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Abstract

In this paper, we propose radial basis functions (RBF) to solve the two dimensional flow of fluid near a
stagnation point named Hiemenz flow. The Navier-Stokes equations governing the flow can be reduced to an
ordinary differential equation of third order using similarity transformation. Because of its wide applications
the flow near a stagnation point has attracted many investigations during the past several decades. We satisfy
boundary conditions such as infinity condition, by using Gaussian radial basis function through the both
differential and integral operations. By choosing center points of RBF with shift on one point in uniform grid,
we increase the convergence rate and decrease the collocation points.
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1 Introduction

Hiemenz [1], first examined the two dimensional
flow of fluid near a stagnation point. He demon-

strated that the Navier-Stokes equations governing
the flow can be reduced to an ordinary differential
equation of third order using similarity transforma-
tion. Because of the nonlinearities in the reduced dif-
ferential equation, no analytical solution is available
and the nonlinear equation is usually solved numeri-
cally subject to two-point boundary conditions, one of
which is prescribed at infinity. The flow near a stag-
nation point has attracted many investigations during
the past several decades because of its wide applica-
tions. Numerical solution of this problem by employ-
ing finite difference scheme is given by Howarth [2].
The results of axisymmetric three-dimensional stag-
nation point flow is applied in the prediction of skin
friction as well as heat/ mass transfer near stagnation
regions of bodies in supersonic or hypersonic speeds.
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Also the effect of suction and blowing on Hiemenz
flow is considered by Schlichting and Bussman (1943),
Preston (1946), Ariel (1994) and Weidman and Ma-
halingam (1997) [3]. Some works has been done in
porous medium for example I.A. Hassanien and T.H.
Al-arabi [4], considered the unsteady mix convection
flow near the stagnation point on a heated vertical
surface embedded in a porous medium with thermal
radiation and variable viscosity. The unsteadiness is
caused by sudden motion of velocity and sudden varia-
tion in the surface temperature. This study has many
application in several technical processes for example
in electronic devices cooled by fans, heat exchangers,
placed in low-velocity-environment and solar central
receivers exposed to wind current. An analysis is
presented to investigate the unsteady fluid dynamic
characteristics of an axisymmetric stagnation flow on
a circular cylinder performing a harmonic motion in
its own plane by Gorla [5]. An analysis of magne-
tohydrodynamic (MHD) flow of incompressible fluid
has been made by Sparrow to determine the reduc-
tion in stagnation point heat transfer when blowing
and magnetic field act simultaneously. The results
of this work has many important engineering applica-
tions in devices such as power generator, the cooling
of reactors, the design of heat exchangers and MHD
accelerators. That non-Newtonian fluids are finding
increasing applications in industries has given impe-
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tus to many researchers. Rajeshwari and Rathna [6],
were the first persons who considered non-Newtonian
two dimensional Stagnation point flow and gave its
solution for a viscoelastic second-order fluid. In this
paper we want to consider the viscous two-dimensional
stagnation point flow.

Many problems in science and engineering modelled
as differential equations (DEs) [9, 10, 11, 12]. Solving
equations by traditional numerical methods such as
finite difference (FDM), finite element (FEM) needs
generation of a regular mesh in the domain of the
problem which is computationally expensive.

The meshless methods based on radial basis func-
tions (RBF) has been considered as a powerful and
prospective numerical method for the interpolation
problems and solving differential equations of scat-
tered data. A radial basis function is a positive real-
valued function whose values depend only on the dis-
tance from some points, called centers. The center
points are not necessarily structured, that is, they
can have an arbitrary distribution. The arbitrary
grid structure is one of the major differences between
the RBF method and other global methods. Such
a meshless grid structure yields high flexibility espe-
cially when the domain is irregular.

RBF was first studied by Roland Hardy, an Iowa
State geodesist, in 1968, these methods allow for scat-
tered data to easily be used in computations [13]. The
concept of solving DEs by using RBF was first intro-
duced by Kansa [14] who directly collocated the radial
basis functions for the approximate solution of differ-
ential equations. Since then, it has received a great
deal of attention from researchers. And subsequently,
many further interesting developments and applica-
tions have been reported [15, 16, 17, 18].

Essentially, in a typical RBF collocation method,
each variable and its derivatives are all expressed as
weighted linear combinations of basis functions, where
the sets of network weights are identical. These closed
forms of representations are substituted into the gov-
erning equations as well as boundary conditions, and
the point collocation technique is then employed to
discretize the system. If all basis functions in net-
works are available in analytic forms, the RBF col-
location methods can be regarded as truly meshless
methods [19].

There are two basic approaches for obtaining new
basis functions from RBF, namely direct approach
(DRBF) based on a differential process (Kansa [14])
and indirect approach (IRBF) based on an integration
process (Mai-Duy and Tran-Cong [13, 16, 20]). Both
approaches were tested on the solution of second or-
der DEs and the indirect approach was found to be
superior to the direct approach (Mai-Duy and Tran-
Cong [16]). In recent years, radial basis functions have
been very effective tools to approximate the solutions
of equations on a scattered or irregular grid. Boyd et
al. [21] presented theory and numerical experiments

for approximate the solutions on uniform grid of spac-
ing h in which one point is shifted by an amount sh.
They asserted, that the effects of a shifted grid are lo-
calized in the sense that the RBF approximation will
be unchanged except within a few grid points of the
shifted grid point.
This paper is arranged as follows: In section (2)

problem formulation of Hiemenz flow is applied. In
section (3) properties and interpolation of RBF is ap-
plied. In section (4) we apply new model of RBF
through both the integration and differential process.
In this section new method is applied to solve Hiemenz
flow by choosing center points (ηi) in uniform grid. In
subsection (4.1) present method is applied to solve
Hiemenz flow by choosing center points (ηi) with shift
on one point in uniform grid [21].

2 Problem formulation

Let us consider two-dimensional, Newtonian, viscous,
incompressible, steady state flow of density ρ imping-
ing on a plane situated at x2 = 0 see Fig. 1. Governing
equations are in tensor form. Continuity equation is
given by

dmVm = 0, (2.1)

momentum equations are

VmdmVi =
1

ρ
dip+ νdmmVi. (2.2)

That i,m = 1, 2. If index m is equal to one it means
that properties in direction x1 is considered and if in-
dex m is equal to two it means that properties in di-
rection x2 is considered. d1 is the first order derivation
in x1 direction and d2 is the first order derivation in
x2 direction. The pressure is shown with p and dmm is
the second order derivation. ν is kinematic viscosity.
The boundary conditions on wall are given by

V1(x1, x2 = 0) = 0, (2.3)

V2(x1, x2 = 0) = 0,

where V1 and V2 are the velocity component in the
Cartesian directions (x1, x2). Far away as x2 → ∞ we
reach the invisible flow. The velocity in a potential
flow is written in below form:

U(x1) = V1(x1, x2 → ∞) = cx1,

V (x2) = V2(x1, x2 → ∞) = −cx2,

where U and V are the potential flow velocity com-
ponents and c is the dimensional constant. However,
to allow for effect of viscous region at the stagnation
point region on the outside invisid profile, we may
write:

U(x1) = V1(x1, x2 → ∞) = cx1, (2.4)

V2(x1, x2 → ∞) = −c(x2 + δ∗), (2.5)
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where δ∗ is the thickness to shift the profile from the
wall. we can try the following solution:

V2(x1, x2) = f(x2). (2.6)

From Eq. (2.1) we have

V1(x1, x2) = −x1f ′(x2), (2.7)

from Eq. (2.2) in two dimensional we have

f ′2 − ff ′′ + νf ′′′ =
−d1p
ρx1

, (2.8)

ff ′ − νf ′′ =
−d2p
ρ

. (2.9)

After integrating Eq. (2.9) and putting in Eq. (2.8)
and applying Eqs. (2.3), (2.4), (2.6), (2.7) we have

f ′2 − ff ′′ + νf ′′′ = c2, (2.10)

f(0) = f ′(0) = 0,

f ′(∞) = −c.

The proper characteristic scale for length is
√
ν/c and

for velocity is
√
νc. By use of characteristic scales, the

non-dimensional form of Eq. (2.10) is defined as below

ψ′′′ + ψψ′′ − ψ′2 + 1 = 0, (2.11)

ψ(0) = 0 , ψ′(0) = 0,

ψ′(∞) = 1,

where η and ψ(η) are

η =
√
c/ν x2, (2.12)

ψ(η) =
−f(x2)√

νc
.

By use of above equations we have

f(x2) = −
√
νc ψ(η),

f ′(x2) = −c ψ′(η).

Subsequently, by substituting in Eqs. (2.6) and (2.7)
we have

V1 = cx1ψ
′(η), (2.13)

V2 = −
√
νc ψ(η).

Consequently, ψ′ is proportional to V1 and ψ is pro-
portional to negative of V2
For boundary layer flow, the wall skin friction τw is
given by:

τw = µ
∂V1
∂x2

|x2=0, (2.14)

where µ is the viscosity coefficient. By use of Eq. (2.4),
the skin friction coefficient cf can be defined as:

cf =
τw
ρU2

. (2.15)

Table 1: Some well–known functions that gen-
erate RBFs (r = ∥x− xi∥= ri), ϵ > 0

Name of functions Definition
Inverse quadrics (IQ) 1/(1 + ϵ2r2)

Gaussian (GA) 2/
√
πe−ϵ2r2

Hyperbolic secant (sech) sech(ϵr)

Substituting Eq. (2.12) and Eq. (2.14) into Eq. (2.15)
,we have

cfRe
1/2
x1

= ψ′′(0),

where Rex1 = x1U
ν is local Reynolds number. Thus,

ψ′′(0) is proportional to wall skin friction. Because of
their relation to physical quantities, we discuss the ψ,
ψ′ and ψ′′(0) in our results.

Figure 1: Hiemenz flow of density ρ impinging
on a plane situated at x2 = 0

Figure 2: Graph of ψ′(η) by using GA-RBF on
uniform grid with N = 35 and ϵ = 1
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Table 2: Comparison of the some values of ψ, ψ′, ψ′′, for the present method(GA), on uniform grid with N = 35,
ϵ = 1, and numerical values given by Howarth [2]

η ψ − numerical ψ −GA ψ′ − numerical ψ′ −GA ψ′′ − numerical ψ′′ −GA

0 0 0 0 0 1.2326 1.229742
0.2 0.0233 0.023296 0.2266 0.226445 1.0345 1.034585
0.6 0.1867 0.186623 0.5663 0.566178 0.6752 0.675274
1 0.4592 0.459116 0.7779 0.777802 0.3980 0.398094
1.4 0.7967 0.796521 0.8968 0.896770 0.2110 0.211050
1.8 1.1689 1.168712 0.9568 0.956808 0.1000 0.099983
2 1.3620 1.361826 0.9732 0.973194 0.0658 0.065834
2.4 1.7553 1.755097 0.9905 0.990527 0.0260 0.026014
2.8 2.1530 2.152829 0.9970 0.997018 0.0090 0.009033
3 2.3526 2.352384 0.9984 0.998393 0.0051 0.005059

Table 3: Comparison of the some values of ψ, ψ′, ψ′′, for the present method (shifted point with σ = 0.0555) with
N = 24, ϵ = 0.5, and numerical values given by Howarth [2]

η ψ − numerical ψ −GA ψ′ − numerical ψ′ −GA ψ′′ − numerical ψ′′ −GA

0 0 0 0 0 1.2326 1.232588
0.2 0.0233 0.023355 0.2266 0.226800 1.0345 1.032368
0.6 0.1867 0.186715 0.5663 0.566324 0.6752 0.675697
1 0.4592 0.459236 0.7779 0.777840 0.3980 0.398446
1.4 0.7967 0.796657 0.8968 0.896778 0.2110 0.211040
1.8 1.1689 1.168855 0.9568 0.956811 0.1000 0.099876
2 1.3620 1.361968 0.9732 0.973193 0.0658 0.065870
2.4 1.7553 1.755238 0.9905 0.990515 0.0260 0.026008
2.8 2.1530 2.152965 0.9970 0.997001 0.0090 0.008995
3 2.3526 2.352516 0.9984 0.998379 0.0051 0.005140

Figure 3: Graph of ψ(η), ψ′(η), ψ′′(η) and in-
clined asymptote of ψ(η) by using GA-RBF on
uniform grid with N = 35 and ϵ = 1

3 Properties of RBF

Let R+ = {x ∈ R, x ≥ 0} be the non-negative half-
line and let ϕ : R+ → R be a continuous function with
ϕ(0) ≥ 0. A radial basis function on Rd is a function
of the form

ϕ(∥X⃗ − X⃗i∥)

where X⃗, X⃗i ∈ Rd and ∥.∥ denotes the Euclidean dis-

tance between X⃗, X⃗i. If one choosesN points {X⃗i}Ni=1

in R then by custom

s(X⃗) =

N∑
i=1

λiϕ(∥X⃗ − X⃗i∥); λi ∈ R

is called a radial basis function as well [22].

3.1 RBF interpolation

One dimensional function u(x) to be interpolated or
approximated can be represented by an RBF as:

u(x) ≈ s(x) =
N∑
i=0

λiϕi(x) = ΦT (x)Λ (3.16)

where

ϕi(x) = ϕ(∥x− xi∥),
ΦT (x) = [ϕ0(x), ϕ1(x), ..., ϕN (x)],

Λ = [λ0, λ1, ..., λN ]T ,

x is the input and {λi}Ni=0 are the set of coefficients to
be determined. By choosing N + 1 interpolate nodes
{xi}Ni=0 in Eq. (3.16), we can approximate the function
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u(x) by

uj =

N∑
i=0

λiϕi(xj), (j = 0, 1, 2, ..., N). (3.17)

To brief discussion on coefficient matrix we define:

AΛ = U, (3.18)

where

U =[u0, u1, ..., uN ]T , (3.19)

A =[ΦT (x0),Φ
T (x1), ...,Φ

T (xN )]T

=


ϕ0(x0) ϕ1(x0) . . . ϕN (x0)
ϕ0(x1) ϕ1(x1) . . . ϕN (x1)

...
...

. . .
...

ϕ0(xN ) ϕ1(xN ) . . . ϕN (xN )

 . (3.20)

Note that ϕi(xj) = ϕ(∥xi − xj∥) therefor we have
ϕi(xj) = ϕj(xi) consequently A = AT .
All the infinitely smooth RBF choices are listed in
Table 1 will give the coefficient matrices A in (3.20).
They are symmetric and nonsingular [23], i.e. there
is a unique interpolant of the form (3.16), no matter
how the distinct data points are scattered in any
number of space dimensions. In the cases of inverse
quadratic (IQ), sech and Gaussian (GA) the matrix
A is positive definite [23].

The shape parameter ϵ which is appeared in Table
1 affects both the accuracy of the approximation and
the conditioning of the interpolation matrix [24]. In
general, for a fixed number ofN , smaller shape param-
eters produce the more accurate approximations, but
also are associated with a poorly conditioned A. The
condition number also grows with N for fixed values
of the shape parameter ϵ. Small ϵ means peaked ra-
dial functions, whereas big ϵ it means flat ones. Many
researchers [25, 26] have attempted to develop algo-
rithms for selecting optimal values of the shape pa-
rameter. The optimal choice of the shape parameter
is still an open question. In practice it is most often
selected by brute force. Recently, Fornberg et al. [27]
developed a Contour–Padé algorithm which is capa-
ble of stably computing the RBF approximation for
all ϵ > 0, [24].

For some key theorems regarding RBF interpolation
and the convergence of its interpolation, see [23, 28,
29, 30].

4 Solving the problem by using
RBF method

In this problem, we use Gaussian (GA): 2/
√
π e−ϵ2r2

which is positive definite function and can get high
accurate solution [23], where r = ∥η − ηi∥ and ϵ is a
positive constants that control the widths of the basis
functions, called shape parameters.

Figure 4: Graph of coefficients λi by using GA-
RBF on uniform grid with N = 35 and ϵ = 1

Figure 5: Graph of ψ′(η) by using GA-RBF on
uniform grid with one shifted point with N = 24
and ϵ = 0.5

Now we approximate ψ′′(η) and ψ′′′(η) as

ψ′′(η) ≃ ψ′′
N (η) =

N∑
i=0

λiϕi(η), (4.21)

ψ′′′(η) ≃ ψ′′′
N (η) =

N∑
i=0

λiϕ
′
i(η), (4.22)

by using integral operation f ′(η) is obtained as∫ ∞

η

ψ′′
N (t)dt =

N∑
i=0

λi

∫ ∞

η

ϕi(t) dt,

ψ′
N (∞)− ψ′

N (η) =

N∑
i=0

λi

∫ ∞

η

ϕi(t) dt,

ψ′(η) ≃ ψ′
N (η) = (4.23)

1−
N∑
i=0

λi

∫ ∞

η

ϕi(t) dt.

Now for obtaining f(η) simply we choose integral op-
eration I(g(η)) =

∫ η

0
g(z)dz and by using Eq. (4.21)
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Figure 6: Graph of ψ(η), ψ′(η), ψ′′(η) and in-
clined asymptote of ψ(η) by using GA-RBF on
uniform grid with one shifted point with N = 24
and ϵ = 0.5

we have∫ η

0

ψ′′
N (t)dt =

N∑
i=0

λi

∫ η

0

ϕi(t) dt,

ψ′
N (η)− ψ′

N (0) =

N∑
i=0

λi

∫ η

0

ϕi(t) dt,

∫ η

0

ψ′
N (t)dt =

N∑
i=0

λi

∫ η

0

∫ t

0

ϕi(v) dv dt,

ψ(η) ≃ ψN (η) =
N∑
i=0

λi

∫ η

0

∫ t

0

ϕi(v) dv dt,

where ψ(0) = ψ′(0) = 0. Fortunately, integrals on
right hand sides over the finite interval between 0 and
η can be reduced to one dimensional integrals by us-
ing the formula of iterated integrals (Abramowitz and
Stegun [33]) as

ψ(η) ≃ ψN (η) = (4.24)

η2
N∑
i=0

λi

∫ 1

0

t ϕi(η(1− t))dt.

By substituting Equations Eqs. (4.21), (4.22), (4.23)
and (4.24) in Eq. (2.11), Residual can be defined

Res(η) = ψ′′′
N (η) + ψN (η)ψ′′

N (η)− ψ′
N

2(η) + 1.

Now by using N + 1 interpolate nodes {ηj}Nj=0, same
as centers, the set of equations can be solved and con-
sequently, the coefficients {λi}Ni=0 will be obtained

Res(ηj) = 0 , j = 0, 1, ..., N.

In this method all of the boundary conditions such
as infinity condition (ψ′(∞) = 1) is satisfy. Also the
problem is solved in semi-interval domain by using
collocation points ηj = jh. Here, we set h = 10/N .

For the numerical solution ψ′′(0) is important, thus
ψ′′(η) is approximated by RBF. We compare the
present method by using GA-RBF by ϵ = 1 and
N = 35 with numerical solution obtained by Howarth
[2] in Table 2. Graph of ψ′(η) by using GA-RBF on
uniform grid is shown by Fig. 2. Graphs of ψ(η),
ψ′(η), ψ′′(η) and inclined asymptote of ψ(η) by using
present method on uniform grid is shown by Fig. 3.
In Fig. 4 the coefficients of GA-RBF on uniform grid
is shown.

To achieve more accurate approximations, we
should choose smaller shape parameter and big num-
ber of N , but also both of them are converted the
problem to ill-condition system. Therefore, we apply
a scheme that for a fixed number of N , can choose a
smaller shape parameter and achieve accurate approx-
imations.

Figure 7: Graph of coefficients λi by using GA-
RBF on uniform grid with one shifted point with
N = 24 and ϵ = 0.5

Figure 8: Graph of approximated of f(x) = 1
by using GA-RBF with N = 20 and ϵ = 0.5 on
uniform grid



S. Abbasbandy, et al /IJIM Vol. 5, No. 1 (2013) 65-73 71

Figure 9: Graph of approximated of f(x) = 1
by using GA-RBF with N = 20 and ϵ = 0.5 on
uniform grid with one shifted point

4.1 RBF with shift on one point in uni-
form grid

In the first step of our work, we rearrange ψ′′(η) by
RBF approximate for x ≥ 0 as:

ψ′′(η) ≃ ψ′′
N (η, σ) =

N∑
i=0

λ′iϕ(η − ηi),{
ηi = ih , i ̸= [N2 ],

ηi = σ , i = [N2 ],

where h is the average grid spacing and 0 < σ < h is
shifted parameter. Now we can show ψ(η) as

ψ′′(η) ≃ ψ′′
N (η, σ)

=
m−1∑
i=0

λ′iϕi(η) +
N∑

i=m+1

λ′iϕi(η) + λ′mϕm(η),

(4.25)

where m = [N/2] and ϕm(η) = ϕ(η − σ). We apply
the function (4.25) by ϵ = 0.5 and N = 24 for solv-
ing Eq. (2.11) same as pervious section. Solving this
problem by using points in uniform grid by ϵ = 0.5
and N = 24 is converted to ill-condition system and
isn’t computational affordable. But using RBF with
shift on one point in uniform grid is eliminated this
problem. The coefficients of GA-RBF in this case, is
shown by Fig. 7. The graphs illustrate that the series
expansion of ψ′′(x) has a good convergence rate.

In the other hand, by omitting one point in middle
of chosen points and adding another point near ori-
gin, we try to decrease the error near origin and access
good value for ψ′′(0). In the simple example, we in-
terpolate f(x) = 1 by using GA-RBF in two cases and
show that by using nodes with shift on one point in
uniform grid, the error near origin is decreased. Figs. 8
and 9 recognize this fact.

Buhmann, Wendland and Fasshauer [28, 31, 32] dis-
cuss theorems that show that RBF converge on irreg-
ular grids. Recently Boyd et al. [21] presented the
theory about Sensitivity of RBF interpolation on an
otherwise uniform grid with a shifted on one point.
We compare the present method by using GA-RBF

with shift on one point in uniform grid, with numerical
solution which is obtained by Howarth [2] in Table 3.
Graph of ψ′(η) by using present method with shift on
one point in uniform grid, is shown by Fig. 5. Graphs
of ψ(η), ψ′(η), ψ′′(η) and inclined asymptote of ψ(η)
by using present method with shift on one point in
uniform grid, is shown by Fig. 6.

5 Results and Conclusions

The x1 − Dir velocity, V1, has the same shape ψ′(η)
at each location x1 while the magnitude increases lin-
early. Hence we can define a viscous diffusion length
(δ). However, the 0.99% of the the maximum velocity
is reached at about η = 2.4 (Tables 2 and 3) and the
corresponding value of x2 , which is δ, from Eq. (2.12)
is

δ = 2.4

√
ν

c
.

Thus, the δ is proportional to
√
ν. From the solution

we have (it is shown in Figs. 3 and 6)

lim
x2→∞

η(x2) = 0.64795 + ψ(η). (5.26)

Substituting Eq. (2.13), Eq. (2.5) and Eq. (2.12) into
Eq. (5.26), We have

δ∗ = 0.64795
√
ν/c.

Accurate numerical integration using a shooting al-
gorithm yields the initial value ψ′′(0) = 1.232588 [34]
which we achieve it by present method on uniform grid
with shift on one point (Table 3). The coefficients of
present method by using GA-RBF on uniform grid
with N = 35, and GA-RBF with shift on one point in
uniform grid with N = 24, are shown by Figs. 4 and
7. The results are shown that for big N , λn −→ 0 and
consequently, it leads to convergence of the method.
In Fig. 7 Value of λ12 have a jump, because of using
shift on η12 = σ (Eq. (4.25)). Comparison between
two set of coefficients show that the method with shift
on one point in uniform grid is more efficient and re-
liable than using uniform grid.
Hiemenz flow is the two dimensional flow of fluid

near a stagnation point. Because of the nonlinearities
in the reduced differential equation, no analytical solu-
tion is available. The flow near a stagnation point has
attracted many investigations during the past several
decades because of its wide applications. The solu-
tion of this equation is obtained by using traditional
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numerical methods such as finite difference, finite ele-
ment and boundary element methods need generation
of regular mesh points or initial guess or domain trun-
cation of the problem which is computationally expen-
sive and Inefficient for problems prescribed at infinity.
Radial basis functions have been very effective tools
to approximate the solutions of equations on meshless
points without using initial guess. This method is very
easy to apply and has good accuracy. In this paper we
obtain new method based on RBF by using two sets of
center points, the first set points on uniform grid, the
second set points with shift on one point in uniform
grid. Both of them have good accuracy, but using the
shift on one point in uniform grid method is a pow-
erful procedure to approximate functions which are
important on origin. Additionally, high convergence
rates and good accuracy are obtained by the proposed
method using relatively low numbers of data points.
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