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Abstract
In this work we prove that for any measurable admissible control w(·) and for any ε > 0
there exists piecewise constant admissible control w̄(·) such that for fuzzy solutions of
control fuzzy linear system are ε-closed.
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1 Introduction

In recent years, the fuzzy set theory introduced by Zadeh [48] has emerged as an inter-
esting and fascinating branch of pure and applied sciences. The applications of fuzzy set
theory can be found in many branches of science as physical, mathematical, differential
equations and engineering sciences. Recently there have been new advances in the theory
of fuzzy differential equations [8, 9, 10, 11, 12, 15, 16, 20, 21, 22, 23, 28, 37, 44, 46], fuzzy
integrodifferential equations [2, 5, 6, 7, 18, 42], differential inclusions with fuzzy right-hand
side [1, 3, 4, 14, 20, 21, 34, 35] and fuzzy differential inclusions [36, 45, 47] as well as in
the theory of control fuzzy differential equations [17, 26, 27, 29, 30], control fuzzy inte-
grodifferential equations [19, 24, 25], control fuzzy differential inclusions [31, 32, 33], and
control fuzzy integrodifferential inclusions [43].

In many engineering control systems piecewise constant controls, instead of measurable
controls are applied. In this article we prove that for any measurable admissible control
w(·) and for any ε > 0 there exists piecewise constant admissible control w̄(·) such that
for fuzzy solutions of control fuzzy linear system are ε-closed.
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2 Preliminaries

Let CC(Rn) be the family of all nonempty compact convex subsets of Rn with the
Hausdorff metric h(A,B) = max{max

a∈A
min
b∈B

∥a− b∥, max
b∈B

min
a∈A

∥a− b∥}, where ∥ · ∥ denotes

the usual Euclidean norm in Rn.
Let En be the family of mappings x : Rn → [0, 1] satisfying the following conditions:

(i) x is normal, i.e. there exists an ξ0 ∈ Rn such that x(ξ0) = 1;

(ii) x is fuzzy convex, i.e. x(λξ + (1 − λ)ζ) ≥ min{x(ξ), x(ζ)} whenever ξ, ζ ∈ Rn and
λ ∈ [0, 1];

(iii) x is upper semicontinuous, i.e. for any ξ0 ∈ Rn and ε > 0 exists δ(ξ0, ε) > 0 such
that x(ξ) < x(ξ0) + ε whenever ||ξ − ξ0|| < δ, ξ ∈ Rn;

(iv) the closure of the set cl{ξ ∈ Rn : x(ξ) > 0 } is compact.

Let 0̂ be the fuzzy mapping defined by 0̂(ξ) = 0 if ξ ̸= 0 and 0̂(0) = 1.

Definition 2.1. The set {y ∈ Rn : x(y) ≥ α} is called the α – level [x]α of a mapping
x ∈ En for 0 < α ≤ 1. The closure of the set {y ∈ Rn : x(y) > 0} is called the 0 - level
[x]0 of a mapping x ∈ En.

Define the metric D : En × En → R+ by the equation D(x, y) = sup
α∈[0,1]

h([x]α, [y]α).

Using the results of [40], we know that

(i) (En, D) is a complete metric space,

(ii) D(x+ z, y + z) = D(x, y) for all x, y, z ∈ En,

(iii) D(kx, ky) = |k|D(x, y) for all x, y ∈ En, k ∈ R.

Let A,B,C be in CC(Rn). The set C is the Hukuhara difference of A and B, if B+C =
A, i.e. C = A H B. From R̊adström’s Cancellation Lemma [41], it follows that if this
difference exists, then it is unique.

Definition 2.2. [13] A mapping F : [0, T ] → CC(Rn) is differentiable in the sense of
Hukuhara at t ∈ [0, T ] if for some h > 0 the Hukuhara differences

F (t+∆t)
H

F (t), F (t)
H

F (t−∆t)

exists in CC(Rn) for all 0 < ∆t < h and there exists an DHF (t) ∈ CC(Rn) such that

lim
∆t→0+

h(∆t−1(F (t+∆t)
H

F (t)), DHF (t)) = 0

and

lim
∆t→0+

h(∆t−1(F (t)
H

F (t−∆t)), DHF (t)) = 0.

Here DHF (t) is called the Hukuhara derivative of F (t) at t.
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Definition 2.3. [15] A mapping x : [0, T ] → En is called differentiable at t ∈ [0, T ] if,
for any α ∈ [0, 1], the set-valued mapping xα(t) = [x(t)]α is is differentiable in the sense
of Hukuhara at point t with DHxα(t) and the family {DHxα(t) : α ∈ [0, 1]} define a fuzzy
number ẋ(t) ∈ En.

If x : [0, T ] → En is differentiable at t ∈ [0, T ], then we say that ẋ(t) is the fuzzy
derivative of x(·) at the point t ∈ [0, T ].

Consider the fuzzy Cauchy problem

ẋ = A(t)x+ g(t), x(0) = x0, (2.1)

where A(t) is n× n-dimensional matrix-valued function; g(t) is the fuzzy map, x0 ∈ En.

Definition 2.4. A fuzzy mapping x : [0, T ] → En is a solution to the problem (2.1) if and

only if it is continuous and satisfies the integral equation x(t) = x0+
t∫
0

[A(s)x(s)+ g(s)]ds

for all t ∈ [0, T ].

Theorem 2.1. [37, 46] Let the following conditions are true:

1) A(t) is measurable on [0, T ];

2) There exists a > 0 such that ∥A(t)∥ ≤ a for almost every t ∈ [0, T ];

3) The fuzzy map g(s) is measurable on [0, T ];

4) There exists ḡ(t) ∈ L2[0, T ] such that D
(
g(t), 0̂

)
≤ ḡ(t) almost everywhere on t ∈

[0, T ].

Then problem (2.1) has on exactly one solution.

3 The control fuzzy differential equation

Now we consider following control fuzzy differential equation

ẋ = A(t)x+B(t)w + f(t), x(0) = x0 (3.2)

where w ∈ Rm is the control, B(t) is n×m-dimensional matrix-valued function; f : R+ →
En is the fuzzy map.

Let W : R+ → Rm be the measurable set-valued map.

Definition 3.1. The set LW of all measurable single-valued branches of the set-valued
map W (t) is the set of the admissible controls.

Obviously, the control fuzzy differential equation (3.2) turns into the ordinary fuzzy
differential equation (2.1) if the control w̃(·) ∈ LW is fixed and g(t) ≡ B(t)w̃(t) + f(t).

Let x(t) denotes the fuzzy solution of the differential equation (2.1), then x(t, w) de-
notes the fuzzy solution of the control differential equation (3.2) for the fixed w(·) ∈ LW .

Definition 3.2. The set Y (T ) = {x(T,w) : w(·) ∈ LW} be called the attainable set of
the system (3.2).
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Theorem 3.1. [30] Let the following conditions are true:

1) A(t) is measurable on [0, T ];

2) There exists a > 0 such that ∥A(t)∥ ≤ a for almost every t ∈ [0, T ];

3) B(t) is measurable on [0, T ];

4) There exists b > 0 such that ∥B(t)∥ ≤ a for almost every t ∈ [0, T ];

5) The set-valued map W : [0, T ] → CC(Rm) is measurable on [0, T ];

6) The fuzzy map f : [0, T ] → En is measurable on [0, T ];

7) There exist v(·) ∈ L2[0, T ] and f̄(·) ∈ L2[0, T ] such that h(W (t), {0}) ≤ v(t), D(f(t), 0̂) ≤
f̄(t) almost everywhere on [0, T ].

Then for every w(·) ∈ LW there exists the fuzzy solution x(·, w) on [0, T ] and the
attainable set Y (T ) is compact and convex.

Let U =
m∏
i=1

[uimin, u
i
max] and W (t) ≡ U on [0, T ].

Now, we need to establish that for any measurable admissible control w(·) and for any
ε > 0 there exists piecewise constant admissible control w̄(·) such that for fuzzy solutions
of system (3.2) holds D(x(t, w), x(t, w̄)) < ε for all t ∈ [0, T ].

Theorem 3.2. Let the conditions of the theorem 3.1 are true.
Then for every w(·) ∈ LW there exists w̄(·) ∈ LW such that

1) w̄(t) is constant on every
[
(i− 1)Tk , i

T
k

)
, i = 1, k;

2) w̄i(t) = {(w̄1
i (t), ..., w̄

m
i (t))T | w̄j

i (t) ∈ {ujmin, u
j
max}, i = 1, k, j = 1,m} for every t ∈

[0, T ];

3) D(x(t, w), x(t, w̄)) ≤ beaT T
2k ∥umax − umin∥ for all t ∈ [0, T ],

where umin =
(
u1min, ..., u

m
min

)T
, umax =

(
u1max, ..., u

m
max

)T
.

Proof. We have any w(·) ∈ LW and any k ∈ N . Let Wi = (W 1
i , ...,W

m
i )T , where W j

i =
iT
k∫
0

wj(s)ds, i = 1, k, j = 1,m.

Obviously, W j
i+1 − W j

i =

(i+1)T
k∫

iT
k

wj(s)ds, ujmin
T
k ≤ W j

i+1 − W j
i ≤ ujmax

T
k , j = 1,m,

and

∥Wi+1 −Wi∥ ≤ ∥umax − umin∥
T

k
.

Now we take

w̄(t) =


w̄1, t ∈ [0, Tk ),
...

...

w̄k−1, t ∈ [ (k−2)T
k , (k−1)T

k ),

w̄k, t ∈ [ (k−1)T
k , T ],
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such that

1) w̄1 = (w̄1
1, ..., w̄

m
1 )T , where w̄j

1 =

{
ujmax, if W j

1 ≥ T
2k (u

j
max + ujmin),

ujmin, if W j
1 < T

2k (u
j
max + ujmin),

j = 1,m;

2) w̄i = (w̄1
i , ..., w̄

m
i )T , i = 2, k,

where w̄j
i =


ujmax, if W j

i −
i−1∑
l=1

w̄l
j
T
k ≥ T

2k (u
j
max + ujmin),

ujmin, if W j
i −

i−1∑
l=1

w̄l
j
T
k < T

2k (u
j
max + ujmin),

j = 1,m;

Obviously, for i = 1 and j = 1,m we have
a) if w̄j

1 = ujmax, when − T
2k (u

j
max − ujmin) ≤ W j

1 − w̄j
1
T
k ≤ 0,

b) if w̄j
1 = ujmin, when

T
2k (u

j
max − ujmin) > W j

1 − w̄j
1
T
k ≥ 0.

Hence we obtain |W j
1 − w̄j

1| ≤ T
2k (u

j
max−ujmin), j = 1,m, and ∥W1− w̄1∥ ≤ T

2k∥umax−
umin∥.

Thus, by induction, we obtain that, for i = 2, k

|W j
i −

i∑
l=1

w̄j
l
T
k | ≤

T
2k (u

j
max − ujmin), j = 1,m,

and

∥Wi −
i∑

l=1

w̄l
T
k ∥ ≤ T

2k∥umax − umin∥.

(3.3)

Therefore, if ti =
iT
k , i = 1, k; then

∥∥∥∥ ti∫
0

w(s)ds−
ti∫
0

w̄(s)ds

∥∥∥∥ ≤ T
2k∥umax − umin∥.

Now, we take t ∈
(
(i−1)T

k , iTk

)
. Then

∥∥∥∥∥∥
t∫

0

w(s)ds−
t∫

0

w̄(s)ds

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥∥∥Wi−1 −
i−1∑
l=1

w̄l
T

k
+

t∫
(i−1)T

k

(w(s)− w̄i)ds

∥∥∥∥∥∥∥∥ .
As for all j = 1,m

W j
i −

i∑
l=1

w̄j
l

T

k
≥ W j

i−1 −
i−1∑
l=1

w̄j
l

T

k
+

t∫
(i−1)T

k

(wj(s)− w̄j
i )ds ≥ W j

i−1 −
i−1∑
l=1

w̄j
l

T

k
;

then ∥∥∥∥∥∥
t∫

0

w(s)ds−
t∫

0

w̄(s)ds

∥∥∥∥∥∥ ≤ max{∥Wi −
i∑

l=1

w̄l
T

k
∥, ∥W j

i−1 −
i−1∑
l=1

w̄j
l

T

k
∥}.

By (3.3), we get for all t ∈ [0, T ]∥∥∥∥∥∥
t∫

0

w(s)ds−
t∫

0

w̄(s)ds

∥∥∥∥∥∥ ≤ T

2k
∥umax − umin∥. (3.4)

Now, applying definition 2.4 and conditions of the theorem, we obtain

D(x(t, w), x(t, w̄)) =



82 Andrej V. Plotnikov, et al / IJIM Vol. 4, NO. 2 (2012) 77-85

= D(

t∫
0

[A(s)x(s, w) +B(s)w(s)]ds,

t∫
0

[A(s)x(s, w̄) +B(s)w̄(s)]ds) ≤

≤
t∫

0

D(A(s)x(s, w), A(s)x(s, w̄))ds+ ∥
t∫

0

B(s)w(s)ds−
t∫

0

B(s)w̄(s)ds∥ ≤

≤ a

t∫
0

D(x(s, w), x(s, w̄))ds+ b

∥∥∥∥∥∥
t∫

0

w(s)ds−
t∫

0

w̄(s)ds

∥∥∥∥∥∥ .
Using Gronwall-Bellman’s inequality, we obtain

D(x(t, w), x(t, w̄)) ≤ beaT

∥∥∥∥∥∥
t∫

0

w(s)ds−
t∫

0

w̄(s)ds

∥∥∥∥∥∥ .
By (3.4), we have D(x(t, w), x(t, w̄)) ≤ beaT T

2k∥umax − umin∥. Theorem is proved.

Remark 3.1. Obviously, if we take k > beaT T
2ε∥umax−umin∥; then D(x(t, w), x(t, w̄)) < ε

for all t ∈ [0, T ].

4 Conclusion

We remark that this result helps to build ε-optimal piecewise constant controls for
optimal control fuzzy system (fuzzy Mayer problem [26], fuzzy time-optimal problem [30,
31, 32, 33] and other).

We can as will receive that for any measurable admissible control w(·) and for any ε > 0
there exists piecewise constant admissible control w̄(·) such that for fuzzy R-solutions of
control linear differential inclusion with fuzzy right-hand side

ẋ ∈ A(t)x+B(t)w + f(t), x(0) = x0 (4.5)

holds D(X(t, w), X(t, w̄)) < ε for all t ∈ [0, T ], where x ∈ Rn, x0 ∈ Rn, ẋ = dx
dt , X(·, w) is

fuzzy R-solution of system (4.5).

Also, the given result as can be received if to take the generalized derivative [9, 38, 39].
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