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Abstract
Using fuzzy Laplace transform method, the solution of fuzzy convolution Volterra integral
equation (FCVIE) of the second kind with convolution fuzzy and crisp kernel is investi-
gated. So, fuzzy convolution operator is proposed and related theorem is submitted which
is useful for solving FCVIEs. Finally, several illustrative examples with fuzzy and crisp
convolution kernels are given to show the ability of the proposed method.
Keywords : Fuzzy convolution integral equation of the second kind; Fuzzy Laplace transform

method; Fuzzy convolution.

————————————————————————————————–

1 Introduction

The topic of fuzzy integral equations which has attracted growing interest for some time,
in particular in relation to fuzzy control, has been developed in recent years.
Abbasbandy et. al [1] proposed a numerical algorithm for solving linear Fredholm fuzzy
integral equations of the second kind by using parametric form of fuzzy number and con-
verting a linear fuzzy Fredholm integral equation to two linear systems of integral equation
of the second kind in crisp case. Babolian et. al [3] proposed another numerical proce-
dure for solving fuzzy linear Fredholm integral of the second kind using Adomian method.
Moreover, Friedman et. al [8] proposed an embedding method to solve fuzzy Volterra and
Fredholm integral equations. However, there are several research papers about obtaining
the numerical integration of fuzzy-valued functions and solving fuzzy Volterra and Fred-
holm integral equations [4, 6, 7, 9, 10, 12, 13, 14, 17, 18].
The fuzzy Laplace transform method solves FDEs and corresponding fuzzy initial and
boundary value problems. In this way fuzzy Laplace transforms reduce the problem of
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solving a FDE to an algebraic problem. This switching from operations of calculus to
algebraic operations on transforms is called operational calculus, a very important area of
applied mathematics, and for engineers, the fuzzy Laplace transform method is practically
the most important operational method.
The technique of direct and inverse F-transform and approximating properties of them
are described in [15, 16]. Recently, Allahviranloo and Barkhordari in [2] proposed fuzzy
Laplace transforms for solving first order fuzzy differential equations under generalized
H-differentiability.
By such benefits, we develop fuzzy Laplace transform method to solve fuzzy convolution
Volterra integral equation of the second kind. So, the original FCVIE is converted to two
crisp convolution integral equations in order to determine the lower and upper function of
solution, using fuzzy convolution operator.
The paper is organized as follows:

In section 2, some basic definitions which will be used later in the paper are provided.
In section 3, the fuzzy Laplace transform is studied. In section 4, the fuzzy convolution
Volterra integral equation of the second kind with fuzzy convolution kernel is studied.
Then, the fuzzy Laplace transforms are applied to solve such special fuzzy integral equa-
tion. Illustrative examples are also considered to show the ability of the proposed method
in section 5, and the conclusion is drawn in section 6.

2 Preliminaries

The basic definition of fuzzy numbers is given in [10, 11].
We denote the set of all real numbers by R. A fuzzy number is a mapping u : R → [0, 1]
with the following properties:

(a) u is upper semi-continuous,

(b) u is fuzzy convex, i.e., u(λx+(1−λ)y) ≥ min{u(x), u(y)} for all x, y ∈ R, λ ∈ [0, 1],

(c) u is normal, i.e.,∃x0 ∈ R for which u(x0) = 1,

(d) supp u = {x ∈ R | u(x) > 0} is the support of the u, and its closure cl(supp u) is
compact.

Let E be the set of all fuzzy numbers on R. The α-level set of a fuzzy number u ∈ E,
0 ≤ α ≤ 1, denoted by [u]α , is defined as

[u]α =

{
{x ∈ R | u(x) ≥ α} if 0 < α ≤ 1
cl(supp u) if α = 0

It is clear that the α-level set of a fuzzy number is a closed and bounded interval [u(α), u(α)],
where u(α) denotes the left-hand endpoint of [u]α and u(α) denotes the right-hand end-
point of [u]α. Since each y ∈ R can be regarded as a fuzzy number ỹ defined by

ỹ(t) =

{
1 if t = y
0 if t ̸= y

An equivalent parametric definition is also given in [8] as:
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Definition 2.1. A fuzzy number u in parametric form is a pair (u, u) of functions u(α),
u(α), 0 ≤ α ≤ 1, which satisfy the following requirements:

1. u(α) is a bounded non-decreasing left continuous function in (0, 1], and right contin-
uous at 0,

2. u(α) is a bounded non-increasing left continuous function in (0, 1], and right contin-
uous at 0,

3. u(α) ≤ u(α), 0 ≤ α ≤ 1.

A crisp number α is simply represented by u(α) = u(α) = α, 0 ≤ α ≤ 1. We recall
that for a < b < c which a, b, c ∈ R, the triangular fuzzy number u = (a, b, c) determined
by a, b, c is given such that u(α) = a+ (b− a)α and u(α) = c− (c− b)α are the endpoints
of the α-level sets, for all α ∈ [0, 1].
The Hausdorff distance between fuzzy numbers given by d : E× E −→ R+

∪
{0},

d(u, v) = sup
α∈[0,1]

max{|u(α)− v(α)|, |u(α)− v(α)|},

where u = (u(α), u(α)), v = (v(α), v(α)) ⊂ R is utilized in [5]. Then, it is easy to see that
d is a metric in E and has the following properties (see [11])

(i) d(u+ w, v + w) = d(u, v), ∀u, v, w ∈ E,

(ii) d(ku, kv) = |k|d(u, v), ∀k ∈ R, u, v ∈ E,

(iii) d(u+ v, w + e) ≤ d(u,w) + d(v, e), ∀u, v, w, e ∈ E,

(iv) (d,E) is a complete metric space.

Definition 2.2. [8], Let f : R→ E be a fuzzy valued function. If for arbitrary fixed t0 ∈ R
and ϵ > 0, a δ > 0 such that

|t− t0| < δ ⇒ d(f(t), f(t0)) < ϵ,

f is said to be continuous.

Theorem 2.1. [17], Let f(x) be a fuzzy-valued function on [a,∞) and it is represented
by (f(x, α), f(x, α)). For any fixed r ∈ [0, 1], assume f(x, α) and f(x, α) are Riemann-

integrable on [a, b] for every b ≥ a, and assume there are two positive M(α) and M(α)

such that
∫ b
a |f(x, α)|dx ≤ M(α) and

∫ b
a |f(x, α)|dx ≤ M(α) for every b ≥ a. Then f(x)

is improper fuzzy Riemann-integrable on [a,∞) and the improper fuzzy Riemann-integral
is a fuzzy number. Further more, we have:∫ ∞

a
f(x)dx = (

∫ ∞

a
f(x, α)dx,

∫ ∞

a
f(x, α)dx).

Proposition 2.1. [18], If each of f(x) and g(x) is fuzzy-valued function and fuzzy Riem-
man integrable on I = [a,∞) then f(x)+g(x) is fuzzy Riemman integrable on I. Moreover,
we have ∫

I
(f(x) + g(x))dx =

∫
I
f(x)dx+

∫
I
g(x)dx.
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3 The Fuzzy Laplace transforms

Suppose that f is a fuzzy-valued function and s is a real parameter. We define the fuzzy
Laplace transform of f as following:

Definition 3.1. The fuzzy Laplace transform of fuzzy-valued function f(t) is defined as
following

F (s) = L(f(t)) =

∫ ∞

0
e−stf(t)dt = lim

τ−→∞

∫ τ

0
e−stf(t)dt (3.1)

whenever the limits exist.
The notation L(f) be also used to denote the fuzzy Laplace transform of fuzzy-valued
function f(t), and the integral is the fuzzy Riemann improper integral.
The symbol L is the fuzzy Laplace transformation, which acts on fuzzy-valued function
f = f(t) and generates a new fuzzy-valued function, F(s) = L(f(t)).
Consider fuzzy-valued function f , then the lower and upper fuzzy Lapalce transform of
this function are denoted, based on the lower and upper of fuzzy-valued function f as
following:

F(s, α) = L(f(t, α)) = [l(f(t, α)), l(f(t, α))]

where,

l(f(t, α)) =

∫ ∞

0
e−stf(t, α)dt = lim

τ−→∞

∫ τ

0
e−stf(t, α)dt, 0 ≤ α ≤ 1

l(f(t, α)) =

∫ ∞

0
e−stf(t, α)dt = lim

τ−→∞

∫ τ

0
e−stf(t, α)dt, 0 ≤ α ≤ 1.

4 Fuzzy convolution Volterra integral equation of the sec-
ond kind

In this section, we investigate the solution of FCVI equation of the second kind.
The fuzzy convolution Volterra integral equation of the second kind is defined as

x(t) = f(t) +

∫ t

0
k(s− t)x(s)ds, t ∈ [0, T ], T <∞ (4.2)

where k(s − t) is an arbitrary given fuzzy-valued convolution kernel function and f is a
continuous fuzzy-valued function.
We adopt fuzzy Laplace transform to solve Eq.(4.2) such that by taking fuzzy Laplace
transform on both sides of Eq.(4.2) and using fuzzy convolution, we get solution of Eq.(4.2)
directly. So, the concept of fuzzy convolution must be introduced.

4.1 Fuzzy convolution

The convolution of two fuzzy-valued functions f and g defined for t > 0 by

(f ∗ g) (t) =
∫ t

0
f(τ).g(t− τ)dτ (4.3)

which of course exists if f and g are, say, piece-wise continuous. Substituting u = t − τ
gives

(f ∗ g)(t) =
∫ t

0
g(u).f(t− u)du = (g ∗ f)(t), (4.4)
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that is, the fuzzy convolution is commutative.
Other basic properties of the fuzzy convolution are as follows:

(i) c(f ∗ g) = cf ∗ g = f ∗ cg, c is constant

(ii) f ∗ (g ∗ h) = (f ∗ g) ∗ h (associative property)

Property (i) is routine to verify. As for (ii)

[f ∗ (g ∗ h)](t) =
∫ t
0 f(τ).(g ∗ h)(t− τ)dτ

=
∫ t
0 f(τ)

(∫ t−τ
0 g(x).h(t− τ − x)dx

)
dτ

=
∫ t
0

(∫ u
0 f(τ).g(u− τ)dτ

)
h(t− u)du

= [(f ∗ g) ∗ h](t)

while having reverse the order of integration.
One of the very significant properties possessed by the fuzzy convolution in connection
with the fuzzy Laplace transform is that the fuzzy Laplace transform of the convolution
of two fuzzy-valued functions is the product of their fuzzy Laplace transform.

Theorem 4.1. (Convolution Theorem), If f and g are piecewise continuous fuzzy-valued
functions on [0,∞] and of exponential order p, then

L{(f ∗ g)(t)} = L{f(t)}.L{g(t)} = F (s).G(s), s > p (4.5)

Proof: Let us start with the product

L{f(t)}.L{g(t)} =
(∫∞

0 e−sτf(τ)dτ
)
.
(∫∞

0 e−sug(u)du
)

=
∫∞
0

(∫∞
0 e−s(τ+u)f(τ)g(u)du

)
dτ

substituting t = τ +u, and noting that τ is fixed in the interior integrals, so that du = dt,
we have

L{f(t)}.L{g(t)} =
∫ ∞

0

(∫ ∞

τ
e−stf(τ)g(t− τ)dt

)
dτ (4.6)

If we define g(t) = 0̃ for t < 0, then g(t− τ) = 0̃ for t < τ and we can write (4.6) as

L{f(t)}.L{g(t)} =
∫ ∞

0

∫ ∞

0
e−stf(τ)g(t− τ)dtdτ

Due to the hypotheses on f, g, the fuzzy Laplace integrals of f, g converge absolutely and
hence ∫ ∞

0

∫ ∞

0
|e−stf(τ)g(t− τ)|dtdτ
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converges. This fact allows us to reverse the order of integration, so that

L{f(t)}.L{g(t)} =
∫∞
0

∫∞
0 e−stf(τ)g(t− τ)dτdt

=
∫∞
0

(∫ t
0 e

−stf(τ).g(t− τ)dτ
)
dt

=
∫∞
0 e−st

(∫ t
0 f(τ).g(t− τ)dτ

)
dt

= L{(f ∗ g)(t)}

Please notice that in the fuzzy case, we should investigate more accurately than the de-
terministic case. So, mentioned calculation is assumed valid under suitable conditions.

4.2 The method

Here, we shall obtain the solution of fuzzy convolution Volterra integral equation using
fuzzy Laplace transform. Indeed, our method is constructed on applying fuzzy convolution.
Consider the original Eq.(4.2), then by taking fuzzy Laplace transform on both sides of it
we get the following:

L{x(t)} = L{f(t)}+ L

{∫ t

0
k(s− t)x(s)ds

}
, t ∈ [0, T ], T <∞,

then, we get by using fuzzy convolution and definition of fuzzy Laplace transform:

l{x(t;α)} = l{f(t;α)}+ l{k(t;α)}l{x(t;α)}, 0 ≤ α ≤ 1

and
l{x(t;α)} = l{f(t;α)}+ l{k(t;α)}l{x(t;α)}, 0 ≤ α ≤ 1

Now, we should discuss l{k(t;α)}l{x(t;α)} and l{k(t;α)}l{x(t;α)}. To this end, we have
the following cases:
Case 1- if k(t;α) and x(t;α) are positive, then we get

l{k(t;α)}l{x(t;α)} = l{k(t;α)}l{x(t;α)}, l{k(t;α)}l{x(t;α)} = l{k(t;α)}l{x(t;α)}

Case 2- if k(t;α) is positive and x(t;α) is negative, then we get

l{k(t;α)}l{x(t;α)} = l{k(t;α)}l{x(t;α)}, l{k(t;α)}l{x(t;α)} = l{k(t;α)}l{x(t;α)}

Case 3- if k(t;α) is negative and x(t;α) is positive, then we get

l{k(t;α)}l{x(t;α)} = l{k(t;α)}l{x(t;α)}, l{k(t;α)}l{x(t;α)} = l{k(t;α)}l{x(t;α)}

Case 4- if k(t;α) and x(t;α) are negative, then we get

l{k(t;α)}l{x(t;α)} = l{k(t;α)}l{x(t;α)}, l{k(t;α)}l{x(t;α)} = l{k(t;α)}l{x(t;α)}

Notice that, it is assumed that zero does not exist in support.
We obtain explicit formula for Case 1 and the others are similar. Indeed, we can write
case 1 in a compact form:

l{x(t;α)} =
l{f(t;α)}

1− l{k(t;α)}
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and

l{x(t;α)} = l{f(t;α)}
1− l{k(t;α)}

Finally, using the inverse of fuzzy Laplace transform we get the solution:

x(t;α) = l−1

(
l{f(t;α)}

1− l{k(t;α)}

)
and

x(t;α) = l−1

(
l{f(t;α)}

1− l{k(t;α)}

)
for all 0 ≤ α ≤ 1, provided that a fuzzy valued function is defined.

5 Examples

In this section, we give some examples to obtain the solution of fuzzy convolution Volterra
integral equation of the second kind.

Example 5.1. Consider the following FCVI equation

x(t) = (α, 2− α).e−t +

∫ t

0
sin(t− τ).x(τ)dτ, t ∈ T = [a, b]

We apply the fuzzy Laplace transform to both sides of the equation, so that

L{x(t)} = L{(α, 2− α).e−t}+ L{sin(t)}.L{x(t)}

i.e.,

l{x(t;α)} = l{(α).e−t}+ l{sin(t)}.l{x(t;α)}, 0 ≤ α ≤ 1

l{x(t;α)} = l{(2− α).e−t}+ l{sin(t)}.l{x(t;α)}, 0 ≤ α ≤ 1

Hence, we get

l{x(t;α)} = (α)

(
2

s+ 1
+

1

s2
− 1

s

)
, 0 ≤ α ≤ 1

l{x(t; r)} = (2− α)

(
2

s+ 1
+

1

s2
− 1

s

)
, 0 ≤ α ≤ 1

By taking the inverse of fuzzy Laplace transform on both sides of above relations, we have
the following

x(t;α) = (α)(2e−t + t− 1), x(t;α) = (2− α)(2e−t + t− 1), 0 ≤ α ≤ 1

Example 5.2. Consider the following FCVI equation

x(t) = (2 + α, 5− α). cos(t) +

∫ t

0
et−τx(τ)dτ, t ∈ T = [a, b]
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Similarly, by taking fuzzy Laplace transform on both sides of equation, we get the
following:

L{x(t)} = L{(2 + α, 5− α). cos(t)}+ L{et}.L{x(t)}

i.e.,

l{x(t;α)} = (2 + α)s(s− 1)

(s2 + 1)(s− 2)
, 0 ≤ α ≤ 1

l{x(t;α)} = (5− α)s(s− 1)

(s2 + 1)(s− 2)
, 0 ≤ α ≤ 1

Finally, by applying the inverse of fuzzy Laplace transform, we get the following:

x(t;α) = (2 + α) (3/5 cos(t) + 1/5 sin(t) + 2/5 exp(2t)) , 0 ≤ α ≤ 1

x(t;α) = (5− α) (3/5 cos(t) + 1/5 sin(t) + 2/5 exp(2t)) , 0 ≤ α ≤ 1

Example 5.3. Consider the following FCVI equation with fuzzy convolution kernel

x(t) = (α, 2− α).t+

∫ t

0
(α+ 2, 4− α) cos(t− τ).x(τ)dτ, t ∈ T

then, using fuzzy Laplace transform on both sides of above equation and similar cal-
culations we get the following:

x(t;α) = α

(
1 +

2(α+ 2)e(
α
2
+1)t

(α2 + 4α)0.5
sinh(

t(α2 + 4α)0.5

2
)

)
,

x(t;α) = 2− α)

(
1− 2(α− 4)e(

−α
2

+2)t

(α2 − 8α+ 12)0.5
sinh(

t(α2 − 8α+ 12)0.5

2
)

)
.

6 Conclusion

In this paper, fuzzy convolution Volterra integral equation was solved using fuzzy laplace
transform method. To our knowledge, this work is the first attempt to solve such special
fuzzy integral equations with fuzzy kernel. For future research, we will solve fuzzy convo-
lution Integro-Differential system of equations using fuzzy Laplace transform method and
other fuzzy F-transform techniques.
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