + ��1� �2 ��2�f�� P1n=1 J20 (R2rn)B(rrn)r3n[J21 (R1rn)�J20 (R2rn)℄� �t� �1� � 1+�r2n�r2n n1� (1 + �r2n)exp� ��r2nt1+�r2n�o� ; (4.36)
and �SG(r; t) = R1ft2r + 2�f� P1n=1 J20 (R2rn)B1(rrn)r2n[J21 (R1rn)�J20 (R2rn)℄� ht� 1+�r2n�r2n n1� exp� ��r2nt1+�r2n�oi : (4.37)Making �1 ! 0 and then � ! 0 into Eqs. (4.36) and (4.37), we obtain the veloity�eld vN (r; t) = R1ft2� ln � rR2 �� 2�f�� P1n=1 J20 (R2rn)B(rrn)r3n [J21 (R1rn)�J20 (R2rn)℄� ht� 1�r2n �1� exp (��r2nt)	i (4.38)and the assoiated shear stress�N (r; t) = R1ft2r + 2�f� P1n=1 J20 (R2rn)B1(rrn)r2n[J21 (R1rn)�J20 (R2rn)℄� ht� 1�r2n �1� exp (��r2nt)	i ; (4.39)orresponding to a Newtonian uid performing the same motion. Of ourse, by mak-ing � ! 1 in Eq. (3.28), we attain to the same expression (4.36) for the veloity �eldorresponding to a seond grade uid. Diret omputations show that the expression ofvSG(r; t), given by Eq. (4.36), is wholly in aordane with the known result ([2℄, Eq.(4.34)) orresponding to a onstant shear on the boundary.5 Numerial results and disussionIn this paper the veloity �eld and the shear stress orresponding to the motion ofa generalized seond grade uid due to a longitudinal quadrati time-dependent shearstress have been determined using Laplae and �nite Hankel transforms. The solutionsthat have been obtained, presented under integral and series form in terms of the gen-eralized Ga; b; (� ; t) funtions, satisfy all imposed initial and boundary onditions. Theyan be easily redued to give the similar solutions for seond grade and Newtonian uids,performing the same motion. These last solutions, as it results from Eqs. (4.36)-(4.39),



M. Athar et al. = IJIM Vol. 2, No. 3 (2010) 153-165 161are presented as a sum between the large time and transient solutions. The large timesolutions orresponding to seond grade uids, for instane, arevLSG(r; t) = R1f� ln � rR2 �� �t� �1� �2 + ��1� �2 ��2�f�� P1n=1 J20 (R2rn)B(rrn)r3n[J21 (R1rn)�J20 (R2rn)℄ ht� 2�1� � 1�r2n i ; (5.40)and �LSG(r; t) = R1ft2r + 2�f� P1n=1 J20 (R2rn)B1(rrn)r2n[J21 (R1rn)�J20 (R2rn)℄� ht� �1� � 1�r2n i : (5.41)For �! 0 they tend to the Newtonian large time solutions vLN (r; t) and �LN (r; t).Now, in order to reveal some relevant physial aspets of the obtained results, thediagrams of the shear stress �(r; t) are depited against r for di�erent values of t, �1 andof the frational parameter �. In Fig. 1 the diagrams of the shear stress are presented atthree di�erent times. The shear stress, in absolute value, is an inreasing funtion of t.Fig. 2 and Fig. 3 show the inuene of the material onstant �1 and the frational param-eter � on the shear stress �(r; t). Their e�et, as it was to be expeted, is opposite. Onthe �rst part of the ow domain, near the moving ylinder, the shear stress is a dereasingfuntion with respet to �1 and an inreasing one of �. In Fig. 4, for omparison, thediagrams of the shear stress orresponding to the three models (Newtonian, seond gradeand generalized seond grade) are together depited for the same values of the ommonparameters and the time t. In the neighborhood of the inner ylinder, the shear stressorresponding to a GSGF is the biggest and that for a Newtonian uid is the lowest. Theunits of the material onstants into Figs. 1-4 are SI units and the roots rn have beenapproximated by (2n� 1)�=[2(R2 �R1)℄.
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