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Abstract
In this paper, the fuzzy partial di�erential equation is investigated by using the strongly
generalized di�erentiability concept. The alternating direction implicit(ADI) method is
proposed for approximating the solution of the two-dimensional heat equation where the
initial and boundary conditions are fuzzy numbers. The algorithm is illustrated by solving
several examples.
Keywords: Fuzzy-number, Fuzzy-valued function, Generalized di�erentiability, Fuzzy partial di�er-
ential equation, ADI method.
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1 Introduction

Proper design for engineering applications requires detailed information of the system-
property distributions such as temperature, velocity, density, etc., in the space and time
domain. This information can be obtained by either experimental measurement or com-
putational simulation. Although experimental measurement is reliable, it needs a lot of
e�ort and time. Therefore, the computational simulation has become a more and more
popular method as a design tool since it needs only a fast computer with a large mem-
ory. Frequently, the engineering design problems deal with a set of partial di�erential
equations(PDEs), which are to be numerically solved, such as heat transfer and solid and
uid mechanics. Numerical methods are widely applied to pre-assigned grid points to
solve partial di�erential equations [12]. When a physical problem is transformed into a
deterministic parabolic partial di�erential equation, we cannot usually be sure that this
modeling is perfect. Also, the initial and boundary value may not be known exactly. If
�Corresponding author. Email address: mahnaz barkhordari@yahoo.com.
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the nature of errors is random, then instead of a deterministic problem, we get a ran-
dom partial di�erential equation with random initial and boundary values. But if the
underlying structure is not probabilistic, e.g., because of subjective choice, then it may
be appropriate to use fuzzy numbers instead of real random variables. The concept of
fuzzy derivative was �rst introduced by Chang and Zadeh [9], and it was followed up by
Dobois and Prade [13], who used the extension principle in their approach. Other meth-
ods have been discussed by Puri and Ralescu [23] and by Goetschel and Voxman [16].
Also, strongly generalized di�erentiability was introduced by Bede in [5, 7] and studied in
[6].The notion of fuzzy di�erential equation was initially introduced by Kandel and Byatt
and later applied in fuzzy processes and fuzzy dynamical systems. A thorough theoretical
research of fuzzy Cauchy problems was given by Kaleva [19], Seikkala [24], Ouyang and
Wu [17], and Kloeden and Wu [21]. A generalization of a fuzzy di�erential equation was
given by Aubin, Baidosov, Leland and Colombo and Krivan. The numerical methods for
solving fuzzy di�erential equations are introduced in [1, 2, 20]. Fuzzy partial di�erential
equations were formulated by Buckly [8]; and Allahviranloo [3] used a numerical method
to solve the fuzzy partial di�erential equation (FPDE).
In this paper, we are going to solve FPDEs by the ADI method. The rest of this paper is
organized as follows:
Section 2 contains the basic material to be used in the paper. In section 3, the fuzzy partial
di�erential equations is introduced by using the strongly generalized di�erentiability con-
cept [6] and we propose the ADI method for approximating the solution of two-dimensional
fuzzy partial di�erential equations. The proposed algorithm is illustrated by solving some
examples in section 4, and the conclusion is drawn in section 5.

2 Preliminaries

We now recall some de�nitions needed throughout the paper. The basic de�nition of fuzzy
numbers is given in [13, 15].
By R we denote the set of all real numbers. A fuzzy number is a mapping u : R ! [0; 1]
with the following properties:
(a) u is upper semi-continuous,
(b) u is fuzzy convex, i.e., u(�x+ (1� �)y) � minfu(x); u(y)g for all x; y 2 R; � 2 [0; 1],
(c) u is normal, i.e.,9x0 2 R for which u(x0) = 1,
(d) supp u = fx 2 R j u(x) > 0g is the support of the u, and its closure cl(supp u) is
compact.
Let E be the set of all fuzzy numbers on R. The r-level set of a fuzzy number u 2 E,
o � r � 1, denoted by [u]r , is de�ned as

[u]r =
� fx 2 R j u(x) � rg if 0 � r � 1
cl(supp u) if r = 0

It is clear that the r-level set of a fuzzy number is a closed and bounded interval [u(r); u(r)],
where u(r) denotes the left-hand endpoint of [u]r and u(r) denotes the right-hand endpoint
of [u]r. Since each y 2 R can be regarded as a fuzzy number ey de�ned by

ey(t) =
�

1 if t = y
o if t 6= y
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R can be embedded in E.

Remark 2.1. (See [26]) Let X be the Cartesian product of universes X = X1 � :::�Xn,
and A1; : : : ; An be n fuzzy numbers in X1; : : : ; Xn, respectively. f is a mapping from X to
a universe Y , y = f(x1; :::; xn). Then the extension principle allows us to de�ne a fuzzy
set B in Y by

B = f(y; u(y)) j y = f(x1; :::; xn); (x1; :::; xn) 2 Xg
where

uB(y) =
�

sup(x1;:::;xn)2f�1(y) minfuA1(x1); :::; uAn(xn))g; if f�1(y) 6= 0;
0 otherwise:

where f�1 is the inverse of f .
For n = 1, the extension principle reduces to

B = f(y; uB(y)) j y = f(x); x 2 Xg
where

uB(y) =
�

supx2f�1(y) uA(x); if f�1(y) 6= 0;
0 otherwise:

According to Zadeh;s extension principle, the addition operation on E is de�ned by

(u� v)(x) = supy2Rminfu(y); v(x� y)g; x 2 R
and scalar multiplication of a fuzzy number is given by

(k � u)(x) =
�
u(x=k); k > 0;e0; k = 0;

where ~0 2 E:
It is well known that the following properties are true for all levels

[u� v]r = [u]r + [v]r; [k � u]r = k[u]r

From this characteristic of fuzzy numbers, we see that a fuzzy number is determined by
the endpoints of the intervals [u]r. This leads to the following characteristic representation
of a fuzzy number in terms of the two "endpoint" functions u(r) and u(r). An equivalent
parametric de�nition is also given in ([14, 20]) as:

De�nition 2.1. A fuzzy number u in parametric form is a pair (u; u) of functions u(r),
u(r); 0 � r � 1, which satisfy the following requirements:

1. u(r) is a bounded non-decreasing left continuous function in (0; 1], and right contin-
uous at 0,

2. u(r) is a bounded non-increasing left continuous function in (0; 1], and right contin-
uous at 0,

3. u(r) � u(r); 0 � r � 1.
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A crisp number � is simply represented by u(r) = u(r) = �; 0 � r � 1: We recall that
for a < b < c, where a; b; c 2 R, the triangular fuzzy number u = (a; b; c) determined by
a; b; c is given such that u(r) = a + (b � c)r and u(r) = c � (c � b)r are the endpoints of
the r-level sets, for all r 2 [0; 1].
For arbitrary u = (u(r); u(r)), v = (v(r); v(r)) and k > 0 we de�ne addition u � v , sub-
traction u	 v and scalar multiplication by k as (See [14, 20])

(a) Addition:
u� v = (u(r) + v(r); u(r) + v(r))

(b) Subtraction:
u	 v = (u(r)� v(r); u(r)� v(r))

(c) Scalar multiplication:

k � u =
�

(ku; ku); k � 0;
(ku; ku); k < 0:

The Hausdor� distance between fuzzy numbers given by D : E � E �! R+
S

0, is

D(u; v) = sup
r2[0;1]

maxfju(r)� v(r)j; ju(r)� v(r)jg;

where u = (u(r); u(r)), v = (v(r); v(r)) � R are utilized (See [6]). Then, it is easy to see
that D is a metric in E and has the following properties (See [22])
(i)D(u� w; v � w) = D(u; v), 8u; v; w 2 E,
(ii)D(k � u; k � v) = jkjD(u; v), 8k 2 R; u; v 2 E,
(iii)D(u� v; w � e) � D(u;w) +D(v; e), 8u; v; w; e 2 E,
(iV )(D;E) is a complete metric space.

Theorem 2.1. (See [4]) (i) If we de�ne e0 = �0, then e0 2 E is a neutral element with
respect to addition, i.e., u+ e0 = e0 + u = u, for all u 2 E.
(ii) With respect to e0, none of u 2 E nR has an opposite in E.
(iii) For any a; b 2 R with a; b � 0 or a; b � 0 and any u 2 E, we have (a+b):u = a:u+b:u;
for the general a; b 2 R, the above property does not necessarily hold.
(iv) For any � 2 R and any u; v 2 E, we have �:(u+ v) = �:u+ �:v;
(v) For any �; � 2 R and any u 2 E, we have �:(�:u) = (�:�):u;

De�nition 2.2. Let E be a set of all fuzzy numbers, we say that f is a fuzzy- valued-
function if f : R! E

De�nition 2.3. (See [23]). Let x; y 2 E. If there exists z 2 E such that x = y + z, then
z is called the H-di�erence of x and y, and it is denoted by x	 y.

In this paper, the sign "	" always stands for H-di�erence, and also note that x	 y 6=
x+ (�y).
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De�nition 2.4. (See [6, 7]) Let f : (a; b)! E and x0 2 (a; b). f is said to be a strongly
generalized di�erential at x0 (Bede di�erential) if there exists an element f 0(x0) 2 E, such
that
(i) for all h > 0 su�ciently small, 9f(x0 +h)	f(x0), 9f(x0)	f(x0�h) and the limits(in
the metric D)
limh&0

f(x0+h)	f(x0)
h = limh&0

f(x0)	f(x0�h)
h = f 0(x0),

or
(ii) for all h > 0 su�ciently small, 9f(x0)	 f(x0 + h), 9f(x0 � h)	 f(x0) and the limits
(in the metric D)
limh&0

f(x0)	f(x0+h)
�h = limh&0

f(x0�h)	f(x0)
�h = f 0(x0),

or
(iii) for all h > 0 su�ciently small, 9f(x0 +h)	 f(x0), 9f(x0�h)	 f(x0) and the limits
(in the metric D)
limh&0

f(x0+h)	f(x0)
h = limh&0

f(x0�h)	f(x0)
�h = f 0(x0),

or
(iv) for all h > 0 su�ciently small, 9f(x0)	 f(x0 + h), 9f(x0)	 f(x0� h) and the limits
(in the metric D)
limh&0

f(x0)	f(x0)+h
�h = limh&0

f(x0)	f(x0�h)
h = f 0(x0),

(h and �h at the denominators mean 1
h and �1

h , respectively).

In the special case whenf is a fuzzy-valued function, we have the following result.

Theorem 2.2. (See [10]). Let f : R! E be a function and denote f(t) = (f(t; r); f(t; r)),
for each r 2 [0; 1]. Then
(1) if f is di�erentiable in the �rst form (i), then f(t; r) and f(t; r) are di�erentiable
functions and
f 0(t) = (f

0
(t; r); f

0
(t; r)).

(2) if f is di�erentiable in the second form (ii), then f(t; r) and f(t; r) are di�erentiable
functions and
f 0(t) = (f

0
(t; r); f

0
(t; r)).

De�nition 2.5. We De�ne the n-th order di�erential of f as follows: Let f : (a; b)! E
and x0 2 (a; b). We say that f is strongly generalized di�erentiable of the n-th order at x0
if there exists an element f (s)(x0) 2 E; 8s = 1 : : : n, such that
(i) for all h > 0 su�ciently small, 9f (s�1)(x0 + h)	 f (s�1)(x0),
9f (s�1)(x0)	 f (s�1)(x0 � h) and the limits(in the metric d1)
limh&0

f (s�1)(x0+h)	f (s�1)(x0)
h = limh&0

f (s�1)(x0)	f (s�1)(x0�h)
h = f (s)(x0)

or
(ii) for all h > 0 su�ciently small, 9f (s�1)(x0)	 f (s�1)(x0 + h),
9f (s�1)(x0 � h)	 f (s�1)(x0) and the limits(in the metric d1)
limh&0

f (s�1)(x0)	f (s�1)(x0+h)
�h = limh&0

f (s�1)(x0�h)	f(x0)
�h = f (s)(x0)

or
(iii) for all h > 0 su�ciently small, 9f (s�1)(x0 + h)	 f (s�1)(x0),
9f (s�1)(x0 � h)	 f (s�1)(x0) and the limits(in the metric d1)
limh&0

f (s�1)(x0+h)	f (s�1)(x0)
h = limh&0

f (s�1)(x0�h)	f (s�1)(x0)
�h = f (s)(x0)

or
(iv) for all h > 0 su�ciently small, 9f (s�1)(x0)	 f (s�1)(x0 + h),
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9f (s�1)(x0)	 f (s�1)(x0 � h) and the limits(in the metric d1)
limh&0

f (k�1)(x0)	f (s�1)(x0+h)
�h = limh&0

f (s�1)(x0)	f (s�1)(x0�h)
h = f (s)(x0)

(h and �h at denominators mean 1
h and �1

h , respectively 8i = 1 : : : n)

3 Two-dimensional fuzzy partial di�erential equation

The purpose of this section is to present the following 2D fuzzy partial di�erential equation
by using the Bede derivative :

du
dt

= k(
d2u
dx2 +

d2u
dy2 ) (k is constant)

with the fuzzy initial condition

u(0; x; y) = è1 2 E
and the fuzzy boundary conditions

u(t; 0; y) = è2 2 E
u(t; h; y) = è3 2 E
u(t; x; 0) = è4 2 E
u(t; x; b) = è5 2 E

For solving a 2D fuzzy partial di�erential equation by using the Bede derivative, we have
four di�erent cases:

Case(1): If we consider du
dt ,d

2u
dx2 and d2u

dy2 by using (i)-di�erentiability, or du
dt ,d

2u
dx2 and d2u

dy2

by using (ii)-di�erentiability, then we have:

du
dt

(t; x; y; r) = k(
d2u
dx2 (t; x; y; r) +

d2u
dy2 (t; x; y; r))

and
du
dt

(t; x; y; r) = k(
d2u
dx2 (t; x; y; r) +

d2u
dy2 (t; x; y; r)) (3.1)

with the initial condition

u(0; x; y; r) = `1(r) and u(0; x; y; r) = `1(r)

and the boundary conditions

u(t; 0; y; r) = `2(r) and u(t; 0; y; r) = `2(r)

u(t; h; y; r) = `3(r) and u(t; h; y; r) = `3(r)

u(t; x; 0; r) = `4(r) and u(t; x; 0; r) = `4(r)

u(t; x; b; r) = `5(r) and u(t; x; b; r) = `5(r):
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By using the ADI numerical method, we have:8>>>>>>><>>>>>>>:

�d1un+0:5
i�1;j (r) + un+0:5

i;j (r) + 2d1un+0:5
i+1;j (r)� d1un+0:5

i+1;j (r) = d2uni;j+1(r) + (1� 2d2)uni;j(r)

+d2uni;j�1(r)

�d1un+0:5
i�1;j (r) + un+0:5

i;j (r) + 2d1un+0:5
i+1;j (r)� d1un+0:5

i+1;j (r) = d2uni;j+1(r) + (1� 2d2)uni;j(r)

+d2uni;j�1(r)
(3.2)

and8>>>>>>><>>>>>>>:

�d2un+1
i;j�1(r) + (un+1

i;j (r) + 2d2un+1
i;j (r))� d2un+1

i;j+1(r) = d1un+0:5
i+1;j (r) + (1� 2d1)un+0:5

i;j (r)

+d1un+0:5
i�1;j (r)

�d2un+1
i;j�1(r) + (un+1

i;j (r) + 2d2un+1
i;j (r))� d2un+1

i;j+1(r) = d1un+0:5
i+1;j (r) + (1� 2d1)un+0:5

i;j (r)

+d1un+0:5
i�1;j (r)

(3.3)
where d1 = 1

2�( �t
(�x)2 ) and d2 = 1

2�( �t
(�y)2 ). Also t = 1; :::; nt ,i = 1; :::; nx and j = 1; :::; ny.

From (3.2) and (3.3) we have two crisp linear systems for all i and j which can be displayed
as follows:�

A1 B1
B1 A1

� �
un+0:5
j
un+0:5
j

�
=
�
d2unj+1(r) + (1� 2d2)unj (r) + d2unj�1(r)
d2unj+1(r) + (1� 2d2)unj (r) + d2unj�1(r)

�
(3.4)

�
A2 B2
B2 A2

� �
un+1
i
un+1
i

�
=
�
d1un+0:5

i+1 (r) + (1� 2d1)un+0:5
i (r) + d1un+0:5

i�1 (r)
d1uni+1(r) + (1� 2d1)un+0:5

i (r) + d1un+0:5
i�1 (r)

�
(3.5)

where B1 = 2d1Inx�nx , B2 = 2d2Iny�ny ,

A1 =

2666664
1 �d1 0 ::: 0
�d1 1 �d1 ::: 0

...
...

... :::
...

0 ::: �d1 1 �d1
0 0 ::: �d1 1

3777775
nx�nx

andA2 =

2666664
1 �d2 0 ::: 0
�d2 1 �d2 ::: 0

...
...

... :::
...

0 ::: �d2 1 �d2
0 0 ::: �d2 1

3777775
ny�ny

We solve system (3.4), then the solution of system (3.4) is set in system (3.5) to ob-
tain its solutions.

Case(2): If we consider du
dt ,d

2u
dx2 by using (i)-di�erentiability and d2u

dy2 by using (ii)-di�erentiability,
or du

dt ,d
2u
dx2 by using (ii)-di�erentiability and d2u

dy2 by using (i)-di�erentiability, then we solve
the PDE system:

du
dt

(t; x; y; r) = k(
d2u
dx2 (t; x; y; r) +

d2u
dy2 (t; x; y; r))
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and
du
dt

(t; x; y; r) = k(
d2u
dx2 (t; x; y; r) +

d2u
dy2 (t; x; y; r)) (3.6)

with the initial condition

u(0; x; y; r) = `1(r) and u(0; x; y; r) = `1(r)

and the boundary conditions

u(t; 0; y; r) = `2(r) and u(t; 0; y; r) = `2(r)

u(t; h; y; r) = `3(r) and u(t; h; y; r) = `3(r)

u(t; x; 0; r) = `4(r) and u(t; x; 0; r) = `4(r)

u(t; x; b; r) = `5(r) and u(t; x; b; r) = `5(r):

By using the ADI numerical method, we have:8>>>>>>><>>>>>>>:

�d1un+0:5
i�1;j (r) + un+0:5

i;j (r) + 2d1un+0:5
i;j (r)� d1un+0:5

i+1;j (r) = d2uni;j+1(r) + uni;j(r)

�2d2uni;j(r) + d2uni;j�1(r)

�d1un+0:5
i�1;j (r) + un+0:5

i;j (r) + 2d1un+0:5
i;j (r)� d1un+0:5

i+1;j (r) = d2uni;j+1(r) + uni;j(r)

�2d2uni;j(r) + d2uni;j�1(r)
(3.7)

and8>>>>>>><>>>>>>>:

�d2un+1
i;j�1(r) + (1 + 2d2)un+1

i;j (r)� d2un+1
i;j+1(r) = d1un+0:5

i+1;j (r) + (1� 2d1)un+0:5
i;j (r)

+d1un+0:5
i�1;j (r)

�d2un+1
i;j�1(r) + (1 + 2d2)un+1

i;j (r)� d2un+1
i;j+1(r) = d1un+0:5

i+1;j (r) + (1� 2d1)un+0:5
i;j (r)

+d1un+0:5
i�1;j (r)

(3.8)
where d1 = 1

2�( �t
(�x)2 ) and d2 = 1

2�( �t
(�y)2 ). Also t = 1; :::; nt ,i = 1; :::; nx and j = 1; :::; ny.

From (3.7) and (3.8) we have two crisp linear systems for all i and j which can be displayed
as follows:�

A1 B1
B1 A1

� �
un+0:5
j (r)
un+0:5
j (r)

�
=
�
d2uni;j+1()r + uni;j(r)� 2d2uni;j(r) + d2uni;j�1(r)
d2uni;j+1(r) + uni;j(r)� 2d2uni;j(r) + d2uni;j�1(r)

�
(3.9)

�
A2 B2
B2 A2

� �
un+1
i (r)
un+1
i (r)

�
=
�
d1un+0:5

i+1;j (r) + (1� 2d1)un+0:5
i;j (r) + d1un+0:5

i�1;j (r)
d1un+0:5

i+1;j (r) + (1� 2d1)un+0:5
i;j (r) + d1un+0:5

i�1;j (r)

�
(3.10)

where B1 = 2d1Inx�nx , A2 = (1 + 2d2)Iny�ny ,
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A1 =

2666664
1 �d1 0 ::: 0
�d1 1 �d1 ::: 0

...
...

... :::
...

0 ::: �d1 1 �d1
0 0 ::: �d1 1

3777775
nx�nx

andB2 =

2666664
0 �d2 0 ::: 0
�d2 0 �d2 ::: 0

...
...

... :::
...

0 ::: �d2 0 �d2
0 0 ::: �d2 0

3777775
ny�ny

We solve system (3.9), then the solution of system (3.9) is set in system (3.10) to ob-
tain its solutions.

Case(3): If we consider du
dt ,d

2u
dy2 by using (i)-di�erentiability and d2u

dx2 by using (ii)-di�erentiability,
or du

dt ,d
2u
dy2 by using (ii)-di�erentiability and d2u

dx2 by using (i)-di�erentiability, then we solve
the PDE system:

du
dt

(t; x; y; r) = k(
d2u
dx2 (t; x; y; r) +

d2u
dy2 (t; x; y; r))

and
du
dt

(t; x; y; r) = k(
d2u
dx2 (t; x; y; r) +

d2u
dy2 (t; x; y; r)) (3.11)

with the initial condition

u(0; x; y; r) = `1(r) and u(0; x; y; r) = `1(r)

and the boundary conditions

u(t; 0; y; r) = `2(r) and u(t; 0; y; r) = `2(r)

u(t; h; y; r) = `3(r) and u(t; h; y; r) = `3(r)

u(t; x; 0; r) = `4(r) and u(t; x; 0; r) = `4(r)

u(t; x; b; r) = `5(r) and u(t; x; b; r) = `5(r):

By using the ADI numerical method, we have:8>>>>>>><>>>>>>>:

�d1un+0:5
i�1;j (r) + (1 + 2d1)un+0:5

i;j (r)� d1un+0:5
i+1;j (r) = d2uni;j+1(r) + (1� 2d2)uni;j(r)

+d2uni;j�1(r)

�d1un+0:5
i�1;j (r) + (1 + 2d1)un+0:5

i;j (r)� d1un+0:5
i+1;j (r) = d2uni;j+1(r) + (1� 2d2)uni;j(r)

+d2uni;j�1(r)
(3.12)
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and8>>>>>>><>>>>>>>:

�d2un+1
i;j�1(r) + un+1

i;j (r) + 2d2un+1
i;j (r)� d2un+1

i;j+1(r) = d1un+0:5
i+1;j (r) + un+0:5

i;j (r)

+2d1un+0:5
i;j (r) + d1un+0:5

i�1;j (r)

�d2un+1
i;j�1(r) + un+1

i;j (r) + 2d2un+1
i;j (r)� d2un+1

i;j+1(r) = d1un+0:5
i+1;j (r) + un+0:5

i;j (r)

+2d1un+0:5
i;j (r) + d1un+0:5

i�1;j (r)
(3.13)

where d1 = 1
2�( �t

(�x)2 ) and d2 = 1
2�( �t

(�y)2 ). Also t = 1; :::; nt ,i = 1; :::; nx and j = 1; :::; ny.

From (3.12) and (3.13) we have two crisp linear systems for all i and j which can be
displayed as follows:�

A1 B1
B1 A1

� �
un+0:5
j (r)
un+0:5
j (r)

�
=
�
d2uni;j+1(r) + (1� 2d2)uni;j(r) + d2uni;j�1(r)
d2uni;j+1(r) + (1� 2d2)uni;j(r) + d2uni;j�1(r)

�
(3.14)

�
A2 B2
B2 A2

� �
un+1
i
un+1
i

�
=
�
d1un+0:5

i+1;j (r) + un+0:5
i;j (r) + 2d1un+0:5

i;j (r) + d1un+0:5
i�1;j (r)

d1un+0:5
i+1;j (r) + un+0:5

i;j (r) + 2d1un+0:5
i;j (r) + d1un+0:5

i�1;j (r)

�
(3.15)

where B1 = 2d2Iny�ny , A1 = (1 + 2d1)Inx�nx ,

B1 =

2666664
0 �d1 0 ::: 0
�d1 0 �d1 ::: 0

...
...

... :::
...

0 ::: �d1 0 �d1
0 0 ::: �d1 0

3777775
nx�nx

andA2 =

2666664
1 �d2 0 ::: 0
�d2 1 �d2 ::: 0

...
...

... :::
...

0 ::: �d2 1 �d2
0 0 ::: �d2 1

3777775
ny�ny

We solve system (3.14), then the solution of system (3.14) is set in system (3.15)to obtain
its solutions.

Case(4): If we consider du
dt by using (i)-di�erentiability and ,d

2u
dy2 , d

2u
dx2 by using (ii)-di�erentiability,

or du
dt by using (ii)-di�erentiability and d2u

dx2 ,d
2u
dy2 by using (i)-di�erentiability, then we solve

the PDE system:

du
dt

(t; x; y; r) = k(
d2u
dx2 (t; x; y; r) +

d2u
dy2 (t; x; y; r))

and
du
dt

(t; x; y; r) = k(
d2u
dx2 (t; x; y; r) +

d2u
dy2 (t; x; y; r)) (3.16)

with the initial condition

u(0; x; y; r) = `1(r) and u(0; x; y; r) = `1(r)
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and the boundary conditions

u(t; 0; y; r) = `2(r) and u(t; 0; y; r) = `2(r)

u(t; h; y; r) = `3(r) and u(t; h; y; r) = `3(r)

u(t; x; 0; r) = `4(r) and u(t; x; 0; r) = `4(r)

u(t; x; b; r) = `5(r) and u(t; x; b; r) = `5(r):

By using the ADI numerical method, we have:8>>>>>>><>>>>>>>:

�d1un+0:5
i�1;j (r) + (1 + 2d1)un+0:5

i;j (r)� d1un+0:5
i+1;j (r) = d2uni;j+1(r) + (1� 2d2)uni;j(r)

+d2uni;j�1(r)

�d1un+0:5
i�1;j (r) + (1 + 2d1)un+0:5

i;j (r)� d1un+0:5
i+1;j (r) = d2uni;j+1(r) + (1� 2d2)uni;j(r)

+d2uni;j�1(r)
(3.17)

and8>>>>>>><>>>>>>>:

�d2un+1
i;j�1(r) + (1� 2d2)un+1

i;j (r)� d2un+1
i;j+1(r) = d1un+0:5

i+1;j (r) + un+0:5
i;j (r)

�2d1un+0:5
i;j (r) + un+0:5

i�1;j (r)

�d2un+1
i;j�1(r) + (1� 2d2)un+1

i;j (r)� d2un+1
i;j+1(r) = d1un+0:5

i+1;j (r) + un+0:5
i;j (r)

�2d1un+0:5
i;j (r) + un+0:5

i�1;j (r)

(3.18)

where d1 = 1
2�( �t

(�x)2 ) and d2 = 1
2�( �t

(�y)2 ).
Also t = 1; :::; nt ,i = 1; :::; nx and j = 1; :::; ny.
From (3.17) and (3.18) we have two crisp linear systems for all i and j which can be
displayed as follows:�

A1 B1
B1 A1

� �
un+0:5
j (r)
un+0:5
j (r)

�
=
�
d2uni;j+1(r) + (1� 2d2)uni;j(r) + d2uni;j�1(r)
d2uni;j+1(r) + (1� 2d2)uni;j(r) + d2uni;j�1(r)

�
(3.19)

�
A2 B2
B2 A2

� �
un+1
i
un+1
i

�
=
�
d1un+0:5

i+1;j (r) + un+0:5
i;j (r)� 2d1un+0:5

i;j (r) + un+0:5
i�1;j (r)

d1un+0:5
i+1;j (r) + un+0:5

i;j (r)� 2d1un+0:5
i;j (r) + un+0:5

i�1;j (r)

�
(3.20)

where A1 = (1 + 2d1)Inx�nx , A2 = (1� 2d2)Iny�ny ,

B1 =

2666664
0 �d1 0 ::: 0
�d1 0 �d1 ::: 0

...
...

... :::
...

0 ::: �d1 0 �d1
0 0 ::: �d1 0

3777775
nx�nx

andB2 =

2666664
0 �d2 0 ::: 0
�d2 0 �d2 ::: 0

...
...

... :::
...

0 ::: �d2 0 �d2
0 0 ::: �d2 0

3777775
ny�ny

First, we solve system (3.19), then the solution of the system (3.19) is set in system
(3.20) to obtain its solutions.
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4 Numerical example

Example 4.1. Consider the one-dimensional heat equation8>>>>>>>>><>>>>>>>>>:

du
dt = k(d

2u
dx2 + d2u

dy2 )

u(0; x; y) = e0 at t = 0 and 0 � x � l
u(t; 0; y) = g200 = (198 + 2r; 204� 4r) at x = 0 and t > 0
u(t; h; y) = e10 = (9 + r; 11� r) at h = 3:5ft; and t > 0
u(t; x; 0) = g200 = (198 + 2r; 204� 4r) at y = 0 and t > 0
u(t; x; b) = e10 = (9 + r; 11� r) at b = 3:5ft and t > 0

Distributions of temperature are compared for r = 0; 0:1; :::; 1 in the following Tables 1,
2,...,7.

Table 1
T

y,r=0 x = 0 x = 0:5 x = 1 x = 1:5 x = 2 x = 2:5 x = 3 x = 3:5
0 198 198 198 198 198 198 198 198

0:5 198 136:36 108:69 90:1 87:87 85:02 70:92 9
1 198 102:75 49:65 32:78 29:9 27:22 22:28 9

1:5 198 90:22 30:49 11:92 8:99 6:75 6:9 9
2 198 86:42 25:11 6:16 3:24 3:05 3:1 9

2:5 198 83:64 23:86 5:6 2:72 2:91 3:17 9
3 198 70:85 21:32 7:19 4:95 5:2 5:41 9

3:5 198 9 9 9 9 9 9 9

Table 2
T

y ,r=0 x = 0 x = 0:5 x = 1 x = 1:5 x = 2 x = 2:5 x = 3 x = 3:5
0 204 204 204 204 204 204 204 204

0:5 204 146:23 108:06 93:62 89 87:04 75:2 11
1 204 117:78 61:75 37:64 30:69 31:22 28:02 11

1:5 204 107:59 44:84 17:54 9:77 11:6 13:24 11
2 204 103:56 39:36 11:74 3:96 6:12 9:21 11

2:5 204 98:08 35:74 10:28 3:35 5:21 8:32 11
3 204 79:78 28:11 10:15 5:53 6:44 8:75 11

3:5 204 11 11 11 11 11 11 11

...
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Table 3
T

y,r=0.7 x = 0 x = 0:5 x = 1 x = 1:5 x = 2 x = 2:5 x = 3 x = 3:5
0 199:4 199:4 199:4 199:4 199:4 199:4 199:4 199:4

0:5 199:4 139:32 104:01 91:01 87:95 85:43 72:18 9:7
1 199:4 107:63 53:69 34:35 30:07 28:42 24:22 9:7

1:5 199:4 95:96 35:39 13:83 9:23 8:42 9:11 9:7
2 199:4 92:09 29:99 8:08 3:48 3:02 5:24 9:7

2:5 199:4 88:38 27:91 7:22 2:93 2:63 4:98 9:7
3 199:4 73:72 23:63 8:21 5:12 5:04 6:58 9:7

3:5 199:4 9:7 9:7 9:7 9:7 9:7 9:7 9:7

Table 4
T

y,r=0.7 x = 0 x = 0:5 x = 1 x = 1:5 x = 2 x = 2:5 x = 3 x = 3:5
0 201 201 201 201 201 201 201 201

0:5 201 142:28 106:01 92:07 88:3 86:03 73:46 10:3
1 201 112:14 57:33 35:82 30:31 29:67 25:94 10:3

1:5 201 101:17 39:69 15:52 9:47 9:88 11:01 10:3
2 201 97:23 34:27 9:76 3:7 4:45 7:07 10:3

2:5 201 92:72 31:5 8:6 3:12 3:82 6:52 10:3
3 201 76:4 25:66 9:1 5:33 5:69 7:58 10:3

3:5 201 10:3 10:3 10:3 10:3 10:3 10:3 10:3

Table 5
T

y,r=0.8 x = 0 x = 0:5 x = 1 x = 1:5 x = 2 x = 2:5 x = 3 x = 3:5
0; r = 0:8 199:6 199:6 199:6 199:6 199:6 199:6 199:6 199:6

0:5 199:6 139:75 104:29 91:14 87:97 85:49 72:36 9:8
1 199:6 108:32 54:28 34:58 30:1 28:61 24:5 9:8

1:5 199:6 96:78 36:09 14:11 9:27 8:66 9:42 9:8
2 199:6 92:9 30:69 8:36 3:52 3:26 5:55 9:8

2:5 199:6 89:06 28:5 7:45 2:97 2:83 5:23 9:8
3 199:6 74:13 23:96 8:36 5:18 5:15 6:75 9:8

3:5 199:6 9:8 9:8 9:8 9:8 9:8 9:8 9:8
0; r = 0:9 199:8 199:8 199:8 199:8 199:8 199:8 199:8 199:8

0:5 199:8 140:17 104:58 91:28 87:98 85:55 72:54 9:9
1 199:8 109:02 54:85 34:81 30:12 28:81 24:77 9:9

1:5 199:8 97:6 36:79 14:38 9:3 8:89 9:73 9:9
2 199:8 93:71 31:38 8:63 3:55 3:49 5:85 9:9

2:5 199:8 89:74 29:08 7:68 3 3:03 5:49 9:9
3 199:8 74:54 24:29 8:5 5:2 5:26 6:91 9:9

3:5 199:8 9:9 9:9 9:9 9:9 9:9 9:9 9:9
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Table 6
T

y,r=0.8 x = 0 x = 0:5 x = 1 x = 1:5 x = 2 x = 2:5 x = 3 x = 3:5
0; r = 0:8 200:8 200:8 200:8 200:8 200:8 200:8 200:8 200:8

0:5 200:8 141:72 105:62 91:85 88:2 85:89 73:21 10:2
1 200:8 111:33 56:69 35:55 30:26 29:44 25:64 10:2

1:5 200:8 100:25 38:96 15:23 9:42 9:63 10:69 10:2
2 200:8 96:33 33:54 9:47 3:66 4:21 6:77 10:2

2:5 200:8 91:95 30:87 8:39 3:09 3:63 6:26 10:2
3 200:8 75:92 25:31 8:95 5:3 5:58 7:41 10:2

3:5 200:8 10:2 10:2 10:2 10:2 10:2 10:2 10:2
0; r = 0:9 204:4 204:4 204:4 204:4 204:4 204:4 204:4 204:4

0:5 204 141:16 105:24 91:62 88:09 85:75 72:97 10:1
1 204:4 110:52 56:06 35:29 30:2 29:22 25:35 10:1

1:5 204:4 99:33 38:22 14:94 9:4 9:4 10:37 10:1
2 204:4 95:42 32:81 9:19 3:62 3:42 6:46 10:1

2:5 204:4 91:18 30:27 8:15 3:06 3:43 6:01 10:1
3 204:4 75:44 24:96 8:8 5:27 5:48 7:25 10:1

3:5 204:4 10:1 10:1 10:1 10:1 10:1 10:1 10:1

Table 7
T = T

y,r=0.8 x = 0 x = 0:5 x = 1 x = 1:5 x = 2 x = 2:5 x = 3 x = 3:5
0; r = 1 200 200 200 200 200 200 200 200

0:5 200 140:59 104:85 91:41 88 85:6 72:72 10
1 200 109:72 55:43 35:03 30:15 29 25:05 10

1:5 200 98:41 37:49 14:66 9:34 9:14 10:05 10
2 200 94:52 32:08 8:91 3:6 3:73 6:15 10

2:5 200 90:42 29:66 7:9 3:03 3:23 5:75 10
3 200 74:96 24:62 8:65 5:24 5:37 7:08 10

3:5 200 10 10 10 10 10 10 10

We see that the solution of a PDE is dependent on the selection of the derivative:
whether it is (i)-di�erentiable or (ii)-di�erentiable. In this example, the solution of a PDE
is of the case(1) type.

5 Conclusion

In this paper, we proposed a numerical method for solving a two-dimensional heat equa-
tion. This numerical method is based on the de�nition of the strongly generalized deriva-
tive.
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