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Abstract

In this paper, we address the problem of assessing the rank of the set of efficient units
in Data Envelopment Analysis (DEA). DEA measures the efficiencies of decision-making
units (DMUs) within the range of less than or equal to one. The corresponding efficiencies
are referred to as the best relative efficiencies, which measure the best performance of
DMUs and determine an efficiency frontier. This research proposes a methodology to use
an common set of weights for the performance indices of only DEA efficient DMUs. Then
DMUs are ranked according to the efficiency score weighted by the common set of weights
in two dimensional space.
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1 Introduction

Data Envelopment Analysis (DEA) is a nonparametric method of measuring the efficiency
of a decision-making unit (DMU) such as a firm, first introduced by Charnes, Cooper,
and Rhodes (CCR) (1978). To measure the technical efficiency of any observed input-
output bundle, one needs to know the maximum quantity of output that can be produced
from the relevant input bundle. However, in DEA we construct a benchmark technology
from the observed input-output bundles of the firms in the sample, such as a production
frontier. Justifying each unit on frontier is interpreted as efficiency and any deviation
from this frontier is interpreted as inefficiency. Firms that are found to be technically
inefficient can be ranked aspect of their measured levels of efficiency. Firms that are found
to be efficient are, also, all ranked equally by a criterion. Andersen and Petersen (1993)
suggested a criterion that permits one to rank order firms that have all been found to be
at 1001t is worthwhile that noted AP model can be infeasible, sometimes. A potential
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problem of feasibility with these supper efficiency models has been noted by Dula and
Hickman (1997), Seiford and Zhu (1999), Harker and Xue (2002), and Lovel and Rouse
(2003). For some efficient observations, there may not exist any input-oriented or output-
oriented projection onto a frontier that is constructed from the remaining observations in
the data set. In this study, we introduce a different approach for ranking efficient units. In
our approach, we aim to obtain one common set of weights (CSW) to create the identity
critical of projection the efficient units in two dimensional space. Then, we calculate
the area of the regular polygon constructer of all efficient units. However, we rank the
projected efficient units. The ranking that adopts the one common set of weights generated
from our methodology makes sense because a decision maker objectively chooses the one
common set of weights for the purpose of maximizing the group efficiency. The second
section of this paper represents discussion about regular polygon area (RPA). In Section
3, a method for finding CSW is briefly discussed. Section 4, present a brief discussion
about supper-efficiency ranking techniques. Section 5, gives a complete ranking of DMUs
by RPA method. Numerical example and conclusion of the methods are presented in the
last sections.

2 Regular polygon area (RPA)

In this section, we present a rule for calculating of regular polygon area (RPA). For this
purpose, we first consider a triangle as simplest regular polygon and then introduce general
case for finding regular polygon area. Consider the Cartesian coordinates system in two
dimensional spaces. Four possible cases exist for appointing origin, when we depict a
triangle in this system. First case, the origin is one of vertexes, second case the origin lie
inside triangle, in third case the origin lie outside triangle and finally the last case origin
lie on one of triangle edges. However, we will show the area of a triangle can be written as
determinant form for each of above quaternion cases. Also, it can be shown that if points
O, A and B be triangle vertexes in anti-clock wise sense respectively, then determinant
value is positive and it is negative when these points are clock wise. It should be note the
value of area is positive.

Theorem 2.1. If points O(0,0), A(z1,y1) and B(xa,ys2) be coordinates of triangle vertexes
then the area of triangle AOAB determine as follows:

g _llzop
nOAB=5| L

Proof: Consider AOAB , according to Fig. 1.

y
B($2,y2)
r1 — T2

F xg E

Y2 — Y1
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Fig. 1. The graph of triangle OAB
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Obviously, finding the area AO AB equal to subtracting the area three triangles AOAD
LNOFB and AEAB of the rectangular area JODEF . Hence, it can be shown that

SproaB = Sooper — SaoFB — Sroap — SAEAB

T2Y2 T1Yy1 (11*12)(y2*y1)
2

=TY2 — 5 — 5 —
T2y2 T1y1 T1Y2—T1Y1 —T2Y2+22Y1
=Ty — 5T T T T 2
_ Z1Yy2—T2y1
- 2
_1 T
2l 29y

The proof is complete.

In continue we extend this topic when origin is not triangle vertex (See Fig. 2 and Fig.
3).

Theorem 2.2. If points A(z1,y1), B(x2,y2) and C(z3,ys3) be arbitrarily coordinates of
triangle vertexzes in anti-clock wise sense then the area of triangle ANABC' is determined
as follows:
1 Y1 }
T2 Y2

2 Y2
3 Y3

3 Y3

1
SaaBc = = { 5y

2

Proof: For proof consider two below cases:
1. The origin is outside triangle (see Fig. 2)
2. The origin is inside triangle (see Fig. 3)

In first case according to Fig. 2, we obtain:

Saapc = SroaB + SroBc — Saroac

and with respect to Theorem (2.1) we have:

Spipc = Lz Lz yo| 1l m wn
2| T2 Y2 2| z3 Y3 2| 3 Y3
According to determinant property, Substitute;
_l S B U 1 T3 Y3
2| 23 Y3 2l z1 Y
then, we obtain
1 |z T2 Y2 r3 Y3
S = -
AABC 2{ T2 Y2 r3 Y3 T1 Y1 }

The proof is complete.
The proof of second part of Theorem (2.2) is similar to the first part according to Fig. 3.
We ignore the proof of it.
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B([I'.QayQ)
C(x3,y3)
A(xl,m)

o} X
Fig. 2. The graph of triangle AABC that isn’t contain origin.

B(z2,y2) Alz1,1)

C(z3,y3)
Fig. 3. The graph of triangle AABC contain origin.

At this point, we interest to extend the above method for finding the regular polygon
area when the coordinate vertexes are available. It is mentionable that every regular
polygon with n vertex can be partitioned to n — 2 triangular.

Theorem 2.3. The area of any regqular polygon with p;(z;,y;), j = 1,...,n vertex in anti-
clock wise sense is as follows

1

1 Y
SP1P2~~~Pn = 5{

T2 Y2

2 Y2
3 Y3

r3 Y3
T4 Y4

In Yn
1 Y

+ .+

}

Proof: The proof is by induction over : Consider the following relation,

SPIPZ---pn = SAplpzps + SAplpzm +.t SAPlpkkarl +.t SAplpn—lpn
where it can be written as

r1 Y
T2 Y2

2 Y2
3 Y3

r3 Ys
T4 Yi

Tn Yn
1 Y

|

1
Splpz---pn = 5 {
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This relation has been proved for n = 3 already. Suppose that it satisfy in case n = k as
hypothesis induction:

1
Splm---pk = 9 {
Tk+1  Yk+1

We show the above relation due for n = k + 1 (assertion induction) as
I Y1

1
SP1P2~~~Pk+1 = 5 { }

Hence, for this purpose it is sufficient we add Sap,p,p,,, to the two parts of hypothesis
induction, we obtain

1 Y
T2 Y2

2 Y2
3 Y3

Tk Yk
1 Y

+ ...+

1 Y
T2 Y2

2 Y2
3 Y3

Tk Yk
T+l Ye4+1

1 1 Y1 T2 Y2 Tk Yk
Spipa.pe T SAp1orpris = 2 { 2 U 23 s to Tt - + SApipapria
With substituting
Sa _ 1 { T Y Tk Yk Tht1 Yk+1 }
PIPRPREL 2 | mk yk Tho1 Ykst T Y

to above relation, the assertion is satisfied

Ll x oy T2 Yo T3 Y3 Tn Yn

Spipspn = = + ot
Pipa-Pn =9 { To Yo T3 Y3 T4 Ya T Y

For further description consider the following example.

Example 2.1. Find the area of following 5- reqular polygon, according to Fig. 4.

T
Fig.4. The graph of 5- reqular polygon.
Spipepspaps = SAP1P2P3 + SAP1P3P4 + SAP1P4P5
5 —1 3 6 -3 4 5 —1 -3 4
=1
R AT A R L SR Y

6 —2 5 —1 -6 —2 1 —4
+ + 6 o |t + = 68
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3 A method for finding common set of weights (CSW)

The flexibility in the choice of weights is both a weakness and strength. It is a weakness
because the judicious choice of weights by a unit possibly unrelated to the value of any
input or output may allow a unit to appear efficient but there may be concern that this
is more to do with the choice of weights than any inherent efficiency. This flexibility is
also strength, however, if a unit turns out to be inefficient even when the most favourable
weights have been incorporated in its efficiency measure then this is a strong statement.
This section presents a multiple objective programming procedure for finding a common
set of weights in DEA [9]. An important outcome of such an analysis is a set of virtual
multipliers or weights accorded to each factor taken into account. These sets of weights
are, typically, different for each of the participating DMUs. In this section, by means of
solving only one problem, we can determine a common set of weights.

In DEA for calculating the efficiency of different DMUs, different set of weights are ob-
tained, which seems to be unacceptable in reality. So the following model is used to find
common set of weights which has some advantages that will be discussed later on. This
idea is formulated as maximizing the ratio of outputs and inputs simultaneously for all
DMUs. So we presents the following multiple objective functional programming problem.

Zi: UrYri Zi: UrYrn
max { ?”:11 vizip ') ZZ’;i Viin }
Z:: UrYrj .
UTZE, 7“:1,...,8
v; > €, 1=1,....m
where U = (uy,...,us)" and V = (vq,...,v,,)T are the weights of outputs and inputs,

respectively, and € is a positive non-Archimedean infinitesimal.

For solving this problem, the following procedure is suggested. Here we consider the in-
finite norm, so it tends the maximization of the objective function pertaining the DMU
will minimum ratio of outputs to inputs.

S S
. U 1 U
max {mm{iz’};l rdr Y L=t Urlrn Ty”’}}

i=1ViTil ’ Z:il ViTin
28:1 UrYrj .
i=1 J (3‘2)
Uy > €, r=1,...,s
v; > €, 1=1,....,m

By introducing non-negative variable z , problem (3.2), can be converted to the following
problem:
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maxr z
St YUl — 2y i v >0, j=1,...,n

E::l UrYrj — Zgl ViLij < 07 .7 = ]-7 A L

(3.3)
z>0
Uy > €, r=1,...,s
v; > €, 1=1,....,m

Note that instead of solving mn linear programming DEA models, only one non-linear
programming problem is solved and the efficiency for all DMUs are obtained.

4 Supper-efficiency ranking techniques

Suppose we have a set of n (productive units), DMUs. Each DMUj;, j =1, ...,n consumes
m different inputs to produce s different outputs. Two types of orientation DEA models
are often used to evaluate DMUs’ relative efficiency: CRS models, such as CCR model,
and VRS models, such as BCC model. For example, CCR model in multiplier form is
defined as a linear programming model as follows:

S
max Zr:1 UrYro

S.t. Zi:l UrYrj — 221 ViTij S 0, j = 1, R

Dok vitio = 1, (4.4)
Up > €, r=1,...,s
v; > €, 1=1,...,m

Where € is a non-Archimedean element defined to be smaller than any positive real number.
The BCC (Banker et al., 1984) model adds an additional constant variable, u, , in order
to permit variable return-to-scale:

S
mar Y.y UrYro + Uo

St YUY — Do i Fue <0, j=1,....n

21'11 ViTio = 1, (45)
Uy > €, r=1,...,s
v; > €, 1=1,....,m

In most models of Data Envelopment Analysis (DEA) (Charnes et al., 1978 ; Banker et
al., 1984; Cooper et al., 2000) [3, 2, 4], the best performers have efficiency score unity, and
these units lie on frontier efficiency. Several authors have proposed methods for ranking
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these efficient units. See Andersen and Petersen (1993) [1], Doyle and Green (1993, 1994)
[6, 7], Stewart (1994) [13], Tofallis (1996)[10], Seiford and Zhu (1999)[11], Mehrabian
(1999)[10], Zhu (2001)[15] and Jahanshahloo (2005)[8], among others. It is mentioned
that only Jahanshahloo method is able to rank all kind of efficient DMUs (extreme and
non-extreme efficient DMUs), while the other methods are not able to rank non-extreme
efficient DMUs. For example, Andersen and Petersen (1993) developed a new procedure
for ranking efficient units. The methodology enables an extreme efficient unit ”0” to obtain
an efficiency score greater than one by eliminating the o-th constraint in the model (4.4),
as shown in model (4.6).

S
maz Yy )y UrYro

St Y Yy — > 0z <0, j=1,...,n,j#o0

Do viTio = 1, (4.6)
Up > € r=1,...,s
v; > € 1=1,....,m

The next section develops the new method. Our goal is to translate the basic idea of
combining RPA and DEA in order to determining ranking of efficient units.

5 Ranking of DMUs by RPA method

This section deals with ranking of DMUs by RPA method. Suppose that we have n DMUs
each with m inputs and s outputs. The vectors v and u are the weight vectors for input
and output, respectively. We have to somehow solve for each DMU a linear programming
(LP) which can lead to a different optimal solution. The index ”0” selects the DMU for
which the optimization should be evaluated, as shown in models (4.4) or (4.5), according
to constant return to scale or variable return to scale. Throughout this section we assume
that efficiency is evaluated by means of the CCR model (4.4) of technical efficiency. This
measure was introduced by Charnes et al. (1978)[3]. We assume that in evaluating DMUs
with model (4.4), Kk DMUs (k < n) , are efficient. The set E, = {j | DMU; is ef ficient}
and (v*,u*) be optimal common set of weights by model (3.3). Let us define f function
as:
f:R™S — R?

f(z,y) = (v'z,u"y)
Define the set B as follows:
B ={z | zj = (v'zj,u"y;), j € By, z; € R™, y; € R°}

It is obviously, z; > 0 = (0,0), j € E, and B C R?. In fact the set B is projection of A,
in two dimension plane under common set of weights. However, we rank the members of
the set B instead of DMU;j, j € E, .
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5.1 The ranking method for members in the set B

In this section, we describe the ranking approach for the members of the set B. Suppose
that T be convex hall of { z; | z; € B}. Set T' = convex(B). It is trivial that T' is a regular
polygonal in B2 . Suppose that S be area of T'. Set, S = RPA(T). For ranking z, in B, we
first remove it from the set of 7' then we obtain (another) convex hall T, = T — {z,}. Let
Sp = RPA(T,) . It is obvious T, C T and S, < S, (see Fig. 5), and set 6, =S — S, >0
. This value 6, is defined the rank of z, .

As already mentioned, z; is as a point of T' = convex(B) . If z; be extreme point in 7', then
0, > 0 , meanwhile if z; be non-extreme point of 7", then 6, = 0 . For more description
define BT ={ 2; |6, >0, j € B} and B ={ z; | §; =0, j € B}. Let Card(B°) = kg
and Card(B*) = k; , then it is obvious that, Card(B°) + Card(B*) = Card(B) , that
is, kg + k1 = k . Then, we present the below definition:

Definition 5.1. Suppose that zp, zy € BT , then z, has higher rank of z4 if and only if
0, > 0, .
uy

22

21
23

Z5 Z4

Fig. 5. a. Convex hall of {2;}, 1=1,...,7.

22
&7
21
Z3
25 24

Fig. 5. b. Convex hall of {z;}, 1=2,...,7.

Fig. 5. a shows a convex hall of 7 point together with its area S , meanwhile, Fig. 5. b
shows a convex hall after removing z; . We gain 0, as its rank , that is, 1 = S — 51 > 0.

uy
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Now if we verify points zg or z7 we obtain 8¢ = 87 = 0 . In last case we should be rank

F. Rezai Balf | IJIM Vol. 8, No. 1 (2011) 41-53

the units zg and z7, in the convex set Ty = convex{zg, 27}.

Some notes are worthwhile:

Note 1. Suppose that z,, z, € BT, then the probability 6, = 6, tend to vanish. It is trivial
that points in BT have higher rank than the points in B° . Nevertheless, we interest
to rank points belong to B® in second order, according to mentioned method based
on the new convex set Ty = convex(B — BT) .

Note 2. If T = convez(B) be a segment line, that is,S = 0 , then we suppose that this
probability is zero. Otherwise this method encounter with a problem.

Note 3. For non-extreme points which have the zero rank value, it is suggested the distance
of origin be as a criterion for ranking.

6 Numerical example

Example 6.1. To illustrate the application of this method, we consider 19 with two inputs

and two outputs (Table 1).

Table 1
The value of inputs and outputs
DMUs | Input! | Input2 | Outputl | Output2
1 81 87.6 5191 205
2 85 12.8 3629 0
3 56.7 55.2 3302 0
4 91 78.8 3379 0
5 216 72 5368 639
6 58 25.6 1674 0
7 112.2 8.8 2350 0
8 293.2 52 6315 414
9 186.6 0 2865 0
10 143.4 | 105.2 7689 66
11 108.7 127 2165 266
12 105.7 | 184.4 3963 315
13 285 236.8 6643 236
14 146.3 124 4611 128
15 57 203 4869 540
16 118.7 48.2 3313 16
17 58 474 1853 230
18 146 50.8 4578 217
19 0 91.3 0 508
Table 2
The results of using different models for ranking of DMUs
DMUs 1 2 5 9 15 19
AP rank 4 1 3 - 2 -
MAJ rank 5 3 2 6 4 1
Tch. Norm rank 5 2 3 6 4 1
RPA rank 6 4 3 1 2 5
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DMUs 1, 2, 5, 9, 15 and 19 are CCR efficient. The results of ranking using RPA method
are compared with Tchebycheff norm, AP and MAJ methods in Table 2. As shown in Ta-
ble 2, DMU19 and DMU9 have highest and lowest rank in MAJ and Tchebycheff models,
respectively. Meanwhile, both of them (DMU19 and DMU9) are infeasible in AP model.
Also, notice that, all DMUs are ranked very close to each other in MAJ and Tchebycheff
models, while this is not in AP model. In model AP, DMU2 and DMU1 have first and last
rank respectively. The operations for ranking efficient units 1, 2, 5, 9, 15 and 19 according
to model (3.3), the common set of weights have obtained as follows:

u] = 0.01000, w35 = 0.089560, wv; = 0.351901, w5 = 0.498316, z* =0.44
Therefore we acquire:

21 = (72.16,70.27), 2 = (36.29,36.29), =z = (111.89,110.91), 2z = (65.66,28.65),
Z15 = (12122,9705), zZ19 — (455,4:55)

Now we rank the units of the set B = {21, 29, 25, 29, 215, 219 }
uy
2

<15

219

<9

0 VL
Fig.6. Convex hall of members of B

For ranking units, first we compute RPA(T) = S . According to the Fig. 6, consider that
z1 don’t effective in constructive RPA(T) = S . Hence; we obtain:

g _ 1| 6566 2865 121.22  97.05 111.89  110.91 45.5 455
~ 2| 12122 97.05 111.89 110.91 45.5 455 36.29 36.29
36.29 36.29
‘ 65.66 28.65 ‘} = 4186.43

where 0; = S — S; have obtained follows:

01 =0, 0y =340.87, 05 =1029.17, 6y = 2433.39, 615 = 1408.23, 619 = 9.03

7 Conclusion

In this paper, we have addressed a different rankingof efficient units which is called regular
polygon area (RPA) method. In our approach, first efficient units are transformed into
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two dimension space by a common set of weights. Then the area from the regular polygon
constructer of all projected efficient units is considered calculatal. However, we ranked
the projected efficient units according to the difference between regular polygon areas
before and after removed. We also suggested that one can be work on this method over
imprecise data [5], and focus on Stability regions for keeping efficiency [15]. Reader should
attend that this method has a drawback, because the projection function of f : R™*S —
R?, f(z,y) = (vz,uy) is not injective map.
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