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Abstract
A new model of the equations of generalized thermoelasticiy for a material of the cylin-
der which is supposed to be homogeneous isotropic thermally conducting is given. The
formulation is applied in the context of Green and Naghdi (GN) theory of types II and
III under the e�ect of rotation. The problem has been solved numerically using a �nite
element method. Numerical results for the temperature distribution, displacement, radial
stress, and hoop stress are represented graphically. The results indicate that the e�ect
of rotation was very pronounced. Comparisons are made with the results predicted by
the types II and III in the presence and absence of rotation. The results obtained in this
paper can be used to design various homogeneous thermoelastic elements under thermal
load to meet special engineering requirements.
Keywords : Rotation, Homogeneous, Isotropic, Hollow cylinder, Finite element method, Green-
Naghdi theory.
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1 Introduction

During the past two decades, widespread attention has been given to thermoelasticity
theories that admit a �nite speed for the propagation of thermal signals. In contrast to the
conventional theories based on parabolic-type heat equation, these theories are referred
to as generalized theories. The problem of rotation disks or cylinders has its application
in high-speed cameras, steam and gas turbines, planetary landings and in many other
�Corresponding author. Email address: m i othman@yahoo.com, Tel: 00966 0559469113
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domains. First, the high velocities of modern aircraft give rise to aerodynamic heating,
which produces intense thermal stresses that reduce the strength of the aircraft structure.
Second, in the nuclear �eld, the extremely high temperature and temperature gradients
originatng inside nuclear reactors inuence their design and operations.
The counterparts of our problem in the contexts of the coupled thermoelasticity theory,
the Green-Lindsay (GL) theory [7] and the Lord-Shulman (LS) theory [12], have been
considered by Othman [13, 14] and Othman and Singh [15], respectively. At appropriate
stages of our analysis, we make a comparison of our results with those obtained in these
works. This comparison reveals that, on the whole, the predictions of the GN-theory
(as obtained here) are qualitatively similar to those of the LS-theory. More importantly,
we notice that certain physically unrealistic features inherent in the conventional coupled
thermoelasticity theory and the GL-theory are not present in the GN-theory.
The classical theory of thermoelasticity as exposed, for example, in Carlson's article [3] has
found generalizations and modi�cations in various thermoelastic models that run under
the label hyperbolic thermoelasticity; see the survey of Hetnarski and Ignazack [11]. The
notation hyperbolic reects the fact that thermal waves are modeled, avoiding the physical
paradox of in�nite propagation speed of the classical model. In the 1990s, Green and
Naghdi [8, 9, 10] proposed three new thermoelastic theories based on an entropy equality
rather than the usual entropy inequality. The constitutive assumptions for the heat ux
vector are di�erent in each theory. Thus, they obtained three theories that they called
thermoelasticity of type I, type II and type III. When the theory of type I is linearized,
we obtain the classical system of thermoelasticity. The theory of type II ( a limiting case
of type III) does not admit energy dissipation. In the context of the linearized version of
this theory, theorems on uniqueness of solutions have been established by Hetnarski and
Ignazack [11] and Green and Naghdi [10]. Boundary-initiated waves in a half-space and
in an unbounded body with cylindrical cavity have been studied by Green and Naghdi
[8] and Chandrasekharaiah and Srinath [4, 5]. Also plane waves thermal shock problems
have been studied by Othman et al. [16] and Othman and Song [17, 18, 19].
The exact solution of the governing equations of the generalized thermoelasticity theory
for a coupled and nonlinear/linear system exists only for very special and simple initial and
boundary problems. To calculate the solution of general problems, a numerical solution
technique is used. For this reason the �nite element method is chosen. The method
of weighted residuals o�ers the formulation of the �nite element equations and yields
the best approximate solutions to linear and nonlinear ordinary and partial di�erential
equations. Applying this method basically involves three steps. The �rst step is to assume
the general behavior of these approximating functions in the di�erential equations and
boundary conditions results in some errors, called the residual. This residual has to vanish
in an average sense over the solution domain. The second step is the time integration. The
time derivatives of the unknown variables have to be determined by former results. The
third step is to solve the equations resulting from the �rst and the second steps by using
a �nite element algorithm program (see Zienkiewicz [22]). Abbas [1], Abbas and Abdalla
[16] and Youssef and Abbas [21] applied the �nite element method in di�erent problems.
The aim of the present paper is to study the e�ect of rotation on the thermal shock
problem of generalized thermoelasticity of a homogeneous isotropic hollow cylinder based
on Green-Naghdi theory of type II and type III. The problem has been solved numerically
using a �nite element method (FEM). Numerical results for the temperature distribution,
displacement, radial stress and hoop stress are represented graphically in the presence and
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absence of rotation.

2 Formulation of the Problem

In the context of generalized thermoelasticity based on Green-Naghdi theory of type II
and type III, the equation of motion, taking the rotation term about the z�axis as a body
force is

(�+ �)uj;ij + �ui;jj � �
2r � T;i = ��ui (2.1)

where 
 is the uniform angular velocity and � is the density of the cylinder material. The
generalized energy equation can be expressed as

K�T;ii +K _T;ii = �CE �T + T0�ui;i (2.2)

The constitutive equations have the form

�ij = �ui;i�ij + � (ui;j + uj;i)� T�ij (2.3)

where �, � are Lame's constants,  = (3� + 2�)�t, �t is the coe�cient of linear thermal
expansion, CE is the speci�c heat at constant strain, T is the temperature above reference
temperature T0, K� and K are respectively the thermal conductivity and material con-
stant characteristic of the theory. When K ! 0, Eq.(2.2) reduces to the heat conduction
equation of GN type II theory.
In a cylindrical coordinate system (r; �; z) for the axially symmetric problem, ur = ur(r; z; t),
u� = 0, uz = uz(r; z; t). Furthermore, if only the axisymmetric plane strain problem is
considered, we have ur = u(r; t) and u� = uz = 0. The strain-displacement relations are

err =
@u
@r
; e�� =

u
r
; ezz = erz = er� = e�z = 0 (2.4)

The stress-strain relations are
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It is assumed that there is no heat source in the medium, thus the equation of motion and
energy equation have the form:
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It is convenient to change the preceding equations into the dimensionless forms. To do
this, the dimensionless parameters are introduced as
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where c2
1 = �+2�

� , !1 = K
�CEc21

.
Putting (2.10) into equations (2.5)-(2.9) one may obtain (after dropping the superscript �
for convenience)
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a1 =
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�
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1CE
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From the preceding description, the initial and boundary conditions may be expressed as

u(r; 0) =
@u(r; 0)
@t

= 0; �(r; 0) =
@�(r; 0)
@t

= 0 (2.16)

�rr(a; t) = 0; �rr(b; t) = 0; �(a; t) = H(t);
@�(b; t)
@r

= 0 (2.17)

where a and b are the inner and outer radii of the hollow cylinder, respectively, and H is
the heaviside unit step function.

3 Finite Element Method

In order to investigate the numerical solution of the thermal shock problem of generalized
thermoelasticity of a homogeneous isotropic rotating hollow cylinder using the �nite ele-
ment method, the FEM (Reddy [20] and Cook et al. [6]) is adopted due to its exibility
in modeling layered structures and its capability in obtaining full �eld numerical solution.
The governing equations (2.14) and (2.15) are coupled with initial and boundary condi-
tions (2.16) and (2.17). The numerical values of the dependent variables like displacement
and the temperature � are obtained at the points of interest, which are called degrees of
freedom. The weak formulations of the non-dimensional governing equations are derived.
The set of independent test functions to consist of the displacement �u and the tempera-
ture �� is prescribed. The governing equations are multiplied by independent weighting
functions and then are integrated over the spatial domain with the boundary. Applying
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integration by parts and making use of the divergence theorem reduce the order of the
spatial derivatives and allow for the application of the boundary conditions. The same
shape functions are de�ned piecewise on the elements. Using the Galerkin procedure, the
unknown �elds u and � and the corresponding weighting functions are approximated by
the same shape functions. The last step towards the �nite element discretization is to
choose the element type and the associated shape functions. Three nodes of quadrilateral
elements are used. The shape function is usually denoted by the letter N and is usually
the coe�cient that appears in the interpolation polynomial. A shape function is written
for each individual node of a �nite element and has the property that its magnitude is 1 at
that node and 0 for all other nodes in that element. We assume that the master element
has its local coordinates in the range [�1; 1]. In our case, the one-dimensional quadratic
elements are used, which were given by [22] as:

Linear shape functions

N1 =
1
2

(1� �); N2 =
1
2

(1 + �) (3.18)

Quadratic shape functions

N1 =
1
2

(�2 � �); N2 = 1� �2; N3 =
1
2

(�2 + �) (3.19)

On the other hand, the time derivatives of the unknown variables have to be determined
by the Newmark time integration method (Cook et al. [6]).

4 Numerical Results

To illustrate the problem we will present some numerical results. The copper material
was chosen for purposes of numerical computation, the physical data for which are given
as [21]:

� = 7:76� 1010(kg)(m)�1(s)�2; � = 3:86� 1010(kg)(m)�1(s)�2; T0 = 293(K);

� = 8:95� 103(kg)(m)�3; CE = 3:83� 102(m)2(K)�1(s)�2; "1 = 0:0168;

�t = 17:8� 10�6(K)�1

The physical quantities displacement, temperature, radial stress and hoop stress depend
not only on time t and space r, but also on the characteristic parameter of the Green-
Naghdi theory of type II and type III. Here, all the variables are taken in non-dimensional
forms. The results for the displacement, the temperature, the radial stress and the hoop
stress have been obtained by taking t = 0:2 based on Green-Naghdi theory of type II and
type III. Fig. 1 - Fig. 4 exhibit the variation of the displacement, the temperature, the
radial stress and the hoop stress with respect to r for the two types II, III of Green-Naghdi
theory and three di�erent values of 
 = 0; 0:8; 1:2. Fig. 1, Fig. 3 and Fig. 4 show that
the displacement, the radial stress and the hoop stress are decreasing with an increase in
the rotation for r > 0. It is observed that the rotation has a great e�ect on these physical
quantities. While the rotation has no e�ect on the temperature, as shown in Fig. 2, Fig.
5 - Fig. 8 depict the variation of the displacement, the temperature, the radial stress and
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the hoop stress under Green-Naghdi theory of type II (without energy dissipation) when
"2 = 0:2 and "3 = 0, with respect to time t for three di�erent values of 
 = 0; 0:8; 1:2
at r = 1:15. It can be observed from Fig. 5, Fig. 7 and Fig. 8 that the rotation has a
decreasing e�ect on the displacement, the radial stress and the hoop stress for t > 0. Fig.
6. shows that the rotation has an increasing e�ect on the temperature for t > 0. Fig. 9 -
Fig. 12 demonstrate the variation of the displacement, the temperature, the radial stress
and the hoop stress under Green-Naghdi theory of type III (with energy dissipation) when
"0:3 and "2 = 0:2 with respect to time t for three di�erent values of 
 = 0; 0:8; 1:2 at
r = 1:15. Fig. 9, Fig. 11 and Fig. 12 show that the rotation has a decreasing e�ect on
the displacement, the radial stress and the hoop stress for t > 0. Fig. 10 shows that the
rotation has no e�ect on the temperature with respect to Green-Naghdi theory of type
III.
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Fig. 1. The displacement distribution di�erent values of for 
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Fig. 4. The hoop stress distribution for di�erent values of 
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Fig. 5. The variation of displacement for type II at r = 1:15.
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Fig. 7. The variation of radial stress for type II at r = 1:15.
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Fig. 8. The variation of hoop stress for type II at r = 1:15.
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Fig. 9. The variation of displacement for type III at r = 1:15.
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Fig. 10. The variation of temperature for type III at r = 1:15.
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Fig. 11. The variation of radial stress for type III at r = 1:15.
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Fig. 12. The variation of hoop stress for type III at r = 1:15.

5 Conclusion

In this paper, we have investigated the solution of the thermal shock problem of gener-
alized thermoelasticity of a rotating homogeneous isotropic hollow cylinder based on the
Green-Naghdi theory of type II and type III by using the �nite element method. The
di�erences between the �eld quantities predicted by the GN theory of types II and III are
remarkable in the presence and absence of rotation. We concluded that the rotation has
a great e�ect on the �eld quantities. The results obtained in this paper can be used to
design various homogeneous thermoelastic elements under thermal load to meet special
engineering requirements.
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