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Abstract
In this paper, the properties of fuzzy random variables with new meter and some extended
results of monotone convergence theorem and dominated convergence theorem for fuzzy
random variables are discussed. The main result is given by using Dp, q-distance defined
on the set of fuzzy numbers.
Keywords : Fuzzy random variables; LP (F (R))-Fuzzy integrable space; Dominated convergence
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1 Introduction

There are two types of common in the real-life world, randomness and fuzziness. Ac-
cordingly, there are two powerful theories, and possibility theory. For the development
of possibility theory, Dubois and Prad (1988), Klir (1999) and Zadeh (1978) are referred.
In many optimization problems such as Luhanjula (1996), Luhanjula and Gopta (1996),
Yazenin (1987), and Liu (1999, 2001a, 2001b), randomness and fuzziness are often re-
quired for simultion. For other approaches to the combined treatment of randomnss and
fuzziness, Puri and Ralescu (1985, 1986), Klement, Kruse and Meyer (1987), and Negoita
and Ralescu (1987) are recommanded. The concept of fuzzy random variables was intro-
duced by Kwakernaak (1978), who developed useful basic properties. Puri and Ralescu
(1985,1986), used the concept of fuzzy random variables and expected value (these concept
goes beyond those of Kwakernaak) for generalization of the result of random sets to fuzzy
random sets and also they developed an important tool for representing imprecise data
associated with the outcomes of a random experiment.
The paper is organized as follows:
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In Section 2, the basic definitions and concepts are brought. In Section 3, main result of
paper are discussed and finally, conclusion is drown in Section 4.

2 Preliminaries

In this section, first we recall some notations of fuzzy sets, fuzzy numbers and fuzzy random
variables.

Definition 2.1. Let E be a universal set, then a fuzzy set Ã of E is defined by its mem-
bership function Ã : E → [0, 1], where Ã(x) is the membership grade of x in Ã

Definition 2.2. Co(Ã) is called the coreof Ã, defined by Co(Ã) = {x ∈ E : Ã(x) = 1}.

Definition 2.3. Supp(Ã) is called the support of Ã, defined by Supp(Ã) = cl{x ∈ E :
Ã(x) > 0}.

Definition 2.4. Aα is called the α−level (cut) set of Ã, defined by Aα = {x ∈ E : Ã(x) ≥
α}.According to the decomposition theorem of fuzzy set, we have: Ã(x) = sup{αI

Ãα
(x) :

α ∈ [0, 1]},where I
Ãα

is the indicator function of ordinary set Ãα.

Definition 2.5. A fuzzy number is a fuzzy set of R such that the following conditions are
satisfied:

a) Ã is normal, that is, there exist x0 such that Ã(x0) = 1,

b) Ã is convex, that is, ∀x1, x2 ∈ R and λ ∈ [0, 1], Ã (λx1 + (1− λ)x2) ≥ min
(
Ã(x1), Ã(x2)

)
,

c) Ã is upper semicontinuous with compact support.

According to the definition α−level (cut) set of a fuzzy number is a closed interval
where we denote by Ãα = [A−

α , A
+
α ], i.e.

A−
α = inf

{
x ∈ R : Ã(x) ≥ α

}
, and A+

α = sup
{
x ∈ R : Ã(x) ≥ α

}
.

Let (Ω,A, P ) be a probability space, and F (R) denote the set of fuzzy defined on R

Definition 2.6. A Mapping X̃ : Ω → F (R) is said to be a fuzzy random variable associated
with (Ω,A) if and only if

{(ω, x) : x ∈ Xα(ω)} ∈ A × B,

where B denotes the σ-field of Borel set in R.For a fuzzy random variable X̃ and ω ∈ Ω,
let X̃(ω) be a fuzzy set with the membership function X̃(ω)(x).

Definition 2.7. D : z(R)×z(R) → [0,∞) by the equation

Dp,q(Ã, B̃) =


(∫ 1

0 |q(A+
α −B+

α ) + (1− q)(A−
α −B−

α )|p dα
)1/p

if 1 ≤ p < ∞

sup0≤α≤1 |q(A+
α −B+

α ) + (1− q)(A−
α −B−

α )| if p = ∞.

The analytical properties of Dp,q depend on the first parameter p, while the second pa-
rameter q of Dp,q characterizes the subjective weight attributed to the sides of the fuzzy
numbers.
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3 Main Result

Theorem 3.1. Let {X̃n, X̃ : n ≥ 1} be a sequence of fuzzy random variables of real value.

If X̃n
a.s.D−−−→ X̃ , then

X̃n
i.P.D−−−→ X̃,

where a.s.D i.e is almost surly based on Dp,q.

Proof: Since X̃n
a.s.D−−−→ X̃ , therefore P{ω ∈ Ω : limn→∞Dp,q(X̃n, X̃) = 0} = 1 On the

other hand ∃A ∈ F s.t P (A) = 0,∀ω ∈ Ac then

limn→∞Dp,q(X̃n, X̃) = 0

So, ∀ϵ > 0,∃n′ ∈ N s.t ∀n′ ≤ n, then Dp,q(X̃n, X̃) < ϵ,∀ω ∈ Ω Thus,

1 = P{
∩
ϵ>0

∪
1≤n′

∩
n≤n′

[Dp,q(X̃n, X̃) < ϵ]}

≤ P{
∩
ϵ>0

∪
1≤n′

[Dp,q(X̃n, X̃) < ϵ]}

let Bn′ =
∩

n′≤n[Dp,q(X̃n, X̃) < ϵ]

= P{
∩
1≤n′

Bn′}

= limn′→∞P{
∩
n′≤n

[Dp,q(X̃n, X̃) < ϵ]}

≤ limn′→∞P{[Dp,q(X̃n′ , X̃) < ϵ]}.

Theorem 3.2. Let {X̃n, X̃ : n ≥ 1} be a sequence of fuzzy random variables and integrable.

If X̃n
i.P.D−−−→ X̃, then

E[X̃n]
D−→ [X̃],

for , p = 1.

Proof: By the assumption we haveD1,q(X̃n, X̃)
P−→ 0. Now we show thatD1,q(E[X̃n], E[X̃])

P−→
0, as, n → ∞.

D1,q(E[X̃n], E[X̃]) =
∫ 1
0 |q(µ+

nα − µ+
α ) + (1− q)(µ−

nα − µ−
α )|dα

≤ E[

∫ 1

0
|q(X+

nα −X+
α ) + (1− q)(X−

nα −X−
α )|dα]

= E[D1,q(X̃n, X̃)]

= E[D1,q(X̃n, X̃)I{ω∈Ω|D1,q(X̃n,X̃)≥ϵ}]+E[D1,q(X̃n, X̃)I{ω∈Ω|D1,q(X̃n,X̃)<ϵ}]

let In = E[D1,q(X̃n, X̃)I{ω∈Ω|D1,q(X̃n,X̃)≥ϵ}]
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≤ In + ϵP{ω ∈ Ω|D1,q(X̃n, X̃) < ϵ}

≤ In + ϵ
To complete the proof we show that In → 0, n → ∞.

In = E[D1,q(X̃n, X̃)I{ω∈Ω|D1,q(X̃n,X̃)≥ϵ}]

=

∫
{ω∈Ω|D1,q(X̃n,X̃)≥ϵ}

D1,q(X̃n, X̃)dP (ω)

=
∫
An

D1,q(X̃n, X̃)dP (ω).

Since X̃n, X̃ are integrable, we have
∥∥∥X̃n

∥∥∥ < ∞ a.s.D, and D1,q(X̃n, X̃) < ∞ a.s.. Indeed

P (An) → 0, n → ∞, since X̃n
i.P.D−−−→ X̃. Then,

In =
∫
An

D1,q(X̃n, X̃)dP (ω) ≤ supω∈ΩD1,q(X̃n, X̃)P (An) → 0, as n → ∞.
Applying theorems (3.1) and (3.2) we have the following theorems.

Theorem 3.3. Let {X̃n, X̃ : n ≥ 1} be a sequence of fuzzy random variables and be

independent of random variable Y such that Y ∈ L1, X̃ ∈ L1(F ), X̃n ∈ L1(F ). If X̃n
a.s.D−−−→

X̃, then

E[X̃nY ]
D−→ E[X̃]E[Y ].

Proof: By theorems (3.1) and (3.2), E[X̃n]
D−→ E[X̃]. since X̃n

a.s.D−−−→ X̃. There-

fore E[X̃n]E[Y ]
D−→ E[X̃]E[Y ]. Now, to complete the proof we show that E[X̃n]E[Y ] =

E[X̃nY ]. For all fuzzy random variables we have,

X̃n(ω) = { [X−
nα(ω), X

+
nα(ω)] | 0 ≤ α ≤ 1}, ∀ω ∈ Ω.

Thus, σ(X̃n) = σ({X̃nα; 0 ≤ α ≤ 1}). We also know that a fuzzy random variable X̃n

and a real-valued random variable Y are independent if and only if σ(X̃n) and σ(Y ) are
independent for n ≥ 1, i.e, for any A ∈ σ(X̃n), B ∈ σ(Y ), P (A ∩ B) = P (A)P (B).
Therefore it is enough to show that

E[X̃nα]E[Y ] = E[X̃nαY ], ∀α ∈ [0, 1].

Now here we consider three cases for a random variable.
(1) Let Y = IA for A ∈ σ(Y ). Since IA is a random set thus IAX̃nα is a random set. By
Aumann integral we have

E[X̃nα] = {E(Z)| Z(ω) ∈ X̃nα(ω)},

and

E[X̃nαIA] = {E(ZIA)| Z(ω) ∈ X̃nα(ω)} = {E(Z)P (A)| Z(ω) ∈ X̃nα(ω)}

= P (A){E(Z))| Z(ω) ∈ X̃nα(ω)} = E[Y ]E[X̃nα].
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Now if Y =
∑n

i=1 aiIAi , then we have

E[Y X̃nα] = E[

n∑
i=1

aiIAiX̃nα] =

n∑
i=1

aiE[IAiX̃nα]

=
n∑

i=1

aiP (Ai)E[X̃nα] =
n∑

i=1

aiE[IAi ]E[X̃nα]

= E[

n∑
i=1

aiIAi ]E[X̃nα] = E[Y ]E[X̃nα].

(2) Let Y is a non-negative random variable (i.e Y ≥ 0, a.s.). Therefore there exist a
simple random variable 0 ≤ Ym =

∑m
i=1 aiIAi such that 0 ≤ Ym ↗ Y . By monotone

convergence theorem for classical case we have E[Ym] ↗ E[Y ], so YmX̃nα → Y X̃nα. Thus

E[Y X̃nα] = Limm→∞E[YmX̃nα] = Limm→∞E[Ym]E[X̃nα] = E[Y ]E[X̃nα].

(3) Let Y is a arbitrary random variable, then there exist non-negative random variable
Y1 and Y2 such that Y = Y2 − Y1, therefore

E[Y X̃nα] = E[(Y2 − Y1)X̃nα] = E[Y2X̃nα]− E[Y1X̃nα]

= E[Y2]E[X̃nα]− E[Y1]E[X̃nα] = (E[Y2]− E[Y1])E[X̃nα] = E[Y ]E[X̃nα].

Theorem 3.4. Let {X̃n, X̃ : n ≥ 1} be a sequence of fuzzy random variables and inte-
grable, the following conditions are equivalent.

(i) D1,q(X̃n, X̃)
P−→ 0, E[D1,q(X̃n, I{0})] → E[D1,q(X̃, I{0})]

(ii) E[D1,q(X̃n, X̃)] → 0

(iii) D1,q(X̃n, X̃)
P−→ 0, D1,q(X̃n, I{0}) is uniformly integrable.

Proof: (i) =⇒ (ii) : Let Yn = D1,q(X̃n, X̃). Therefore Yn is a nonnegative real-value

random variable and E[Yn] < ∞ and Yn
P−→ 0, thus E[Yn] → 0, i.e D1,q(X̃n, X̃) → 0.

(ii) =⇒ (iii) : For all ϵ > 0 we have

P (ω ∈ Ω| D1,q(X̃n, X̃) ≥ ϵ) ≤ E[D1,q(X̃n, X̃)]

ϵ
→ 0,

as n → ∞. Since X̃n, is integrable then

P{ω ∈ Ω| D1,q(X̃n, I{0}) = ∞} = 0,

and
P{ω ∈ Ω| D1,q(X̃n, I{0}) ≤ a} → 1, as, n → ∞ (3.1)

or
P{ω ∈ Ω| D1,q(X̃n, I{0}) > a} → 0, as, n → ∞. (3.2)

Therefore E[D1,q(X̃n, I{0})] = Ia + IIa, where

Ia = E[D1,q(X̃n, I{0})I{ω∈Ω| D1,q(X̃n,I{0})>a}],
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IIa = E[D1,q(X̃n, I{0})I{ω∈Ω| D1,q(X̃n,I{0})≤a}].

By using (3.1) and (3.2), we have

Limn→∞E[D1,q(X̃n, I{0})] = Lima→∞Ia + Lima→∞IIa

= Lima→∞Ia + Limn→∞E[D1,q(X̃n, I{0})]

Therefore

0 = Lima→∞Ia = Lima→∞E[D1,q(X̃n, I{0})I{ω∈Ω| D1,q(X̃n,I{0})>a}]

(iii) =⇒ (i) :

|E[D1,q(X̃n, I{0})]− E[D1,q(X̃, I{0})]| ≤ E[|D1,q(X̃n, I{0})−D1,q(X̃, I{0})|]

= E[|
∫ 1

0
[|qX+

nα + (1− q)X−
nα| − |qX+

α + (1− q)X−
α |]dα|]

≤ E[

∫ 1

0
[|qX+

nα + (1− q)X−
nα − qX+

α − (1− q)X−
α |]dα]

= E[D1,q(X̃n, X̃)] → 0, as, n → ∞.

Because, X̃n
i.P.D−−−→ X̃ or D1,q(X̃n, X̃)

P−→ 0. Then by using the theorem (3.3) the proof is
completed.

Theorem 3.5. ( Dominated convergence theorem for fuzzy random variables) Let {X̃n, X̃ : n ≥
1} be a sequence of fuzzy random variables and Y be a real-valued random variable and

Y ∈ L1. If X̃n
a.s.D−−−→ X̃ and D1,q(X̃n, I{0}) ≤ |Y |, a.s. for n ≥ 1 then

X̃n, X̃ ∈ L1(F ) and E[X̃n]
D−→ E[X̃].

Proof: From theorem (3.1) and (3.2) to complete the proof it is enough to show that

X̃n, X̃ ∈ L1(F ). Since X̃n
a.s.D−−−→ X̃, then

D1,q(X̃n, X̃)
a.s.−−→ 0,

and there exist an event E ∈ F , such that P (E) = 0, and for all ω ∈ Ω,

Limn→∞D1,q(X̃n, X̃) = 0,

in the other hand

∀ϵ > 0, ∃n′ ∈ N s.t ∀n ≥ n′ =⇒ D1,q(X̃n, X̃) < ϵ.

Since D1,q(X̃n, I{0}) ≤ |Y |, a.s., and Y ∈ L1, then

E[D1,q(X̃n, I{0})] ≤ E[|Y |] < ∞,

and X̃n ∈ L1(F ). So for the enough large n

D1,q(X̃, I{0}) ≤ D1,q(X̃n, X̃) +D1,q(X̃n, I{0})

≤ ϵ+D1,q(X̃n, I{0}) < ∞ a.s..

Therefore X̃ ∈ L1(F ).
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4 Conclusion

In this paper we have developed some important theorems of probability theory by using
a distance defined on the set of fuzzy numbers and their α cuts. The results is agreed to
crisp case where α= 1.
And finally, Special thanks to reviewers for their worthwhile and useful offers.
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