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Abstract

In this paper, we will investigate existence, comparison and some stability results of set solutions of fuzzy
intergo-differential systems under the form

DHx(t) = f(t, x(t)) +

∫ t

t0

g(t, η, x(η))dη, x(t0) = x0 ∈ EnN

with some suitable conditions.

Keywords : Fuzzy differential equations; Fuzzy integro-differential equations; Fuzzy integro-differential equa-
tions; Stability theory.

—————————————————————————————————–

1 Introduction

The fuzzy set theory introduced by Zadeh [24] has
emerged as an interesting and fascinating branch

of pure and applied sciences. The applications of fuzzy
set theory can be found in many branches of regional,
physical, mathematical, differential equations and en-
gineering sciences. Recently, the authors have made
important research results in the theory of fuzzy differ-
ential equations, integro-differential equations, fuzzy
integro-differential equations, . . .

On the other hand, in [10] V.Lakshmikantham and
Tolstonogov showed the connection between the so-
lutions of fuzzy differential equation and the set dif-
ferential equation that is generated from it. In [11]
V.Lakshmikantham et al studied interconnection be-
tween set and fuzzy differential equations and in [12]
V. Lakshmikantham, S.Leela studied of fuzzy differ-
ential systems is initiated and sufficient condition, in
terms of Lyapunov - like functions, are provided for
the new concept of stability which unifies Lyapunov
and orbital stabilities as well as includes new nontions
in between.

∗Corresponding author. hovumath@gmail.com
†Division of Applied Mathematics, University of Ton Duc

Thang, Vietnam.
‡Division of Applied Mathematics, University of Ton Duc

Thang, Vietnam.
§S.P. Timoshenko Institute of mechanics National Academy

of Sciences of Ukraine.

In [9], Bashir Ahmad et al studied of stability cri-
teria for set solution of set integro-differential equa-
tions. In [1], T. Allahviranloo et al studied of existence
and uniqueness of solutions of fuzzy Volterra integro-
differential equations of the second kind with fuzzy
kernel under strongly generalized differentiability. In
[19], Phu N.D et al studied of existence, uniqueness
and comparisons of solution to fuzzy control integro-
differential systems by using some kinds of controls. In
[22], Ho Vu et al studied of existence, comparison and
some stability results of set solutions of fuzzy control
intergo-differential systems.
In this paper, we discuss some stability results in

terms of Lyapunov-like functions of set solutions of
fuzzy intergo-differential systems with some suitable
conditions.

2 Preliminaries

We recall some notations and concepts presented in
detail in recent series works of Professor Lakshmikan-
tham V. et al . . . ([10]-[16]). Let KC(Rn) denote the
collection of all nonempty, compact and convex sub-
sets of Rn. Given A,B in KC(Rn), the Hausdorff dis-
tance between A and B defined as

dH [A,B] = max{sup
a∈A

inf
b∈B

∥a− b∥Rn , sup
b∈B

inf
a∈A

∥a− b∥Rn}

where ∥.∥Rn denotes the Euclidean norm in Rn. It is
known that (KC(Rn), dH) is a complete metric space
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and if the space KC(Rn) is equipped with the nat-
ural algebraic operations of addition and nonegative
scalar multiplication, then KC(Rn) becomes a semi-
linear metric space which can be embedded as a com-
plete cone into a corresponding Banach space. The
set [ω]α = {z ∈ Rn : ω(z) ≥ α, 0 < α ≤ 1} is called
the α-level set. For all 0 ≤ α ≤ β ≤ 1 then we have
[ω]

β ⊂ [ω]
α ⊂ [ω]

0
. Set En = {ω : Rn → [0, 1] such

that ω(z) satisfies (i)-(iv) stated below}
(i) ω is normal, that is, there exists an z0 ∈ Rn such

that ω(z0) = 1;

(ii) ω is fuzzy convex, that is, for 0 ≤ λ ≤ 1

ω(λz1 + (1− λ)z2) ≥ min{ω(z1), ω(z2)};

(iii) ω is upper semicontinuous;

(iv) [ω]0 = cl{z ∈ Rn : ω(z) > 0} is compact. The
element ω ∈ En is called a fuzzy number or fuzzy
set.

For two fuzzy sets ω1, ω2 ∈ En , we denote ω1 ≤ ω2 if
and only if [ω1]

α ⊂ [ω2]
α
. Let us denote

D0[ω1, ω2] = sup{dH
[
[ω1]

α, [ω2]
α
]
: 0 ≤ α ≤ 1}

the distance between ω1 and ω2 in En, where

dH

[
[ω]α, [ω]α

]
is Hausdorff distance between two set

[ω1]
α, [ω2]

α of KC(Rn). Then (En, dH) is a complete
space. Some properties of metric D0 are as follows.

D0[ω1 + ω3, ω2 + ω3] = D0[ω1, ω2],

D0[λω1, λω2] = |λ|D0[ω1, ω2],

D0[ω1, ω2] ≤ D0[ω1, ω3] +D0[ω3, ω2],

for all ω1, ω2, ω3 ∈ En and λ ∈ R. Given an interval
J = [t0, T ] ⊆ R+.

Let us denote θn ∈ En the zero element of
En as follows:

θn (z) =

{
1 if z = 0̂

0 if z ̸= 0̂

where 0̂ is the zero element of Rn. Let u, v ∈ En.
The set w ∈ En satisfying w = u+ v is known as the
geometric difference of the set u and v and is denoted
by the symbol u − v. The mapping F : R+ ⊃ J =
[t0, T ] → En is said to have a Hukuhara derivative
DHF (τ) at a point τ ∈ J , if

lim
h→0+

F (τ + h)− F (τ)

h
and lim

h→0+

F (τ)− F (τ − h)

h

exist and equal to DHF (τ). Here limits are taken in
the metric space (En, D0). If F : J → En is continu-
ous, then it is integralble and

t2∫
t0

F (s) ds =

t1∫
t0

F (s) ds+

t2∫
t1

F (s) ds (2.1)

If F,G : J → En are integralble, λ ∈ R, then some
properties below hold

t∫
t0

(F (s) +G (s)) ds =

t∫
t0

F (s) ds+

t∫
t0

G (s) ds

(2.2)

t∫
t0

λF (s) ds = λ

t∫
t0

F (s) ds, λ ∈ R, t0 ≤ t ≤ T.

(2.3)

D0

 t∫
t0

F (s) ds,

t∫
t0

G (s) ds

 ≤
t∫

t0

D0 [F (s) , G (s)] ds.

(2.4)

Let F : J → En be continuous. Then integral
t∫

t0

F (s) ds is differentiable and DHG(t) = F (t).

In [12] the authors have some definitions on
the fuzzy mapping set:xi : I → En, xi(t) ∈ En

where [xi(t)]
α ∈ KC(Rn), and x(t) =

x1(t)×x2(t)×. . .×xN (t) ∈ EnN = En×En×. . .×En,
where every xi(t) ∈ En, i = 1, 2, . . . , N . The fuzzy set
must be x(t) = (x1(t), x2(t), . . . , xN (t)).

Let x̄, x ∈ EnN . If there exists a set z ∈ EnN

satisfying x̄ = x + y, then y is called the Hukuhara
difference of the set x̄ and x and is denoted by x̄− x.

We have some possibilities to measure the new fuzzy
variables x, x̄, f that are

d0[x, x̄] =
N∑
i=1

d[xi, x̄i]

or

d0[x, x̄] =
1

N

√√√√ N∑
i=1

d2[xi, x̄i]

or

d0[x, x̄] = max(d[x1, x̄1], d[x2, x̄2], . . . , d[xN , x̄N ])

and employ the metric space (EnN , d0) as a fuzzy
Hausdorff metric space, where if x ∈ EnN , then
∥x∥= d0[x, θ

nN ].

We say that fuzzy mapping set x(t) ∈ EnN has a
Hukuhara derivative DHx(t) at a point t, if

lim
τ→0+

τ−1
(
x(t+ τ)− x(t)

)
and

lim
τ→0+

τ−1
(
x(t)− x(t− τ)

)
,

exist in the topology of EnN and are equal to DHu(t).
Here limits are taken in the metric space (EnN , d0):

lim
τ→0+

d0

[
x(t+ τ)− x(t)

τ
,DHx(t)

]
= 0
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and

lim
τ→0+

d0

[
x(t)− x(t− τ)

τ
,DHx(t)

]
= 0.

3 Main results

Let’s the fuzzy integro-differential systems (FIDS) as
follows

(3.5)DHx(t) = f(t, x(t)) +

∫ t

t0

g(t, η, x(η))dη,

x(t0) = x0 ∈ EnN ,

where f ∈ C[R+ × EnN , EnN ], g ∈ C[R+ × R+ ×
EnN , EnN ], state x(t) ∈ EnN . The mapping x ∈
C1[J,EnN ] is said to be a solution of (3.5) on J . The
solution of (3.5) is written in the form

x(t) = x0 +

∫ t

t0

[
f(η, x(η)) +

∫ t

t0

g(σ, η, x(η))dσ
]
dη,

(3.6)

t ∈ J,

where the integral is the Hukuhara integral.

Utilizing the properties of the Hausdorff metric and
the integral, and employing the known theory of the
differential and integral inequalies for ordinary differ-
ential equations, we shall first establish the following
comparison principle, which we need for later discus-
sion.

Theorem 3.1 Assume that f ∈ C[R+ ×EnN , EnN ],
g ∈ C[R+ × R+ × EnN , EnN ] and for t ∈ R+; x, y ∈
EnN ;

d0

[
f(t, x(t)) +

∫ t

t0

g(t, η, x(η))dη, f(t, y(t))

+

∫ t

t0

g(t, η, y(η))dη

]
≤ g1(t, d0[x, y])+

∫ t

t0

G(t, η, d0[x, y])dη

where g1 ∈ C[R+×R+,R+] and G ∈ C[R+×R+,R+].
Moreover, we require that there exists the maximal so-
lution r(t, t0.w0) of the scalar integro-differential equa-
tion

w′(t) = g1(t, w(t)) +

∫ t

t0

G(t, η, w(η))dη,

w(t0) = w0 ≥ 0, t ≥ t0.

Then, if x(t) = x(t, t0, x0), y(t) = y(t, t0, y0) is any
solution of FIDS (3.5) such that x0, y0 ∈ EnN exists

for t ≥ t0 and x(t0) = x0, y(t0) = y0, we have
d0[x(t), y(t)] ≤ r(t, t0, w0), t ≥ t0 provided that
d0[x0, y0] ≤ w0.

Since x(t), y(t) are solutions of FIDS (3.5), the
Hukuhara difference x(t + h) − x(t), y(t + h) − y(t)
exist for small h > 0. Set m(t) = d0[x(t), y(t)]. we
have

m(t+ h)−m(t) = (3.7)

d0[x(t+h), y(t+h)]−d0[x(t), y(t)]≤

d0

[
x(t+ h), x(t) + h

{
f(t, x(t))

+

∫ t

t0

g(t, η, x(η))dη
}]

+ d0

[
x(t) + h

{
f(t, x(t)) +

∫ t

t0

g(t, η, x(η))dη
}
,

y(t) + h
{
f(t, y(t)) +

∫ t

t0

g(t, η, y(η))dη
}]

+ d0

[
y(t) + h

{
g(t, y(t))

+

∫ t

t0

g(t, η, y(η))dη
}
, y(t+ h)

]
− d0[x(t), y(t)]

Also, we observe that

d0

[
x(t+ h), x(t) + h

{
f(t, x(t)) +

∫ t

t0
g(t, η, x(η))dη

}]
= d0

[
x(t+ h)− x(t), h

{
f(t, x(t)) +

∫ t

t0

g(t, η, x(η))dη
}]

=
1

h
d0

[x(t+ h)− x(t)

h
, f(t, x(t)) +

∫ t

t0

g(t, η, x(η))dη
]

(3.8)

d0

[
x(t) + h

{
f(t, x(t)) +

∫ t

t0

g(t, η, x(η))dη
}
, y(t)

+ h
{
f(t, y(t)) +

∫ t

t0

g(t, η, y(η))dη
}]

= d0

[
h
{
f(t, x(t))

+

∫ t

t0

g(t, η, x(η))dη
}
, h

{
f(t, y(t))

+

∫ t

t0

g(t, η, y(η))dη
}]

+ d0[x(t), y(t)]

= hd0

[
f(t, x(t)) +

∫ t

t0

g(t, η, x(η))dη, f(t, y(t))

+

∫ t

t0

g(t, η, y(η))dη
]
+ d0[x(t), y(t)]

(3.9)
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d0

[
y(t) + h

{
f(t, y(t)) +

∫ t

t0

g(t, η, y(η))dη
}
, y(t+ h)

]
= d0

[
h
{
f(t, y(t)) +

∫ t

t0

g(t, η, y(η))dη
}
, y(t+ h)

− y(t)
]

=
1

h
d0

[
f(t, y(t))

+

∫ t

t0

g(t, η, y(η))dη,
y(t+ h)− y(t)

h

]
(3.10)

Form (3), (3.8), (3.9) and (3.10), we have

m(t+ h)−m(t)

h

≤ 1

h
d0

[x(t+ h)− x(t)

h
, f(t, x(t))+

∫ t

t0

g(t, η, x(η))dη
]

+
1

h
d0

[
f(t, y(t))

+

∫ t

t0

g(t, η, y(η))dη,
y(t+ h)− y(t)

h

]
+ d0

[
f(t, x(t)))

+

∫ t

t0

g(t, η, x(η))dη, f(t, y(t))

+

∫ t

t0

g(t, η, y(η))dη
]

Taking lim sup as h → 0+ yields

D+m(t) = lim
h→0+

sup
1

h

[
m(t+ h)−m(t)

]
≤ d0

[
f(t, x(t)) +

∫ t

t0

g(t, η, x(η))dη, f(t, y(t))

+

∫ t

t0

g(t, η, y(η))dη
]

≤ g1(t, d0[x, y]) +

∫ t

t0

G(t, η, d0[x, y])dη

≤ g1(t, d0[x0, y0]) +

∫ t

t0

G(t, η, d0[x0, y0])dη

Which together with the fact that d0[x0, y0] ≤ w0

and by the comparison theorem for ordinary integro-
differential equations [5] gives

d0[x(t), y(t)] ≤ r(t, t0.w0) t ≥ t0

This completes the proof of the theorem.

We shall begin by proving the existence and unique-
ness results under assumptions more general than the
Lipschitz type condition, which exhibits the idea of
the comparison principle.

Theorem 3.2 Assume that

(ca1) f ∈ C[J × B(x0, b), E
nN ], g ∈ C[J × J ×

B(x0, b), E
nN ], where B(x0, b) = {x ∈ EnN :

d0[x, x0] ≤ b} and d0[f(t, x), θ
nN ] ≤ M0 on

J × B(x0, b),
∫ t

η
d0[g(σ, η, x(η)), θ

nN ]dσ ≤ N0 on

J × J × B(x0, b), where θnN is zero element of
EnN regarded as a point set.

(ca2) d0[f(t, x), f(t, y)] ≤ g1(t, d0[x, y]) on J ×B(x0, b)
and
d0[g(t, η, x), g(t, η, y)] ≤ G(t, η, d0[x, y]) on J ×
B(x0, b), where g1 ∈ C[J × [0, 2b],R+], G ∈
C[J×J× [0, 2b],R+], g1(t, w) ≤ M1 on J× [0, 2b],
G(t, η, w) ≤ N1 on J × J × [0, 2b], g1(t, 0) =
0, G(t, η, 0) = 0, g1(t, w) and G(t, η, w) are non-
decreasing in w for each t ∈ J , (t, η) ∈ J × J .

(ca3) w(t) = 0 is the only solution of

w′(t) = g1(t, w(t)) +

∫ t

t0

G(t, η, w(η))dη, (3.11)

w(t0) = w0.

Then the successive approximations defined by

xn+1(t) = x0+

∫ t

t0

[
f(η, xn(η)) +

∫ t

t0

g(σ, η, xn(η))dσ
]
dη t ∈ J,

exists on J0 ≡ [t0, t + α], where α =

min
(
a,

b

N +M

)
, M = max{M0,M1}, N =

max{N0, N1}, as continuous functions and con-
verge uniformly to the unique solution x(t) of
FIDS (3.5) on J0.

Let us define a sequence xn(t) : J → EnN , n = 1, 2, . . .
of successive approximations as follows x(t0) = x0 for
every J and

xn+1(t) =

x0 +

∫ t

t0

[
f(η, xn(η)) +

∫ t

t0

g(σ, η, xn(η))dσ
]
dη, t ∈ J.

We have

d0[xn+1, x0] = d0

[
x0 +

∫ t

t0

[
f(η, xn(η))

+

∫ t

t0

g(σ, η, xn(η))dσ
]
dη, x0

]

≤ d0

[ ∫ t

t0

f(η, xn(η))dη, θ
nN

]
+ d0

[ ∫ t

t0

∫ t

t0

g(σ, η, xn(η))dσdη, θ
nN

]
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Using the assumption (ca1), we get

d0[xn+1, x0] ≤
∫ t

t0

d0

[
f(η, xn(η)), θ

nN
]
dη

+

∫ t

t0

d0

[ ∫ t

t0

g(σ, η, xn(η))dσ, θ
nN

]
dη

≤ (t− t0)(N0 +M0)

≤ t(N0 +M0)

< b

Similar, we define the successive approximations of
(3.11) as follows

w0(t) = (t− t0)(N1 +M1), wn+1(t)

=

∫ t

t0

g1(η, wn(η))dη+

∫ t

t0

∫ t

t0

G(σ, η, w(η))dσdη

where t ∈ J, n = 1, 2, . . .
An easy induction proves that {wm(t)} as well de-

fined and

0 < wn+1(t) < wn(t), t ∈ J

Since |w′
n(t)|≤ g(t, wn−1(t)) ≤ N1 +M1, we conclude

from the Ascoli - Arzela theorem and the monotonicity
of the sequence {wn(t)}, that wn(t) → w(t) as n → ∞
uniformly on J . It is also clear that w(t) satisfies
(3.11) and hence by conditions (ca2)

w(t) ≥ 0, t ∈ J

We see that

d0[x1, x0] ≤
∫ t

t0

d0

[
f(η, x0(η)), θ

nN
]
dη

+

∫ t

t0

d0

[ ∫ t

t0

g(σ, η, x0(η))dσ, θ
nN

]
dη

≤ (t− t0)(N1 +M1)

= w0(t)

Observe that for n = 2, 3, . . . one has

d0[xn+1(t), xn(t)]

= d0

[
x0 +

∫ t

t0

[
f(η, xn(η)) +

∫ t

t0

g(σ, η, xn(η))dσ
]
dη,

x0 +

∫ t

t0

[
f(η, xn−1(η)) +

∫ t

t0

g(σ, η, xn−1(η))dσ
]
dη

]

≤
∫ t

t0

d0

[
f(η, xn(η)), f(η, xn−1(η))

]
dη

+

∫ t

t0

d0

[ ∫ t

t0

g(σ, η, xn(η))dσ,

∫ t

t0

g(σ, η, xn−1(η))dσ
]

≤
∫ t

t0

d0

[
f(η, xn(η)), f(η, xn−1(η))

]
dη

+

∫ t

t0

∫ t

t0

d0

[
g(σ, η, xn(η)), g(σ, η, xn−1(η))

]
dσdη

Using the assumption (ca2), we have

d0[xn+1(t), xn(t)]

≤
∫ t

t0

g1(η, d0[xn+1(η), xn(η)])dη

+

∫ t

t0

∫ t

t0

G(σ, η, d0[xn+1(η), xn(η)])dσdη

= wn(t)

Thus, we have the estimate

d0[xn+1(t), xn(t)] ≤ wn(t)

Let v(t) = d0[xn+1(t), xn(t)], t ∈ J . The proof of
Theorem 3.2 yields, for t ∈ J ,

D+x(t) ≤ g1(t, d0[xn+1(t), xn(t)])

+

∫ t

t0

G(t, η, d0[xn+1(η), xn(η)])dη

≤ g(t, wn−1(t)) +

∫ t

t0

G(t, η, wn−1(η))dη

Let n > m. The we obtain

d0[DHxn(t), DHxm(t)]

= d0

[
f(t, xn(t)) +

∫ t

t0

g(t, η, xn(η))dη, f(t, xm(t))

+

∫ t

t0

g(t, η, xm(η))dη

]

≤ d0

[
f(t, xn(t)) +

∫ t

t0

g(t, η, xn(η))dη, f(t, xn−1(t))

+

∫ t

t0

g(t, η, xn−1(η))dη

]

+ d0

[
f(t, xn−1(t))

+

∫ t

t0

g(t, η, xn−1(η))dη, f(t, xm−1(t))

+

∫ t

t0

g(t, η, xm−1(η))dη

]

+ d0

[
f(t, xm−1(t))

+

∫ t

t0

g(t, η, xm−1(η))dη, f(t, xm(t))

+

∫ t

t0

g(t, η, xm(η))dη

]
≤ g1(t, wn−1(t)) + g1(t, wm−1(t))

+ g1(t, d0[xn(t), xm(t)])

+

∫ t

t0

G(t, η, wn−1(η))dη +

∫ t

t0

G(t, η, wm−1(η))dη

+

∫ t

t0

G(t, η, d0[xn(t), xm(t)])dη
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Setting v(t) = d0[xn(t), xm(t)], the proof Theorem 3.2
shows that

D+v(t) ≤ d0[DHxn(t), DHxm(t)]

≤ 2g1(t, wn−1(t)) + g1(t, v(t))

+ 2

∫ t

t0

G(t, η, wn−1(η))dη

+

∫ t

t0

G(t, η, v(η))dη

in view of the monotone nature of g1(t, w) and
G(t, η, w) are nondecreasing in w for each t ∈ J ,
(t, η) ∈ J × J and the fact that wm−1(t) ≤ wn−1(t)
since n ≥ m and wn(t) is decreasing sequence. The
comparison theorem for integro-differential equations
[15] gives

v(t) ≤ rn(t), rn(t) = 0

where rn(t) is the maximal solution of

(3.12)

r′n(t) = 2g1(t, wn−1(t)) + g1(t, rn(t))

+ 2

∫ t

t0

G(t, η, wn−1(η))dη

+

∫ t

t0

G(t, η, rn(η))dη

Since g1(t, wn−1(t)) → 0 and G(t, η, wn−1(η)) → 0 as
n → ∞ uniformly on J , it follows by Theorem 1.4.1
in [15] that rn(t) → 0 uniformly on J . This implies
from (3.12) and definition of v(t) that xn(t) converge
uniformly to x(t) and it easy to show that x(t) is a
solution of (3.5).

To show uniqueness, let x0(t) be another solution
of (3.5). Then setting m(t) = d0[x(t), x0(t)] and not-
ing that m(t0) = 0, we get D+m(t) ≤ g1(t,m(t)) +∫ t

t0
G(t, η,m(η))dη, t ∈ J and m(t) ≤ r(t, t0, 0), t ∈ J

be Theorem 3.2. By the assumptions r(t, t0, 0) ≡ 0
and therefore, we obtain x(t0) = x0, t ∈ J .

This completes the proof of the theorem.

The second, we have the stability criteria of FIDS
(3.5) as below.

Definition 3.1 The trivial set solution of (3.5) is said
to be

(S1) equi-stable of for each ε > 0 and t0 > 0, there
exists a δ = δ(t0, ε) such that d0[x0, θ

nN ] < δ
implies d0[x(t), θ

nN ] < ε, for t ≥ t0;

(S2) uniformly stable, if the δ in (S1) is independent
of t0;

(S3) quasi-equi-asymptotically stable, if for each ε >
0, t0 > 0, there exist a T = T (t0, ε) and
δ0 = δ0(t0) such that d0[x0, θ

nN ] < δ0 implies
d0[x(t), θ

nN ] < ε, for all t > t0 + T ;

(S4) quasi-uniformly asymptotically stable, if δ0 and
T in (S3) are independent of t0;

(S5) equi-asymptotically stable, if (S1) and (S3) hold
simultaneously;

(S6) uniformly asymptotically stable, if (S2) and (S4)
hold simultaneously;

(S7) exponentially asymptotically stable, if there exist
constants λ, β > 0 such that

d0[x(t), θ
nN ] ≤

β(d0[x0, θ
nN ], t0) exp[−λ(t− t0)], t > t0.

Theorem 3.3 Assume that

(cc1) V ∈ C[R+×EnN ,×EnN ] and |V (t, x)−V (t, y)|≤
Ld0[x, y] where L is the local Lipschitz constant,
x, y ∈ EnN ;

(cc2) g1 ∈ C[R+ × R+,R], G ∈ C[R+ × R+,R] and for
x, y ∈ EnN , t ∈ R+,

D+V (t, x) ≡ lim
h→0+

sup
1

h

[
V (t+ h, x(t)

+ h
{
f(t, x(t))

+

∫ t

t0

G(t, η, x(η))dη
}

− V (t, x(t))
]

≤ g1(t, V (t, x))

+

∫ t

t0

G(t, η, V (η, x(η)))dη

Then, if x(t) = x(t, t0, x0) is any solution of FIDS (3.5)
existing on [t0,∞) such that V (t, t0, x0), we have

V (t, x(t)) ≤ r(t, t0, w0) t ∈ [t0,∞)

where r(t, t0, w0) is the maximal solution of

w′(t) = g1(t, w(t)) +

∫ t

t0

G(t, η, w(η))dη w(t0)

= w0

≥ 0,

existing on [t0,∞).

Let x(t) = x(t, t0, x0) be any solution of FIDS (3.5)
existing on [t0,∞). Define m(t) = V (t, x(t)) so that
m(t0) = V (t0, x0) ≤ w0. Now for small h > 0, we
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consider

m(t+ h)−m(t) = V (t+ h, x(t+ h))− V (t, x(t))

≤ V (t+ h, x(t+ h))

+ V (t+ h, x(t) + h
{
f(t, x(t))

+

∫ t

t0

g(t, η, x(η))dη
}
)

− V (t+ h, x(t) + h
{
f(t, x(t))

+

∫ t

t0

g(t, η, x(η))dη
}
)−V (t, x(t))

≤ Ld0

[
x(t+ h), x(t) + h

{
f(t, x(t))

+

∫ t

t0

g(t, η, x(η))dη
}]

− V (t+ h, x(t) + h
{
f(t, x(t))

+

∫ t

t0

g(t, η, x(η))dη
}
)−V (t, x(t))

using the Lipschitz conditions give in (cc1). Thus

D+m(t) ≡ lim
h→0+

sup
1

h
[m(t+ h)−m(t)]

≤D+V (t, x(t))+ lim
h→0+

sup
1

h
d0

[
x(t+h), x(t)

+ h
{
f(t, x(t)) +

∫ t

t0

g(t, η, x(η))dη
}]

Since

1

h
d0

[
x(t+h), x(t)+h

{
f(t, x(t))+

∫ t

t0

g(t, η, x(η))dη
}]

= d0

[m(t+ h)−m(t)

h
, f(t, x(t))

+

∫ t

t0

g(t, η, x(η))dη
]

and x(t) is any solution of FIDS (3.5), we find that

lim
h →0+

sup
1

h
d0

[
x(t+ h), x(t)

+ h
{
f(t, x(t)) +

∫ t

t0

g(t, η, x(η))dη
}]

= lim
h→0+

sup d0

[m(t+ h)−m(t)

h
, f(t, x(t))

+

∫ t

t0

g(t, η, x(η))dη
]

= d0

[
DHx(t), f(t, x(t)) +

∫ t

t0

g(t, η, x(η))dη
]

= 0

We therefore have the scalar integro-differential in-
equality

D+m(t) ≤ g1(t,m(t)) +

∫ t

t0

G(t, η,m(η))dη, m(t0)

≤ w0

By the Theorem 1.4.1 in [15], it follows the estimate

m(t) ≤ r(t, t0, w0), [t0,∞)

This proves the assertion of the theorem.

Corollary 3.1 Assume that the Lyapunov-like func-
tion V (t, x(t)) satisfies conditions in Theorem 3.3. If
functions g1 (t, w) ≡ 0 and G (t, s, w) ≡ 0 are admis-
sible in Theorem 3.3 to yield the estimate

V (t, x(t)) ≤ V (t0, x(t0)) , ∀t ≥ t0 > 0.

Putting Sρ(x0) = {x(t) ∈ EnN : d0[x(t), x0] < ρ},
we have: Assume that for FIDS (3.5) exists the Lya-
punov like function V (t, x(t)) which satisfies the con-
ditions of Theorem 3.3, and

a) there exist the positive functions a(·, ·), b(·)
are strictly increasing and µ > 0 such that
∀t ∈ [t0, T ], x(t) ∈ EnN : b

(
d0[x(t), θ

nN ]
)

≤
V (t, x(t)) ≤ a

(
t, d0[x(t), θ

nN ]
)
. Then,

(i) if function g1(t, V (t, x)) +∫ t

t0
G(t, η, V (η, x(η)))dη ≤ 0 is admissi-

ble in Theorem 3.3, the estimate (S1)
holds.

(ii) if function g1(t, V (t, x)) +∫ t

t0
G(t, η, V (η, x(η)))dη ≤ −µ is admis-

sible in Theorem 3.3, the estimate (S3)
holds.

(iii) if function g1(t, V (t, x)) +∫ t

t0
G(t, η, V (η, x(η)))dη < −µ, is ad-

missible in Theorem 3.3, the estimate (S5)
holds.

b) there exist the positive functions a(·, ·), b(·) are
strictly increasing and η > 0 such that ∀t ∈
[t0;T ], x(t) ∈ Sρ(x0) : b

(
d0[x(t), θ

nN ]
)

≤
V (t, x(t)) ≤ a

(
t, d0[x(t), θ

nN ]
)
. Then,

(i) if function g1(t, V (t, x)) +∫ t

t0
G(t, η, V (η, x(η)))dη ≤ 0 is admissi-

ble in Theorem 3.3, the estimate (S2)
holds.

(ii) if function g1(t, V (t, x)) +∫ t

t0
G(t, η, V (η, x(η)))dη ≤ −ηV (t, x(t))

is admissible in Theorem 3.3, the estimate
(S4) holds.

(iii) if function g1(t, V (t, x)) +∫ t

t0
G(t, η, V (η, x(η)))dη < −ηV (t, x(t))

is admissible in Theorem 3.3, the estimate
(S6) holds.

Let ε > 0 and t0 be given, choosing δ = δ(t0, ε)
such that a(t0, ε) < b(δ) with this we have (S1) .

If this is not true, there would exists a the set
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solution x(t) ∈ EnN of FIDS (3.5) and t1 > t0 such
that

d0[x(t1), θ
nN ] = ε and d0[x(t), θ

nN ] > δ

for 0 ≤ t0 < t1 < t, and δ > ε .

By assumptions of theorem 3 show that
V (t, x(t)) ≤ V (t0, x0), ∀t ≥ t0 ≥ 0 and condi-
tion a(t0, ε) < b(δ) as result, yield:

b(δ) < b
(
d0[x(t), θ

nN ]
)
≤ V (t, x(t)) ≤ V (t0, x0) ≤

a(t0, d0[x0, θ
nN ]) ≤ a(t0, ε) < b(δ)

This contradiction proves that (S1) holds.

Next, we have to prove that: ∀ε > 0, t0 ∈ R+

there exists a B > 0 and number T1(t0, ε) > 0 such
that: d0[x(T1), θ

nN ] < ε implies d0[x(t), θ
nN ] < B for

t ≥ t0 + T1 > t0 ≥ 0. Let ε > 0 and t0 > 0. Choosing
B = B (t0, ε) such that a (t0, ε) < b (B) with this we
have (S3).

If this is not true, there would exists a set
solution x(t) of FIDS (3.5) and t ≥ t0 + T1 > t0 ≥ 0
such that, d0[x(T1), θ

nN ] = ε and d0[x(t), θ
nN ] > B,

for t ≥ t0 + T1 > t0 ≥ 0 and B > ε.

By assumptions of theorem 3 show that
V (t, x(t)) ≤ V (t0, x0), ∀t ≥ t0 > 0 and condi-
tion a/ii as result, yield:

b (B) < b
(
d0[x(t), θ

nN ]
)

≤ V (t, x(t)) ≤
V (t0, x(t0))− µ1 ≤ a

(
t0, d0[x0, θ

nN ]
)
− µ1

< a (t0, ε) < b (B) .
This contradiction proves that (S3) holds.

The affirmation for (B5) is proved analogous
proof of the affirmations for (B1), (B3).
Next, we have to prove that (S2) holds:

Because assumptions (b/(i)) imply that
V (t, x(t)) ≤ V (t0, x0) and ∀t ≥ t0

b(d0[x(t), θ
nN ]) ≤ V (t, x(t)) ≤ V (t0, x0)

≤ a(t0, d0[x0, θ
nN ]).

Thus for all x(t) ∈ Sρ(x0) and ∀t0 ∈ R+ the affirma-
tion for (S1) holds, that means the affirmation for
(S2) holds.

Next, we have to prove that (S4) holds. Also
assumption b) of this Theorem to be

i) b
(
d0[x(t), θ

nN ])
)

≤ V (t, x(t)) ≤
a
(
t0, d0[x(t), θ

nN ])
)

ii) D+V ≤ −ηV (t, x(t))

For all t0 ∈ R+, we have

V (t, x(t)) ≤ V (t0, x0)exp[−η(t− t0)]

≤ a(t, d0[x0, θ
nN ])exp[−η(t− t0)], ∀t ≥ t0.

As a results

b
(
d0[x(t), θ

nN ]
)

≤ a
(
t0, d0[x0, θ

nN ]
)
.exp[−η(t− t0)],∀t ≥ t0

and (S4) holds.

The affirmation for (S6) is proved analogous
proof of the affirmations for (S2),(S4).

Corollary 3.2 Assume that for FIDS (3.5) exists the
Lyapunov like function V (t, x(t)) which satisfies the
conditions of Theorem 3.3, and there exist the positive
numbers a, b such that

∀t ∈ [t0, T ], x(t) ∈ EnN : bd0[x(t), θ
nN ]

≤ V (t, x(t)) ≤ ad0[x(t), θ
nN ].

Then , if D+V ≤ −η1V (t, x(t)) satisfies , solution of
FIDS (3.5) is exponentially asymptotically stable.

The proof of this Corollary is proved analogous to the
proof of the affirmations for (S4).

Lemma 3.1 Let x : J → E1 and put [x(t)]α =
[xα(t), xα(t)] for each α ∈ [0, 1]. If x is Hukuhara
derivative then xα, xα are differentiable functions and
[DHx(t)]α = [x′

α(t), x
′
α(t)].

Example 3.1 Let us consider the following FIDE in
E1

(3.13 )DHx (t) = −3x (t) +

t∫
0

e−(t−s)x (s) ds,

x(0) = x0 ∈ E1,

where f : [0,∞) × E1 → E1 is given by
f(t, x) = −3x (t) and g : [0,∞) × [0,∞) × E1 → E1

is given by g(t, s, x(s)) = e−(t−s)x (s).

We put [x0]
α = [x0

α, x
0
α] and [f(t, x(t))]α =

[f(t, xα(t), xα(t)), f(t, xα(t), xα(t))], [g(t, s, x(t))]α =
[g(t, s, xα(t), xα(t)), g(t, s, xα(t), xα(t))].

Then, with this notations, the problem (3.13) is
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transformed into the following :

x′
α(t) = f (t, xα (t) , xα (t))

+

t∫
0

g (t, s, xα (t) , xα (t)) ds, xα (0) = x0
α

x′
α(t) = f (t, xα (t) , xα (t))

+

t∫
0

g (t, s, xα (t) , xα (t)) ds, xα (0) = x0
α

(3.14)

By solving (3.14), we get [x(t)]α = [x0
α, x

0
α] where

xα(t) =
x0
α + x0

α

16
((2−

√
2)e(−2+

√
2)t + (2 +

√
2)e−(2+

√
2)t)−

−−x0
α + x0

α

40
((5 + 2

√
5)e(1+

√
5)t + (5− 2

√
2)e(1−

√
5)t))).

xα(t) =
x0
α + x0

α

16
((2−

√
2)e(−2+

√
2)t + (2 +

√
2)e−(2+

√
2)t)+

+
−x0

α + x0
α

40
((5 + 2

√
5)e(1+

√
5)t + (5− 2

√
2)e(1−

√
5)t))),

Therefore, the trivial solution of (3.13) is stable.

Example 3.2 Let us consider the following FIDE in
E1 

DHx(t) =

t∫
0

x(s)ds, t ∈ [0, 2]

x(0) = (−1, 0, 1)

The solution is [x(t)]α =
et − e−t

2
[α − 1, 1 − α], t ∈

[0, 2] . Futher, given ε > 0, we can choose δ =
2ε

e2 + 1
such that for d0[x0, θ

1] we have d0[x(t), θ
1] < ε.
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