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s, Qaemshahr Bran
h, Islami
 Azad University, Qaemshahr, Iran.Re
eived 29 September 2010; revised 29 January 2011; a

epted 9 February 2011.|||||||||||||||||||||||||||||||-Abstra
tIn this paper, we address the problem of assessing the rank of the set of eÆ
ient unitsin Data Envelopment Analysis (DEA). DEA measures the eÆ
ien
ies of de
ision-makingunits (DMUs) within the range of less than or equal to one. The 
orresponding eÆ
ien
iesare referred to as the best relative eÆ
ien
ies, whi
h measure the best performan
e ofDMUs and determine an eÆ
ien
y frontier. This resear
h proposes a methodology to usean 
ommon set of weights for the performan
e indi
es of only DEA eÆ
ient DMUs. ThenDMUs are ranked a

ording to the eÆ
ien
y s
ore weighted by the 
ommon set of weightsin two dimensional spa
e.Keywords : Data Envelopment Analysis (DEA); Weights Analysis; EÆ
ien
y; Ranking.||||||||||||||||||||||||||||||||{1 Introdu
tionData Envelopment Analysis (DEA) is a nonparametri
 method of measuring the eÆ
ien
yof a de
ision-making unit (DMU) su
h as a �rm, �rst introdu
ed by Charnes, Cooper,and Rhodes (CCR) (1978). To measure the te
hni
al eÆ
ien
y of any observed input-output bundle, one needs to know the maximum quantity of output that 
an be produ
edfrom the relevant input bundle. However, in DEA we 
onstru
t a ben
hmark te
hnologyfrom the observed input-output bundles of the �rms in the sample, su
h as a produ
tionfrontier. Justifying ea
h unit on frontier is interpreted as eÆ
ien
y and any deviationfrom this frontier is interpreted as ineÆ
ien
y. Firms that are found to be te
hni
allyineÆ
ient 
an be ranked aspe
t of their measured levels of eÆ
ien
y. Firms that are foundto be eÆ
ient are, also, all ranked equally by a 
riterion. Andersen and Petersen (1993)suggested a 
riterion that permits one to rank order �rms that have all been found to beat 100It is worthwhile that noted AP model 
an be infeasible, sometimes. A potential�Email address: frb balf�yahoo.
om, Tel:+98-123-224411141



42 F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53problem of feasibility with these supper eÆ
ien
y models has been noted by Dula andHi
kman (1997), Seiford and Zhu (1999), Harker and Xue (2002), and Lovel and Rouse(2003). For some eÆ
ient observations, there may not exist any input-oriented or output-oriented proje
tion onto a frontier that is 
onstru
ted from the remaining observations inthe data set. In this study, we introdu
e a di�erent approa
h for ranking eÆ
ient units. Inour approa
h, we aim to obtain one 
ommon set of weights (CSW) to 
reate the identity
riti
al of proje
tion the eÆ
ient units in two dimensional spa
e. Then, we 
al
ulatethe area of the regular polygon 
onstru
ter of all eÆ
ient units. However, we rank theproje
ted eÆ
ient units. The ranking that adopts the one 
ommon set of weights generatedfrom our methodology makes sense be
ause a de
ision maker obje
tively 
hooses the one
ommon set of weights for the purpose of maximizing the group eÆ
ien
y. The se
ondse
tion of this paper represents dis
ussion about regular polygon area (RPA). In Se
tion3, a method for �nding CSW is brie
y dis
ussed. Se
tion 4, present a brief dis
ussionabout supper-eÆ
ien
y ranking te
hniques. Se
tion 5, gives a 
omplete ranking of DMUsby RPA method. Numeri
al example and 
on
lusion of the methods are presented in thelast se
tions.2 Regular polygon area (RPA)In this se
tion, we present a rule for 
al
ulating of regular polygon area (RPA). For thispurpose, we �rst 
onsider a triangle as simplest regular polygon and then introdu
e general
ase for �nding regular polygon area. Consider the Cartesian 
oordinates system in twodimensional spa
es. Four possible 
ases exist for appointing origin, when we depi
t atriangle in this system. First 
ase, the origin is one of vertexes, se
ond 
ase the origin lieinside triangle, in third 
ase the origin lie outside triangle and �nally the last 
ase originlie on one of triangle edges. However, we will show the area of a triangle 
an be written asdeterminant form for ea
h of above quaternion 
ases. Also, it 
an be shown that if pointsO;A and B be triangle vertexes in anti-
lo
k wise sense respe
tively, then determinantvalue is positive and it is negative when these points are 
lo
k wise. It should be note thevalue of area is positive.Theorem 2.1. If points O(0; 0); A(x1; y1) and B(x2; y2) be 
oordinates of triangle vertexesthen the area of triangle 4OAB determine as follows:S4OAB = 12 ���� x1 y1x2 y2 ����Proof: Consider 4OAB , a

ording to Fig. 1.6
-o x

y
���������������HHHHHHx1 Dy2 x2 y1A(x1; y1)B(x2; y2)x1 � x2 y2 � y1EF

Fig. 1. The graph of triangle OAB



F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53 43Obviously, �nding the area4OAB equal to subtra
ting the area three triangles4OAD,4OFB and 4EAB of the re
tangular area �ODEF . Hen
e, it 
an be shown thatS4OAB = S�ODEF � S4OFB � S4OAD � S4EAB= x1y2 � x2y22 � x1y12 � (x1�x2)(y2�y1)2= x1y2 � x2y22 � x1y12 � x1y2�x1y1�x2y2+x2y12= x1y2�x2y12= 12 ���� x1 y1x2 y2 ����The proof is 
omplete.In 
ontinue we extend this topi
 when origin is not triangle vertex (See Fig. 2 and Fig.3).Theorem 2.2. If points A(x1; y1); B(x2; y2) and C(x3; y3) be arbitrarily 
oordinates oftriangle vertexes in anti-
lo
k wise sense then the area of triangle 4ABC is determinedas follows: S4ABC = 12 ����� x1 y1x2 y2 ����+ ���� x2 y2x3 y3 ����+ ���� x3 y3x1 y1 �����Proof: For proof 
onsider two below 
ases:1. The origin is outside triangle (see Fig. 2)2. The origin is inside triangle (see Fig. 3)In �rst 
ase a

ording to Fig. 2, we obtain:S4ABC = S4OAB + S4OBC � S4OACand with respe
t to Theorem (2.1) we have:S4ABC = 12 ���� x1 y1x2 y2 ����+ 12 ���� x2 y2x3 y3 ����� 12 ���� x1 y1x3 y3 ����A

ording to determinant property, Substitute;�12 ���� x1 y1x3 y3 ���� = 12 ���� x3 y3x1 y1 ����then, we obtain S4ABC = 12f���� x1 y1x2 y2 ����+ ���� x2 y2x3 y3 ����+ ���� x3 y3x1 y1 ����gThe proof is 
omplete.The proof of se
ond part of Theorem (2.2) is similar to the �rst part a

ording to Fig. 3.We ignore the proof of it.
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-o x
y HHHHHHHHH����� A(x1; y1)B(x2; y2)C(x3; y3)

Fig. 2. The graph of triangle 4ABC that isn't 
ontain origin.6
-o x

y
!!!!!!!!!!!!DDDDD A(x1; y1)

C(x3; y3)
B(x2; y2)

Fig. 3. The graph of triangle 4ABC 
ontain origin.At this point, we interest to extend the above method for �nding the regular polygonarea when the 
oordinate vertexes are available. It is mentionable that every regularpolygon with n vertex 
an be partitioned to n� 2 triangular.Theorem 2.3. The area of any regular polygon with pj(xj ; yj); j = 1; :::; n vertex in anti-
lo
k wise sense is as followsSp1p2:::pn = 12f���� x1 y1x2 y2 ����+ ���� x2 y2x3 y3 ����+ ���� x3 y3x4 y4 ����+ :::+ ���� xn ynx1 y1 ����gProof: The proof is by indu
tion over : Consider the following relation,Sp1p2:::pn = S4p1p2p3 + S4p1p2p4 + :::+ S4p1pkpk+1 + :::+ S4p1pn�1pnwhere it 
an be written asSp1p2:::pn = 12 ����� x1 y1x2 y2 ����+ ���� x2 y2x3 y3 ����+ ���� x3 y3x4 y4 ����+ :::+ ���� xn ynx1 y1 �����



F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53 45This relation has been proved for n = 3 already. Suppose that it satisfy in 
ase n = k ashypothesis indu
tion:Sp1p2:::pk = 12 ����� x1 y1x2 y2 ����+ ���� x2 y2x3 y3 ����+ :::+ ���� xk ykx1 y1 �����We show the above relation due for n = k + 1 (assertion indu
tion) asSp1p2:::pk+1 = 12 ����� x1 y1x2 y2 ����+ ���� x2 y2x3 y3 ����+ :::+ ���� xk ykxk+1 yk+1 ����+ ���� xk+1 yk+1x1 y1 �����Hen
e, for this purpose it is suÆ
ient we add S4p1pkpk+1 to the two parts of hypothesisindu
tion, we obtainSp1p2:::pk + S4p1pkpk+1 = 12 ����� x1 y1x2 y2 ����+ ���� x2 y2x3 y3 ����+ :::+ ���� xk ykx1 y1 �����+ S4p1pkpk+1With substitutingS4p1pkpk+1 = 12 ����� x1 y1xk yk ����+ ���� xk ykxk+1 yk+1 ����+ ���� xk+1 yk+1x1 y1 �����to above relation, the assertion is satis�edSp1p2:::pn = 12 ����� x1 y1x2 y2 ����+ ���� x2 y2x3 y3 ����+ ���� x3 y3x4 y4 ����+ :::+ ���� xn ynx1 y1 �����For further des
ription 
onsider the following example.Example 2.1. Find the area of following 5- regular polygon, a

ording to Fig. 4.6
-o x

y
HHHHH ������������

AAAAAAA����
p1(5;�1)

p2(3; 6)p3(�3; 4)
p4(�6;�2)p5(�1;�4)Fig.4. The graph of 5- regular polygon.Sp1p2p3p4p5 = S4p1p2p3 + S4p1p3p4 + S4p1p4p5= 12 ����� 5 �13 6 ����+ ���� 3 6�3 4 ����+ ���� �3 45 �1 ����+ ���� 5 �1�3 4 ����+ ���� �3 4�6 �2 ����+ ���� �6 �25 �1 ����+ ���� 5 �1�6 �2 ����+ ���� �6 �2�1 �4 ����+ ���� �1 �45 �1 ����� = 68



46 F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-533 A method for �nding 
ommon set of weights (CSW)The 
exibility in the 
hoi
e of weights is both a weakness and strength. It is a weaknessbe
ause the judi
ious 
hoi
e of weights by a unit possibly unrelated to the value of anyinput or output may allow a unit to appear eÆ
ient but there may be 
on
ern that thisis more to do with the 
hoi
e of weights than any inherent eÆ
ien
y. This 
exibility isalso strength, however, if a unit turns out to be ineÆ
ient even when the most favourableweights have been in
orporated in its eÆ
ien
y measure then this is a strong statement.This se
tion presents a multiple obje
tive programming pro
edure for �nding a 
ommonset of weights in DEA [9℄. An important out
ome of su
h an analysis is a set of virtualmultipliers or weights a

orded to ea
h fa
tor taken into a

ount. These sets of weightsare, typi
ally, di�erent for ea
h of the parti
ipating DMUs. In this se
tion, by means ofsolving only one problem, we 
an determine a 
ommon set of weights.In DEA for 
al
ulating the eÆ
ien
y of di�erent DMUs, di�erent set of weights are ob-tained, whi
h seems to be una

eptable in reality. So the following model is used to �nd
ommon set of weights whi
h has some advantages that will be dis
ussed later on. Thisidea is formulated as maximizing the ratio of outputs and inputs simultaneously for allDMUs. So we presents the following multiple obje
tive fun
tional programming problem.max nPsr=1 uryr1Pmi=1 vixi1 ; : : : ; Psr=1 uryrnPmi=1 vixin oS:t: Psr=1 uryrjPmi=1 vixij � 1; j = 1; : : : ; nur � �; r = 1; : : : ; svi � �; i = 1; : : : ;m (3.1)
where U = (u1; : : : ; us)T and V = (v1; : : : ; vm)T are the weights of outputs and inputs,respe
tively, and � is a positive non-Ar
himedean in�nitesimal.For solving this problem, the following pro
edure is suggested. Here we 
onsider the in-�nite norm, so it tends the maximization of the obje
tive fun
tion pertaining the DMUwill minimum ratio of outputs to inputs.max nminnPsr=1 uryr1Pmi=1 vixi1 ; : : : ; Psr=1 uryrnPmi=1 vixin ooS:t: Psr=1 uryrjPmi=1 vixij � 1; j = 1; : : : ; nur � �; r = 1; : : : ; svi � �; i = 1; : : : ;m (3.2)
By introdu
ing non-negative variable z , problem (3.2), 
an be 
onverted to the followingproblem:



F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53 47max zS:t: Psr=1 uryrj � zPmi=1 vixij � 0; j = 1; : : : ; nPsr=1 uryrj �Pmi=1 vixij � 0; j = 1; : : : ; nz � 0ur � �; r = 1; : : : ; svi � �; i = 1; : : : ;m
(3.3)

Note that instead of solving n linear programming DEA models, only one non-linearprogramming problem is solved and the eÆ
ien
y for all DMUs are obtained.4 Supper-eÆ
ien
y ranking te
hniquesSuppose we have a set of n (produ
tive units), DMUs. Ea
h DMUj; j = 1; :::; n 
onsumesm di�erent inputs to produ
e s di�erent outputs. Two types of orientation DEA modelsare often used to evaluate DMUs' relative eÆ
ien
y: CRS models, su
h as CCR model,and VRS models, su
h as BCC model. For example, CCR model in multiplier form isde�ned as a linear programming model as follows:max Psr=1 uryroS:t: Psr=1 uryrj �Pmi=1 vixij � 0; j = 1; : : : ; nPmi=1 vixio = 1;ur � �; r = 1; : : : ; svi � �; i = 1; : : : ;m (4.4)
Where � is a non-Ar
himedean element de�ned to be smaller than any positive real number.The BCC (Banker et al., 1984) model adds an additional 
onstant variable, uo , in orderto permit variable return-to-s
ale:max Psr=1 uryro + uoS:t: Psr=1 uryrj �Pmi=1 vixij + uo � 0; j = 1; : : : ; nPmi=1 vixio = 1;ur � �; r = 1; : : : ; svi � �; i = 1; : : : ;m (4.5)
In most models of Data Envelopment Analysis (DEA) (Charnes et al., 1978 ; Banker etal., 1984; Cooper et al., 2000) [3, 2, 4℄, the best performers have eÆ
ien
y s
ore unity, andthese units lie on frontier eÆ
ien
y. Several authors have proposed methods for ranking
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ient units. See Andersen and Petersen (1993) [1℄, Doyle and Green (1993, 1994)[6, 7℄, Stewart (1994) [13℄, Tofallis (1996)[10℄, Seiford and Zhu (1999)[11℄, Mehrabian(1999)[10℄, Zhu (2001)[15℄ and Jahanshahloo (2005)[8℄, among others. It is mentionedthat only Jahanshahloo method is able to rank all kind of eÆ
ient DMUs (extreme andnon-extreme eÆ
ient DMUs), while the other methods are not able to rank non-extremeeÆ
ient DMUs. For example, Andersen and Petersen (1993) developed a new pro
edurefor ranking eÆ
ient units. The methodology enables an extreme eÆ
ient unit "o" to obtainan eÆ
ien
y s
ore greater than one by eliminating the o-th 
onstraint in the model (4.4),as shown in model (4.6).max Psr=1 uryroS:t: Psr=1 uryrj �Pmi=1 vixij � 0; j = 1; : : : ; n; j 6= oPmi=1 vixio = 1;ur � � r = 1; : : : ; svi � � i = 1; : : : ;m (4.6)
The next se
tion develops the new method. Our goal is to translate the basi
 idea of
ombining RPA and DEA in order to determining ranking of eÆ
ient units.5 Ranking of DMUs by RPA methodThis se
tion deals with ranking of DMUs by RPA method. Suppose that we have n DMUsea
h with m inputs and s outputs. The ve
tors v and u are the weight ve
tors for inputand output, respe
tively. We have to somehow solve for ea
h DMU a linear programming(LP) whi
h 
an lead to a di�erent optimal solution. The index "o" sele
ts the DMU forwhi
h the optimization should be evaluated, as shown in models (4.4) or (4.5), a

ordingto 
onstant return to s
ale or variable return to s
ale. Throughout this se
tion we assumethat eÆ
ien
y is evaluated by means of the CCR model (4.4) of te
hni
al eÆ
ien
y. Thismeasure was introdu
ed by Charnes et al. (1978)[3℄. We assume that in evaluating DMUswith model (4.4), k DMUs (k � n) , are eÆ
ient. The set Eo = fj j DMUj is effi
ientgand (v�; u�) be optimal 
ommon set of weights by model (3.3). Let us de�ne f fun
tionas: f : Rm+s ! R2f(x; y) = (v�x; u�y)De�ne the set B as follows:B = fzj j zj = (v�xj ; u�yj); j 2 Eo; xj 2 Rm; yj 2 RsgIt is obviously, zj � 0 = (0; 0); j 2 Eo and B � R2+: In fa
t the set B is proje
tion of A,in two dimension plane under 
ommon set of weights. However, we rank the members ofthe set B instead of DMUj ; j 2 Eo .



F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53 495.1 The ranking method for members in the set BIn this se
tion, we des
ribe the ranking approa
h for the members of the set B. Supposethat T be 
onvex hall of f zj j zj 2 Bg. Set T = 
onvex(B). It is trivial that T is a regularpolygonal in R2+ . Suppose that S be area of T . Set, S = RPA(T ). For ranking zp in B, we�rst remove it from the set of T then we obtain (another) 
onvex hall Tp = T � fzpg. LetSp = RPA(Tp) . It is obvious Tp � T and Sp � S , (see Fig. 5), and set �p = S � Sp � 0. This value �p is de�ned the rank of zp .As already mentioned, zj is as a point of T = 
onvex(B) . If zj be extreme point in T , then�p > 0 , meanwhile if zj be non-extreme point of T , then �p = 0 . For more des
riptionde�ne B+ = f zj j �j > 0; j 2 Bg and B0 = f zj j �j = 0; j 2 Bg. Let Card(B0) = k0and Card(B+) = k1 , then it is obvious that, Card(B0) + Card(B+) = Card(B) , thatis, k0 + k1 = k . Then, we present the below de�nition:De�nition 5.1. Suppose that zp; zq 2 B+ , then zp has higher rank of zq if and only if�p > �q . 6
-o vx

uy
����������������AAAAAA

z1 z2 z3z4z5z6
z7r r rrrr r

Fig. 5. a. Convex hall of fzjg; � = 1; : : : ; 7.6
-o vx

uy
�����AAAAAA 






�����������BBBBBB
z1 z2 z3z4z5z6

z7�1 S1r r rrrr r
Fig. 5. b. Convex hall of fzjg; � = 2; : : : ; 7.Fig. 5. a shows a 
onvex hall of 7 point together with its area S , meanwhile, Fig. 5. bshows a 
onvex hall after removing z1 . We gain �1 as its rank , that is, �1 = S � S1 > 0:



50 F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53Now if we verify points z6 or z7 we obtain �6 = �7 = 0 . In last 
ase we should be rankthe units z6 and z7, in the 
onvex set T0 = 
onvexfz6; z7g.Some notes are worthwhile:Note 1. Suppose that zp; zq 2 B+ , then the probability �p = �q tend to vanish. It is trivialthat points in B+ have higher rank than the points in B0 . Nevertheless, we interestto rank points belong to B0 in se
ond order, a

ording to mentioned method basedon the new 
onvex set T0 = 
onvex(B �B+) .Note 2. If T = 
onvex(B) be a segment line, that is,S = 0 , then we suppose that thisprobability is zero. Otherwise this method en
ounter with a problem.Note 3. For non-extreme points whi
h have the zero rank value, it is suggested the distan
eof origin be as a 
riterion for ranking.6 Numeri
al exampleExample 6.1. To illustrate the appli
ation of this method, we 
onsider 19 with two inputsand two outputs (Table 1).Table 1The value of inputs and outputsDMUs Input1 Input2 Output1 Output21 81 87.6 5191 2052 85 12.8 3629 03 56.7 55.2 3302 04 91 78.8 3379 05 216 72 5368 6396 58 25.6 1674 07 112.2 8.8 2350 08 293.2 52 6315 4149 186.6 0 2865 010 143.4 105.2 7689 6611 108.7 127 2165 26612 105.7 134.4 3963 31513 235 236.8 6643 23614 146.3 124 4611 12815 57 203 4869 54016 118.7 48.2 3313 1617 58 47.4 1853 23018 146 50.8 4578 21719 0 91.3 0 508Table 2The results of using di�erent models for ranking of DMUsDMUs 1 2 5 9 15 19AP rank 4 1 3 - 2 -MAJ rank 5 3 2 6 4 1T
h. Norm rank 5 2 3 6 4 1RPA rank 6 4 3 1 2 5



F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53 51DMUs 1, 2, 5, 9, 15 and 19 are CCR eÆ
ient. The results of ranking using RPA methodare 
ompared with T
heby
he� norm, AP and MAJ methods in Table 2. As shown in Ta-ble 2, DMU19 and DMU9 have highest and lowest rank in MAJ and T
heby
he� models,respe
tively. Meanwhile, both of them (DMU19 and DMU9) are infeasible in AP model.Also, noti
e that, all DMUs are ranked very 
lose to ea
h other in MAJ and T
heby
he�models, while this is not in AP model. In model AP, DMU2 and DMU1 have �rst and lastrank respe
tively. The operations for ranking eÆ
ient units 1, 2, 5, 9, 15 and 19 a

ordingto model (3.3), the 
ommon set of weights have obtained as follows:u�1 = 0:01000; u�2 = 0:089560; v�1 = 0:351901; v�2 = 0:498316; z� = 0:44Therefore we a
quire:z1 = (72:16; 70:27); z2 = (36:29; 36:29); z5 = (111:89; 110:91); z9 = (65:66; 28:65);z15 = (121:22; 97:05); z19 = (45:5; 45:5)Now we rank the units of the set B = fz1; z2; z5; z9; z15; z19g6
-o vx

uy
���#####HHH������```̀ z1z2

z5
z9 z15z19 rr r

r rr
Fig.6. Convex hall of members of BFor ranking units, �rst we 
ompute RPA(T ) = S . A

ording to the Fig. 6, 
onsider thatz1 don't e�e
tive in 
onstru
tive RPA(T ) = S . Hen
e; we obtain:S = 12����� 65:66 28:65121:22 97:05 ����+ ���� 121:22 97:05111:89 110:91 ����+ ���� 111:89 110:9145:5 45:5 ����+ ���� 45:5 45:536:29 36:29 ����+ ���� 36:29 36:2965:66 28:65 ����� = 4186:43where �i = S � Si have obtained follows:�1 = 0; �2 = 340:87; �5 = 1029:17; �9 = 2433:39; �15 = 1408:23; �19 = 9:037 Con
lusionIn this paper, we have addressed a di�erent rankingof eÆ
ient units whi
h is 
alled regularpolygon area (RPA) method. In our approa
h, �rst eÆ
ient units are transformed into



52 F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53two dimension spa
e by a 
ommon set of weights. Then the area from the regular polygon
onstru
ter of all proje
ted eÆ
ient units is 
onsidered 
al
ulatal. However, we rankedthe proje
ted eÆ
ient units a

ording to the di�eren
e between regular polygon areasbefore and after removed. We also suggested that one 
an be work on this method overimpre
ise data [5℄, and fo
us on Stability regions for keeping eÆ
ien
y [15℄. Reader shouldattend that this method has a drawba
k, be
ause the proje
tion fun
tion of f : Rm+s !R2; f(x; y) = (vx; uy) is not inje
tive map.Referen
es[1℄ P. Andersen, N.C. Petersen, A pro
edure for ranking eÆ
ient units in data envelop-ment analysis, Management S
ien
e 39 (1993) 1261-1264.[2℄ R.D. Banker, A. Charnes, W.W. Cooper, Some model for estimating te
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