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———————————————————————————————-
Abstract
In this paper, we present a numerical method for solving fully fuzzy polynomials. The
proposed method is based on approximating fuzzy neural network. This method can also
lead to improving numerical methods. In this work, an architecture of fuzzy neural net-
works is also proposed to find a fuzzy root of a fuzzy polynomial (if exists) by introducing
a learning algorithm. We propose a learning algorithm from the cost function for adjusting
fuzzy weights. Finally, we illustrate our approach by numerical examples.
Keywords : Fuzzy number; Neural network; Fuzzy polynomial

————————————————————————————————–

1 Introduction

Polynomials play a major role in various areas such as pure and applied mathematics,
engineering and social sciences. Previous papers [3, 4], tried to find the numerical solution
x ∈ R (if exists) of a fuzzy polynomial equation such as A1x + A2x

2 + . . . + Anx
n = A0

where A0, A1, . . . , An are fuzzy numbers and system F , where F denotes a system of s
fuzzy polynomial equations such as:

f1(x1, x2, . . . , xn) = A10,
...

fl(x1, x2, . . . , xn) = Al0,
...

fs(x1, x2, . . . , xn) = As0,

where x1, x2, . . . , xn ∈ R and all coefficients are fuzzy numbers. Also Allahviranloo et al
[6] applied the Fixed point method for solving fuzzy nonlinear equations.
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Now, consider the following fully fuzzy polynomial of the form Á1X + Á2X
2 + . . . +

ÁnX
n =

´́
A1X +

´́
A2X

2+ . . .+
´́
AnX

n+A0 where X and all coefficients are fuzzy numbers.
In this paper we are interested in finding a fuzzy root of such fuzzy polynomials.

We wish to find the answer to this question: How is the fuzzy neural network going
to solve the fuzzy polynomials? In this paper, an architecture of fuzzy neural network is
proposed to find a fuzzy root of a fuzzy polynomial by introducing a learning algorithm.
Some applications of fuzzy polynomials are considered by [18, 24].

During the past few years, neural networks have received much attention [10, 13, 20, 21,
23, 25]. Ishibuchi et al. [14] proposed a learning algorithm of fuzzy neural networks with
triangular fuzzy weights and Hayashi et al. [12] also fuzzified the delta rule. Linear and
nonlinear fuzzy equations are solved by [1, 2, 8, 9], also Buckley and Eslami [7] considered
neural net solutions to fuzzy problems.

In this paper, we first propose an architecture of fuzzy neural networks with fuzzy
weights for fuzzy input vector and fuzzy target. The input-output relation of each unit
is defined by the extension principle of Zadeh [26, 27]. The output from the fuzzy neural
network, which is also a fuzzy number, is numerically calculated by the interval arithmetic
[5] for fuzzy weights and level sets(i.e., α-cuts) of fuzzy inputs. Next, we define a cost
function for the level sets of fuzzy output and fuzzy target. Then, a crisp learning algorithm
is derived from the cost function to find a fuzzy root (if exists) of a fuzzy polynomial. The
effectiveness of the proposed algorithm is proved by solving some examples in the last
section.

2 Preliminaries

We represent an arbitrary fuzzy number by an ordered pair of functions (u(r), u(r)), 0 ≤
r ≤ 1, which satisfy the following requirements [19]:

1. u(r) is a bounded left continuous non decreasing function on [0, 1].

2. u(r) is a bounded left continuous non increasing function on [0, 1].

3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

The crisp number λ is simply represented by u(r) = u(r) = λ, 0 ≤ r ≤ 1. The set of
all the fuzzy numbers is denoted by E1. A popular fuzzy number is the triangular fuzzy
number u = (m,α, β) with membership function

µu(x) =


x−m
α + 1, m− α ≤ x ≤ m,

m−x
β + 1, m ≤ x ≤ m+ β,

0, otherwise,

where α > 0 and β > 0. Its parametric form is

u(r) = m+ α(r − 1), u(r) = m+ β(1− r).

Triangular fuzzy numbers are fuzzy numbers in LR representation where the reference
functions L and R are linear. The set of all triangular fuzzy numbers on R is called F̂Z.
Let n be a fuzzy number with membership function µ(x|n). The membership function is
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partially specified by (n1, n2, n3, n4) where: (1) n1 < n2 < n3 < n4; (2) µ(x|n) = 0 outside
(n1, n4) and equals one at (n2, n3); (3) µ(x|n) is continuous and monotonically increasing
from zero to one on [n1, n2]; and (4) µ(x|n) is continuous and monotonically decreasing
from one to zero on [n3, n4]. If µ(x|n) consists of a straight line segment on (n1, n2) and
on (n3, n4) we will write n = (n1/n2/n3/n4).

Let f1(α|n) be the inverse of µ(x|n) on [n1, n2] and let f2(α|n) be the inverse of µ(x|n)
on [n3, n4]. Therefore, n1 = f1(0|n), n2 = f1(1|n), n3 = f2(1|n), and n4 = f2(0|n). If
n = (n1/n2/n3/n4), then f1(α|n) = (n2 − n1)α + n1 and f2(α|n) = (n3 − n4)α + n4.
The inverse notation is very handy for performing multiplication and addition of fuzzy
numbers.

The α−cut of a fuzzy number n is

nα = {x|µ(x|n) ≥ α}

for 0 < α ≤ 1. We see that nα = [f1(α|n), f2(α|n)] which we write as [nα
1 , n

α
2 ], for

0 < α ≤ 1. We will use the notation ṅα
1 and ṅα

2 for the derivative of nα
1 and nα

2 , respec-
tively, with respect to α.

Theorem 2.1. Let a and c are fuzzy numbers. The equation a + x = c has a solution x
if and only if c1 − a1 < c2 − a2 < c3 − a3 < c4 − a4.

Proof: Taking α-cuts we obtain aαi + xαi = cαi , i = 1, 2. Then

x1 < x2 < x3 < x4,

and ẋα1 > 0, ẋα2 < 0 if and only if c1 − a1 < c2 − a2 < c3 − a3 < c4 − a4.

2.1 Operations on fuzzy numbers

Operations on fuzzy numbers are numerically performed on level sets (i.e., h-cuts). For
0 < h ≤ 1, a h-level set of a fuzzy number X is defined as

[X]h = {x ∈ R|µX(x) ≥ h} for 0 < h ≤ 1,

and [X]0 =
∪

h∈(0,1][X]h. Since level sets of fuzzy numbers become closed intervals, we
denote [X]h by

[X]h = [[X]Lh , [X]Uh ],

where [X]Lh and [X]Uh are the lower and the upper limits of the h-level set [X]h, respectively.
From interval arithmetic [5], the above operations on fuzzy numbers are written for

h-level sets as follows:

A = B ⇐⇒ [A]h = [B]h for 0 < h ≤ 1, (2.1)

[A+B]h = [[A]Lh + [B]Lh , [A]Uh + [B]Uh ], (2.2)

[A.B]h = [[A]Lh , [A]Uh ].[[B]Lh , [B]Uh ]

= [min{[A]Lh .[B]Lh , [A]Lh .[B]Uh , [A]Uh .[B]Lh , [A]Uh .[B]Uh },

max{[A]Lh .[B]Lh , [A]Lh .[B]Uh , [A]Uh .[B]Lh , [A]Uh .[B]Uh }],

(2.3)
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f([Net]h) = f([[Net]Lh , [Net]Uh ]) = [f([Net]Lh ), f([Net]Uh )], (2.4)

where f is an increasing function. In the case of 0 ≤ [A]Lh ≤ [A]Uh , (2.3) can be simplified
as

[A.B]h = [min{[A]Lh .[B]Lh , [A]Lh .[B]Uh },max{[A]Uh .[B]Lh , [A]Uh .[B]Uh }]. (2.5)

The result of a fuzzy addition of triangular fuzzy numbers is a triangular fuzzy number
again. So we only have to compute the following equation:

(am, al, ar) + (bm, bl, br) = (am + bm, al + bl, ar + br) (2.6)

Considering the fuzzy multiplication, some computational expense problems can be in-
vestigated. The result of a fuzzy multiplication is a fuzzy number in LR representation,
but it is difficult to compute the new functions L and R because they are not necessarily
linear. We approximate this fuzzy multiplication such that it computes a triangular fuzzy
number too. This fuzzy multiplication is denoted by ∗̂ [11].

This fuzzy multiplication is based on the extension principle but it is a bit different from
the classical fuzzy multiplication. We compute our operation by the following equation:

(am, al, ar)∗̂(bm, bl, br) = (cm, cl, cr) (2.7)

with
cm = am.bm, cl = cm − cλ, cr = cρ − cm,

cλ := min(aλ.bλ, aλ.bρ, aρ.bλ, aρ.bρ),

cρ := max(aλ.bλ, aλ.bρ, aρ.bλ, aρ.bρ)

where aλ = am − al, aρ = am + ar, bλ = bm − bl, bρ = bm + br. aλ and bλ denote the left
limits of the support of the fuzzy numbers a and b respectively and aρ and bρ denote the
right limits of the support of the fuzzy numbers a and b respectively.

The use of these fuzzy operations has some advantages:

• The distributivity of these operations is retained. This is very important for our
theoretical examinations.

• The computational expense is acceptable.

• The idea of fuzzy sets is preserved even if a fuzzy number is characterized by only
three values.

We describe the classical definition of distance between fuzzy numbers [11]:

Definition 2.1. The mapping D̂ : F̂Z × F̂Z −→ R+ is defined by

D̂(A,B) = max(|am − bm|, |aλ − bλ|, |aρ − bρ|),

where A = (am, al, ar) and B = (bm, bl, br). It can be proved that D̂ is a metric on F̂Z
and so (F̂Z, D̂) becomes a metric space.
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2.2 Input-output relation of each unit

Let’s fuzzify a two-layer feedforward neural network with n input units and one output
unit. Input vector, target and connection weights are fuzzified (i.e., extended to fuzzy
numbers). In order to derive a crisp learning rule, we restrict fuzzy weights, fuzzy inputs
and fuzzy target within triangular fuzzy numbers.

The input-output relation of each unit of the fuzzified neural network can be written
as follows:
Input units:

Oi = Ai, i = 1, 2, . . . , n. (2.8)

Output unit:
Y = f(Net), (2.9)

Net =
n∑

j=1

Wj .Oj , (2.10)

where Ai and Wj are fuzzy input and fuzzy weight respectively (see Fig. 1).
The input-output relation in Eqs. (2.8)-(2.10) is defined by the extension principle[26,

27] as in Hayashi et al. [12] and Ishibuchi et al. [16].

2.3 Calculation of fuzzy output

The fuzzy output from each unit in Eqs. (2.8)-(2.10) is numerically calculated for crisp
weights and level sets of fuzzy inputs. The input-output relations of our fuzzy neural
network can be written for the h-level sets as follows:
Input units:

[Oi]h = [Ai]h, i = 1, 2, . . . , n. (2.11)

Output unit:
[Y ]h = f([Net]h), (2.12)

[Net]h =

n∑
j=1

[Wj .Oj ]h. (2.13)

From Eqs. (2.11)-(2.13), we can see that the h-level sets of the fuzzy output Y is calcu-
lated from those of the fuzzy inputs and fuzzy weights. From Eqs. (2.2)-(2.7), the above
relations are written as follows when the h-level sets of the fuzzy inputs Ai’s are nonneg-
ative, i.e., 0 ≤ [Ai]

L
h ≤ [Ai]

U
h for all i’s:

Input units:

[Oi]h = [[Oi]
L
h , [Oi]

U
h ] = [[Ai]

L
h , [Ai]

U
h ], i = 1, 2, . . . , n. (2.14)

Output unit:
[Y ]h = [[Y ]Lh , [Y ]Uh ] = [f([Net]Lh ), f([Net]Uh )], (2.15)

where f is an increasing function.

[Net]Lh =
∑
i∈a

[Oi]
U
h .[Wi]

L
h +

∑
i∈b

[Oi]
L
h .[Wi]

L
h +

∑
i∈c

[Oi]
U
h .[Wi]

L
h , (2.16)
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[Net]Uh =
∑
i∈a

[Oi]
L
h .[Wi]

U
h +

∑
i∈b

[Oi]
U
h .[Wi]

U
h +

∑
i∈c

[Oi]
U
h .[Wi]

U
h , (2.17)

where a = {i | [Wi]
U
h ≤ 0}, b = {i | 0 ≤ [Wi]

L
h} and c = {i | [Wi]

L
h < 0, 0 ≤ [Wi]

U
h }.

3 Fuzzy polynomials

Usually, there is no inverse element for an arbitrary fuzzy number u ∈ E1, i.e., there exists
no element v ∈ E1 such that

u+ v = 0.

Actually, for all non-crisp fuzzy number u ∈ E1 we have

u+ (−u) ̸= 0.

Therefore, the fuzzy polynomial equation of the form

Á1X + Á2X
2 + . . .+ ÁnX

n =
´́
A1X +

´́
A2X

2 + . . .+
´́
AnX

n +A0, (3.18)

cannot be equivalently replaced by the fuzzy polynomial equation

(Á1 − ´́
A1)X + . . .+ (Án − ´́

An)X
n = A0,

which had been investigated. In the sequel, we will call the fuzzy polynomial equation

Á1X + Á2X
2 + . . .+ ÁnX

n =
´́
A1X +

´́
A2X

2 + . . .+
´́
AnX

n +A0, (3.19)

where X2 = X ∗̂X,X3 = X ∗̂X ∗̂X, . . . and X,A0, A1, · · · , An are fuzzy numbers, a dual
fully fuzzy polynomial equation. Therefore, we find solution Eq.(3.19) by the neural
network, with suppose A

′
i1 − A

′′
i1 < A

′
i2 − A

′′
i2 < A

′
i3 − A

′′
i3 for i = 1, . . . , n. Therefore, we

have of the Eq.(3.19)
A1x+A2x

2 + . . .+Anx
n = A0, (3.20)

If
A1∗̂X +A2∗̂X2 + . . .+An∗̂Xn = Y, (3.21)

then Y ̸= A0 generally. In this case, we try to find X̂ such that A1∗̂X̂ + A2∗̂X̂2 + . . . +
An∗̂X̂n approximates A0 closely enough according to,

min |[Y ]Lh − [A0]
L
h | and min |[Y ]Uh − [A0]

U
h |, h ∈ [0, 1], (3.22)

therefore,
min D̂(Y,A0), (3.23)

where D̂ is a distance between fuzzy numbers [11]. Then, it becomes a problem of opti-
mization.

A FNN3 (fuzzy neural network with fuzzy inputs, fuzzy output and fuzzy weights)
solution to Eq. (3.20) is given in Figure 1.
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Input

Output

Y

A1

A2

An

... ......

W
1
=

X

W
2 =

X 2

Wn

=

X
n

Fig. 1. Fuzzy neural network for solving fully fuzzy polynomial equations.

All signals and weights are fuzzy numbers. The input neurons make no change in their
inputs and the signal Ai interacts with the weight Wi, so the input to the output neuron
is

A1∗̂W1 +A2∗̂W2 + . . .+An∗̂Wn

and the output, in the output neuron, equals its input, so

Y = A1∗̂W1 +A2∗̂W2 + . . .+An∗̂Wn.

How does the FNN3 solve the fuzzy polynomial equations? The training data is
(A1, . . . , An) for input and target (desired) output is A0. We proposed a learning algorithm
from the cost function for adjusting weights.

Following Section 4, we proposed a learning algorithm such that the network can
approximate the fuzzy solution of Eq. (3.20) to any degree of accuracy.

4 Learning fuzzy neural network

A cost function to be minimized is defined for each h-level sets as follows:

[E(W1, . . . ,Wn)]h = [[E(W1, . . . ,Wn)]
L
h , [E(W1, . . . ,Wn)]

U
h ], (4.24)

where

[E(W1, . . . ,Wn)]
L
h =

1

2
([Y ]Lh − [A0]

L
h )

2,

[E(W1, . . . ,Wn)]
U
h =

1

2
([Y ]Uh − [A0]

U
h )

2.

Hence [E(W1, . . . ,Wn)]
L
h denotes the error between the left-hand sides of the h-level sets

of the desired and the computed output, and [E(W1, . . . ,Wn)]
U
h denotes the error between

the right-hand sides of the h-level sets of the desired and the computed output. Then the
error function for the training pattern is
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[E(W1, . . . ,Wn)]
L
h =

1

2
(

n∑
j=1

[AjWj ]
L
h − [A0]

L
h )

2, (4.25)

[E(W1, . . . ,Wn)]
U
h =

1

2
(

n∑
j=1

[AiWj ]
U
h − [A0]

U
h )

2.

Clearly, this is a problem of optimization of quadratic functions without constrains that
can usually be solved by gradient descent algorithm. In fact, denoting

[∇E(W )]Lh = ([
∂E(W )

∂W1
]Lh , . . . , [

∂E(W )

∂Wn
]Lh )

T ,

[∇E(W )]Uh = ([
∂E(W )

∂W1
]Uh , . . . , [

∂E(W )

∂Wn
]Uh )

T ,

In order to solve Eq. (3.22), assume k iterations to have been done and get the kth iteration
point W(k).

Remark 4.1. Since the equations (4.25) are quadratic functions, supposing 0 ≤ [W1]
L
h ≤

[W1]
U
h and 0 ≤ [Ai]

L
h ≤ [Ai]

U
h for i = 1, 2, ..., n. We rewrite these as follows:

[E(W )]Lh = 1
2(
∑n

j=1[AjWj ]
L
h − [A0]

L
h )

2

= 1
2([W ]Lh )

T [Q]Lh [W ]Lh + ([B]Lh )
T [W ]Lh + [C]Lh ,

where
[W ]Lh = ([W1]

L
h , [W2]

L
h , . . . , [Wn]

L
h )

T ,

[Q]Lh = [(qij)n×n]
L
h ,

[B]Lh = ([b1]
L
h , [b2]

L
h , . . . , [bn]

L
h )

T ,

[C]Lh = 1
2([A0]

L
h )

2,

[qij ]
L
h = [Ai]

L
h [Aj ]

L
h ,

with [qij ]
L
h = [qji]

L
h and [bi]

L
h = −[Ai]

L
h [A0]

L
h . Therefore we have

[∇E(W )]Lh = [Q]Lh [W ]Lh + [B]Lh (4.26)

and
[E(W )]Uh = 1

2(
∑n

j=1[AjWj ]
U
h − [A0]

U
h )

2

= 1
2([W ]Uh )

T [Q]Uh [W ]Uh + ([B]Uh )
T [W ]Uh + [C]Uh ,
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where
[W ]Uh = ([W1]

U
h , [W2]

U
h , . . . , [Wn]

U
h )

T ,

[Q]Uh = [(qij)n×n]
U
h ,

[B]Uh = ([b1]
U
h , [b2]

U
h , . . . , [bn]

U
h )

T ,

[C]Uh = 1
2([A0]

U
h )

2,

[qij ]
U
h = [Ai]

U
h [Aj ]

U
h ,

with [qij ]
U
h = [qji]

U
h and [bi]

U
h = −[Ai]

U
h [A0]

U
h . Also

[∇E(W )]Uh = [Q]Uh [W ]Uh + [B]Uh . (4.27)

To find the stationary point of [E(W )]h = ([E(W )]Lh , [E(W )]Uh ), we should put [∇E(W )]Lh =
[∇E(W )]Uh = 0 , (0, 0, . . . , 0)T . When [Q]Lh and [Q]Uh are positive definite matrices, the
stationary point can be obtained as follows:

[Ŵ ]Lh = −([Q]Lh )
−1[B]Lh , (4.28)

[Ŵ ]Uh = −([Q]Uh )
−1[B]Uh .

The Hessian matrices at this point are

[∇2E(Ŵ )]Lh = [∇(∇E(Ŵ ))]Lh =

[∂
2E(W )
∂W 2

1
]Lh [ ∂

2E(W )
∂W2∂W1

]Lh . . . [ ∂
2E(W )

∂Wn∂W1
]Lh

[ ∂
2E(W )

∂W1∂W2
]Lh [∂

2E(W )
∂W 2

2
]Lh . . . [ ∂

2E(W )
∂Wn∂W2

]Lh

. . . . . . . . . . . .

[ ∂
2E(W )

∂W1∂Wn
]Lh [ ∂

2E(W )
∂W2∂Wn

]Lh . . . [∂
2E(W )
∂W 2

n
]Lh


W=Ŵ

= [Q]Lh ,

[∇2E(Ŵ )]Uh = [∇(∇E(Ŵ ))]Uh =

[∂
2E(W )
∂W 2

1
]Uh [ ∂

2E(W )
∂W2∂W1

]Uh . . . [ ∂
2E(W )

∂Wn∂W1
]Uh

[ ∂
2E(W )

∂W1∂W2
]Uh [∂

2E(W )
∂W 2

2
]Uh . . . [ ∂

2E(W )
∂Wn∂W2

]Uh

. . . . . . . . . . . .

[ ∂
2E(W )

∂W1∂Wn
]Uh [ ∂

2E(W )
∂W2∂Wn

]Uh . . . [∂
2E(W )
∂W 2

n
]Uh


W=Ŵ

= [Q]Uh ,

which are positive definite matrices because [Q]Lh and [Q]Uh are positive definite. From

optimization theory, we known that [Ŵ ]h = ([Ŵ ]Lh , [Ŵ ]Uh ) = (−[Q−1]Lh [B]Lh ,−[Q−1]Uh [B]Uh ),
is the unique solution of the problem.
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Remark 4.2. The above method is not very convenient in applications. Now we consider
its explicit scheme. Since

[∇E(W )]Lh = [Q]Lh [W ]Lh + [B]Lh , [∇E(W )]Uh = [Q]Uh [W ]Uh + [B]Uh

then,

[∇E(W(k))]
L
h = [Q]Lh [W(k)]

L
h + [B]Lh , [∇E(W(k))]

U
h = [Q]Uh [W(k)]

U
h + [B]Uh

We know that [17]

([∇E(W(k+1))]
L
h )

T [∇E(W(k))]
L
h = 0, ([∇E(Wk+1)]

U
h )

T [∇E(W(k))]
U
h = 0

therefore we have [14]

([Q]Lh ([W(k)]
L
h − [µ(k)]

L
h [∇E(W(k))]

L
h ) + [B]Lh )

T ([Q]Lh [W(k)]
L
h + [B]Lh ) = 0

and
([Q]Uh ([W(k)]

U
h − [µ(k)]

U
h [∇E(W(k))]

U
h ) + [B]Uh )

T ([Q]Uh [W(k)]
U
h + [B]Uh ) = 0.

From these equations, we can easily get an expression for [µ(k)]
L
h and [µ(k)]

U
h :

[µ(k)]
L
h =

([∇E(W(k))]
L
h )

T [∇E(W(k))]
L
h

([∇E(W(k))]
L
h )

T [Q]Lh [∇E(W(k))]
L
h

(4.29)

and

[µ(k)]
U
h =

([∇E(W(k))]
U
h )

T [∇E(W(k))]
U
h

([∇E(W(k))]
U
h )

T [Q]Uh [∇E(W(k))]
U
h

. (4.30)

Substituting these into equations [14, 15, 22], we obtain

W1(k+1) = W1(k) +∆W1(k),

∆W1(k) = −µ(k)∇E(W1(k)) + α∆W1(k−1),
(4.31)

where k indexes the number of adjustments, [µ(k)]
L
h and [µ(k)]

U
h are learning rates, α is

a constant momentum term (a positive real number) and W T
(k) = (W1(k), ...,Wn(k))

T . We
have the explicit scheme

[W1(k+1)]
L
h = [W1(k)]

L
h − ([∇E(W(k))]

L
h )

T [∇E(W(k))]
L
h

([∇E(W(k))]
L
h )

T [Q]Lh [∇E(W(k))]
L
h

[∇E(W1(k))]
L
h

+α[∆W1(k−1)]
L
h

(4.32)

and

[W1(k+1)]
U
h = [W1(k)]

U
h − ([∇E(W(k))]

U
h )T [∇E(W(k))]

U
h

([∇E(W(k))]
U
h )T [Q]Uh [∇E(W(k))]

U
h

[∇E(W1(k))]
U
h

+α[∆W1(k−1)]
U
h .

(4.33)

We can adjust other weights by

[Wi(k)]h = [[Wi(k)]
L
h , [Wi(k)]

U
h ] = [([W1(k)]

L
h )

i, ([W1(k)]
U
h )

i] for i = 2, . . . , n.

We can also obtain similar relations for [Ai]
L
h ≤ [Ai]

U
h ≤ 0 and [Wi]

L
h ≤ [Wi]

U
h ≤ 0,

i = 1, . . . , n and other cases.

The fully fuzzy polynomial equations may have no solution. In this case there is no
hope to make the error measure close to zero.
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4.1 Algorithm

Step 1: Read α (momentum term constant and positive real number), K (number of
iterations), Wj (fuzzy weights Wj are initialized values), Ai 0, 1, ..., n (fuzzy coefficients)
and k (indexes the number of adjustments).
Step 2: Compute [E(W1, . . . ,Wn)]h.
Step 3: Compute µ(k) is a learning rate.
Step 4: The fuzzy weight W = (Wj) is updated by the Eq. (4.31).
Step 5: If k < K then k := k + 1 and we continue the training by going back to step 2,
otherwise we go to step 6.
Step 6: The training cycle is completed.

5 Numerical examples

In the following, we study some examples of fuzzy polynomial equations.

Example 5.1. Consider the following fully fuzzy polynomial equation

(3, 1, 1)X = X + (−4, 5, 3),

where the exact solution is X = (−2, 1, 1) in LR representation.
In the computer simulation of this example by fuzzy neural network, we use K = 15
iterations of the learning algorithm, also α = 0.01.
The training starts with W1(1) = (−1, 0.5, 0.25). Applying the proposed method to the
approximate solution. Figure 2 shows the convergence behavior.
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Fig.2. This figure shows the convergence behavior of numerical results obtained in example 1.

Example 5.2. Consider the following fully fuzzy polynomial equation

X2 + 3X = (3, 1, 1)X + (4, 2, 2),

where the exact solution is X = (2, 1, 1) in LR representation.
In the computer simulation of this example by fuzzy neural network, we use K = 15 iter-
ations of the learning algorithm, also α = 0.01.
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The training starts with W1(1) = (1, 1, 1). Applying the proposed method to the approxi-
mate solution. Figure 3 shows the convergence behavior.
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Fig. 3. This figure shows the convergence behavior of numerical results obtained in example 2.

6 Summary and conclusions

Solving dual fully fuzzy polynomial equations (DFFPEs) by using universal approx-
imators (UA), that is, FNN was presented in this paper. In this paper, we derived a
learning algorithm of fuzzy weights of two-layer feedforward fuzzy neural networks whose
input-output relations were defined by extension principle. The effectiveness of the derived
learning algorithm was demonstrated by computer simulation of numerical examples.
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