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Abstract
In this work, the Homotopy Perturbation Method (HPM) is implemented for �nding ap-
proximate solution of the Fuzzy Initial Value Problem (FIVP) involving generalized dif-
ferentiability. This method is based upon homotopy perturbation theory. The comparison
of the exact solution with approximate solution obtained by HPM is in detail. The results
reveal that the method is very e�ective and simple.
Keywords : Fuzzy numbers; Fuzzy di�erential equations; Generalized di�erentiability; Homotopy
perturbation method.
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1 Introduction

The concept of the fuzzy derivative was �rst introduced by Chang and Zadeh [10]. Later,
Dubois and Prade [11] presented a concept of the fuzzy derivative based on the extension
principle. Other methods have been discussed by Puri and Ralescu [26], Goetschel and
Voxman [14], Seikkala [27] and Friedman et al. [12, 21]. Recently, Bede introduced a
strongly generalized di�erentiability of fuzzy functions in [6, 7] and studied in [8]. The
Fuzzy Di�erential Equation (FDE) and the FIVP were rigorously treated by Kaleva [22,
23], Seikkala [27], He and Yi [15], Kloeden [24] and Menda [25]. The numerical methods
for solving FDEs are introduced in [1, 2, 3, 4]. In this paper, the FIVP under generalized
di�erentiability is solved via Homotopy Perturbation Method (HPM). First we replace
the FIVP by its parametric form and then solve the new system which consist of two
classic ordinary di�erential equations with initial conditions, then check to see if this
solution de�ne a fuzzy function. HPM introduced by He [17, 18, 19, 20] has been used by
many mathematicians and engineers to solve various functional equations. In this method
the solution is considered as the sum of an in�nite series which converges rapidly to the
accurate solutions. Using homotopy technique in topology, a homotopy is constructed with
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an embedding parameter p 2 [0; 1] which is considered as a small parameter. The structure
of this paper is organized as follows. In Section 2, some basic de�nitions which will be
used later in the paper are provided. In Section 3, we present the di�erent parametric
forms of the FIVP by using the strongly generalized di�erentiability concept. In Section 4,
we state the basic concepts of HPM, and apply this method on parametric forms obtained
in the previous section. In Section 5, we use the HPM for solve two FIVPs. We conclude
in Section 6.

2 Preliminaries

De�nition 2.1. A fuzzy number is a function u : < �! [0; 1] satisfying the following
properties:

(i) u is normal, i.e. 9x0 2 < with u(x0) = 1,

(ii) u is a convex fuzzy set,

(iii) u is upper semi-continuous on <,

(iv) fx 2 < : u(x) > 0g is compact, where A denotes the closure of A.

The set of all these fuzzy numbers is denoted by E. Obviously, < � E. Here < � E is
understood as < = f�fxg : x is usual real numberg. For 0 < r � 1, denote [u]r = fx 2 < :
u(x) � rg and [u]0 = fx 2 < : u(x) > 0g. Then it is well-known that for each r 2 [0; 1],
[u]r is a bounded closed interval. For u; v 2 E, and � 2 <, the sum u� v and the product
�� u are de�ned by

[u� v]r = [u]r + [v]r = fx+ y : x 2 [u]r; y 2 [v]rg; 8r 2 [0; 1];

[�� u]r = �� [u]r = f�x : x 2 [u]rg; 8r 2 [0; 1]:

De�ne D : E � E �! <+Sf0g by the equation

D(u; v) = sup
0�r�1

fmax[ jur � vrj; jur � vrj ]g; (2.1)

where [u]r = [ur; ur]; [v]r = [vr; vr]. Then it is easy to show that D is a metric in E.
Using the results in [13], we know that

(i) D(u� w; v � w) = D(u; v); 8u; v; w 2 E,

(ii) D(�� u; �� v) = j�jD(u; v); 8� 2 <; u; v 2 E,

(iii) D(u� v; w � e) � D(u;w) +D(v; e); 8u; v; w; e 2 E,

(iv) (E;D) is a complete metric space.

Theorem 2.1. [28] If we de�ne j : E �! C[0; 1] � C[0; 1] by j(u) = (u; u), where
u; u : [0; 1] �! <; u(r) = ur; u(r) = ur, then j(E) is a closed convex cone with vertex
0 in C[0; 1] � C[0; 1] (here C[0; 1] � C[0; 1] is a Banach space with the norm k (f; g) k=
maxfk f k; k g kg where k f k= supfjf(x)j : x 2 [0; 1]g) and j satis�es:
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(i) j(s� u� t� v) = s j(u)� t j(v); 8u; v 2 E; s; t � 0;

(ii) D(u; v) =k j(u)� j(v) k :
Therefore, another de�nition for a fuzzy number which yields the same E is as follows
[22]:

De�nition 2.2. An arbitrary fuzzy number in the parametric form is represented by an
ordered pair of functions (u(r); u(r)), 0 � r � 1; which satisfy the following requirements.

(i) u(r) is a bounded left continuous nondecreasing function over [0; 1].

(ii) u(r) is a bounded left continuous nonincreasing function over [0; 1].

(iii) u(r) � u(r); 0 � r � 1:

A crisp number � is simply represented by u(r) = u(r) = �; 0 � r � 1.
We recall that for arbitrary fuzzy numbers u = (u(r); u(r)), v = (v(r); v(r)) and real
number k,

(a) u = v if and only if u(r) = v(r) and u(r) = v(r).

(b) u� v = (u� v; u� v) = (u(r) + v(r); u(r) + v(r)).

(c)

k � u =

8<: (k � u; k � u) = (k u(r); k u(r)); k � 0,

(k � u; k � u) = (k u(r); k u(r)); k < 0.

Note that (�1)� u may not be a fuzzy number when u be a fuzzy number.
Similarly of (1), we de�ne

D(u; v) = sup
0�r�1

fmax[ ju(r)� v(r)j; ju(r)� v(r)j ]g: (2.2)

In this paper, we represent an arbitrary fuzzy number by a pair of functions (u(r); u(r));
0 � r � 1:

Theorem 2.2. [5]

(i) If we de�ne e0 = �f0g, then e0 2 E is a neutral element with respect to addition, i.e.
u� e0 = e0� u = u, for all u 2 E.

(ii) With respect to e0, none of u 2 E n<, has inverse in E (with respect to �).

(iii) For any a; b 2 < with a; b � 0 or a; b � 0 and any u 2 E, we have (a + b) � u =
a� u� b� u, For general a; b 2 <, the above property does not hold.

(iv) For any � 2 < and any u; v 2 E, we have �� (u� v) = �� u� �� v.

(v) For any �; � 2 < and any u 2 E, we have �� (�� u) = (�:�)� u.

De�nition 2.3. Let E be a set of all fuzzy numbers, we say that f is a fuzzy function
if f : < �! E.
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De�nition 2.4. Consider u; v 2 E. If there exists w 2 E such that u = v � w, then w is
called the Hukuhara di�erence of u and v and it is denoted by u	 v.

In this paper the "	" sign stands always for Hukuhara di�erence and note that u	v 6=
u� (�1)� v.

De�nition 2.5. [6] Let f : (a; b) �! E and x0 2 (a; b). We say that f is strongly
generalized di�erentiable on x0 (Bede di�erentiable), if there exists an element f 0(x0) 2 E,
such that

(i) for all h > 0 su�ciently small, 9f(x0 +h)	f(x0); f(x0)	f(x0�h) and the limits
(in the metric D)

lim
h&0

f(x0 + h)	 f(x0)
h

= lim
h&0

f(x0)	 f(x0 � h)
h

= f 0(x0);

or

(ii) for all h > 0 su�ciently small, 9f(x0)	f(x0 +h); f(x0�h)	f(x0) and the limits

lim
h&0

f(x0)	 f(x0 + h)
(�h)

= lim
h&0

f(x0 � h)	 f(x0)
(�h)

= f 0(x0);

or

(iii) for all h > 0 su�ciently small, 9f(x0 + h) 	 f(x0); f(x0 � h) 	 f(x0) and the
limits

lim
h&0

f(x0 + h)	 f(x0)
h

= lim
h&0

f(x0 � h)	 f(x0)
(�h)

= f 0(x0);

or

(iv) for all h > 0 su�ciently small, 9f(x0) 	 f(x0 + h); f(x0) 	 f(x0 � h) and the
limits

lim
h&0

f(x0)	 f(x0 + h)
(�h)

= lim
h&0

f(x0)	 f(x0 � h)
h

= f 0(x0);

(h and (�h) at denominators mean 1
h� and � 1

h� , respectively).

Theorem 2.3. [9] Let f : < �! E be a fuzzy function and denote f(t) = (f(t; r); f(t; r)),
for each r 2 [0; 1]. Then

1. If f is di�erentiable in the �rst form (i), then f(t; r) and f(t; r) are di�erentiable
functions and f 0(t) = (f 0(t; r); f 0(t; r)).

2. If f is di�erentiable in the second form (ii), then f(t; r) and f(t; r) are di�erentiable
functions and f 0(t) = (f 0(t; r); f 0(t; r)).

Theorem 2.4. [8] Let f : (a; b) �! E be strongly generalized di�erentiable on each point
x 2 (a; b) in the sense of De�nition 2.7(iii) or 2.7(iv). Then f 0(x) 2 < for all x 2 (a; b).
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3 Fuzzy initial value problem

Consider the FDE y0 = f(t; y) where y is a fuzzy function of t, f(t; y) is a fuzzy function
of crisp variable t and fuzzy variable y, and y0 is generalized di�erential (Bede di�erential)
of y. If an initial value y(t0) = y0 is given, a FIVP will be obtained as follows:8<: y0 = f(t; y); t0 � t � T;

y(t0) = y0 2 E:
(3.3)

Lemma 3.1. [8] For x0 2 <, the FIVP y0 = f(t; y), y(t0) = y0 2 E where f : R�E �! E
is supposed to be continuous, is equivalent to one of the integral equations:

y(x) = y0 �
Z t

t0
f(s; y(s)) ds; 8t 2 [t0; t1];

or
y0 = y(x)� (�1)�

Z t

t0
f(s; y(s) ds; 8t 2 [t0; t1];

on some interval (t0; t1) � <, depending on the strongly di�erentiability considered, (i) or
(ii), respectively.
Here the equivalence between two equations means that any solution of an equation is a
solution too for the other one.

Remark 3.1. In the case of strongly generalized di�erentiability, to the FDE y0 = f(t; y)
we may attach two di�erent integral equations, while in the case of di�erentiability in the
sense of the De�nition of H-di�erentiable, we may attach only one. The second integral
equation in Lemma (3.1) can be written in the form y(x) = y0 	 (�1)� R tt0 f(s; y(s)) ds.

The following theorem concern the existence of solutions of a FIVP under generalized
di�erentiability (see [8]).

Theorem 3.1. Let us suppose that the following conditions hold:

(a) Let R0 = [t0; t0 +p]�B(y0; q); p; q > 0; y0 2 E, where B(y0; q) = fy 2 E : D(y; y0) �
qg denote a closed ball in E and let f : R0 �! E be a continuous function such that
D(e0; f(t; y)) =k f(t; y) k�M for all (t; y) 2 R0.

(b) Let g : [t0; t0 + p] � [0; q] �! <, such that g(t; 0) � 0 and 0 � g(t; s) � M1; 8t 2
[t0; t0 + p], s 2 [0; q], such that g(t; s) is nondecreasing in s and g is such that the
initial value problem u0(t) = g(t; u(t)), u(t0) = 0 has only the solution u(t) � 0 on
[t0; t0 + p].

(c) We have D(f(t; y); f(t; z)) � g(t;D(y; z)); 8(t; y); (t; z) 2 R0 and D(y; z) � q.
(d) There exists d > 0 such that for t 2 [t0; t0 +d] the sequence y�n : [t0; t0 +d] �! E given

by y�0(t) = y0; y�n+1(t) = y0 	 (�1)� R tt0 f(s; y�n(s)) ds; is de�ned for any n 2 N .

Then the FIVP y0 = f(t; y); y(t0) = y0 has two solutions (one di�erentiable as in De�ni-
tion 2.7(i) and the other one di�erentiable as in De�nition 2.7(ii)) y; y� : [t0; t0 + r] �!
B(y0; q) where r = minfp; qM ; q

M1
; dg and the successive iterations

y0(t) = y0; yn+1(t) = y0 �
Z t

t0
f(s; yn(s)) ds;

23

M. Ghanbari / IJIM Vol. 1, No. 1  (2009) 19-39 23

MathDepartment
Text Box



and
y�0(t) = y0; y�n+1(t) = y0 	 (�1)�

Z t

t0
f(s; y�n(s)) ds;

converge to these two solutions, respectively.

Remark 3.2. For FIVP with strongly generalized di�erentiability, the existence of two
solutions in a neighborhood of a point t0 generates a way of choosing which kind of di�er-
entiability is expected for the solution, as follows. If on an interval we expect solution with
increasing support then we �nd (i)-di�erentiable solution. If we expect decreasing support
then we �nd (ii)-di�erentiable solution.

According to theorem 3.3, we restrict our attention to functions which are (i)- or
(ii)-di�erentiable on their domain except for a �nite number of points.

We consider the following FIVP8<: y0 = f(t; y); t0 � t � T;
y(t0) = y0 2 E:

(3.4)

So , if we consider derivative form (i) or (ii) we may replace the FIVP by the equivalent
system 8<: y0(t; r) = g(t; y; y; r); y(t0; r) = y0(r);

y0(t; r) = h(t; y; y; r); y(t0; r) = y0(r);
(3.5)

or 8<: y0(t; r) = g(t; y; y; r); y(t0; r) = y0(r);

y0(t; r) = h(t; y; y; r); y(t0; r) = y0(r);
(3.6)

g(t; y; y; r) = minfg(t; u; v)ju; v 2 [yr; yr]g;
h(t; y; y; r) = maxfg(t; u; v)ju; v 2 [yr; yr]g;

respectively. For every pre�xed r 2 [0; 1], the system represents an ordinary initial value
problem for which any converging classical numerical procedure can be applied.
To simplify, we consider the following FIVP8<: y0(t) = a� y(t)� f(t); t0 � t � T;

y(t0) = y0 2 E;
(3.7)

where a 2 <, a 6= 0, f is a fuzzy-valued function or real-valued function. Since < � E,
any real-valued function is a fuzzy-valued function, i.e. if f : [t0; T ] �! < then we de�ne

f(t; r) = f(t; r) = f(t):

Then, f(t) = (f(t; r); f(t; r)) can be considered as a fuzzy-valued function.
In Eq. (7), if we choose derivative form (i), the parametric form will obtain as follows:8<: y0 = g(y; y) + f; y(t0; r) = y0(r);

y0 = h(y; y) + f; y(t0; r) = y0(r);
(3.8)
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and if choose derivative form (ii), the parametric form of Eq. (7) will obtain as follows:8<: y0 = g(y; y) + f; y(t0; r) = y0(r);

y0 = h(y; y) + f; y(t0; r) = y0(r);
(3.9)

where
g(y; y) =

�
a y; a > 0,
a y; a < 0, (3.10)

and
h(y; y) =

�
a y; a > 0,
a y; a < 0. (3.11)

In the crisp case, if Eq. (7) has a solution with increasing support, then, we choose
derivative form (i) and if has a solution with decreasing support, then, we choose derivative
form (ii), (see [8]).
In the next section HPM is applied for Eqs. (8) and (9).

4 Homotopy perturbation method

To illustrate the basic ideas of this method, we consider the following equation:

A(u)� f(r) = 0; r 2 
; (4.12)

with the boundary condition

B(u;
@u
@n

) = 0; t 2 �; (4.13)

where A is a general di�erential operator, B a boundary operator, f(r) a known analytical
function and � is the boundary of the domain 
. A can be divided into two parts which
are L and N , where L is linear and N is nonlinear. Eq. (12) can therefore be rewritten
as follows:

L(u) +N(u)� f(r) = 0; r 2 
: (4.14)

By the homotopy technique, we construct a homotopy U(r; p) : 
 � [0; 1] �! <; which
satis�es:

H(U; p) = (1� p)[L(U)� L(u0)] + p [A(U)� f(r)] = 0; p 2 [0; 1]; r 2 
; (4.15)

or
H(U; p) = L(U)� L(u0) + pL(u0) + p [N(U)� f(r)] = 0; (4.16)

where p 2 [0; 1] is an embedding parameter, u0 is an initial approximation of Eq. (12),
which satis�es the boundary conditions. Obviously, from Eqs. (15) and (16) we will have

H(U; 0) = L(U)� L(u0) = 0; (4.17)

H(U; 1) = A(U)� f(r) = 0: (4.18)

The changing process of p form zero to unity is just that of U(r; p) from u0(r) to u(r). In
topology, this is called homotopy. According to the HPM, we can �rst use the embedding
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parameter p as a small parameter, and assume that the solution of Eqs. (15) and (16) can
be written as a power series in p :

U = u0 + p u1 + p2u2 + p3u3 + � � � ; (4.19)

and the exact solution is obtained as follows:

u = lim
p!1

U = lim
p!1

(u0 + p u1 + p2u2 + p3u3 + � � � ) =
1X
j=0

uj : (4.20)

The above convergence is discussed in [16]. For later numerical computation, we let the
expression

�n(t) =
n�1X
j=0

uj ; (4.21)

to denote the n-term approximation to u.

Now, we consider Eq. (8) as follows:8<: Ly(t; r) = g(y(t; r); y(t; r)) + f(t; r); y(t0; r) = y0(r);

L y(t; r) = h(y(t; r); y(t; r)) + f(t; r); y(t0; r) = y0(r);
(4.22)

where L � d
dt .

For solving Eq. (22), by homotopy perturbation method we construct homotopies as
follows:8<: H1(Y ; p) = (1� p) [L(Y )� L(y0)] + p [L(Y )� g(Y ; Y )� f ] = 0;

H2(Y ; p) = (1� p) [L(Y )� L(y0)] + p [L(Y )� h(Y ; Y )� f ] = 0;
(4.23)

by considering y0 = y0(r); y0 = y0(r); we have

L(y0) = 0; L(y0) = 0: (4.24)

Therefore, by Eqs. (23) and (24), we have8<: L(Y (t; r)) = p g(Y (t; r); Y (t; r)) + p f(t; r);

L(Y (t; r)) = p h(Y (t; r); Y (t; r)) + p f(t; r):
(4.25)

By applying the inverse operator

L�1(�) =
Z t

t0
(�)ds;

on both sides of (25) and by considering

Y (t0; r) = y(t0; r) = y0(r); Y (t0; r) = y(t0; r) = y0(r);
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we obtain 8><>: Y (t; r)) = y0(r) + p
R t
t0 f(s; r) ds+ p

R t
t0 g(Y (s; r); Y (s; r) ds;

Y (t; r)) = y0(r) + p
R t
t0 f(s; r) ds+ p

R t
t0 h(Y (s; r); Y (s; r) ds:

(4.26)

We can assume that the solution of (26) can be expressed as a series in p, as follows:8<: Y (t; r) = y0(t; r) + p y1(t; r) + p2 y2(t; r) + p3 y3(t; r) + � � � ;
Y (t; r) = y0(t; r) + p y1(t; r) + p2 y2(t; r) + p3 y3(t; r) + � � � :

(4.27)

Substituting (27) into (26) and equating the terms with identical powers of p, we have

p0 :

8<: y0(t; r) = y0(r);

y0(t; r) = y0(r);
(4.28)

p1 :

8><>: y1(t; r) =
R t
t0 f(s; r) ds+

R t
t0 g(y0(s; r); y0(s; r)) ds;

y1(t; r) =
R t
t0 f(s; r) ds+

R t
t0 h(y0(s; r); y0(s; r)) ds;

(4.29)

and for k � 1, we have

pk+1 :

8><>: yk+1(t; r) =
R t
t0 g(yk(s; r); yk(s; r)) ds;

yk+1(t; r) =
R t
t0 h(yk(s; r); yk(s; r)) ds:

(4.30)

The exact solutions of (22) or (9) , therefore, can be obtained by setting p = 1, i.e.

y(t; r) = lim
p!1

Y (t; r) = lim
p!1

(y0(t; r) + p y1(t; r) + p2 y2(t; r) + � � � ) =
1X
j=0

yj(t; r); (4.31)

y(t; r) = lim
p!1

Y (t; r) = lim
p!1

(y0(t; r) + p y1(t; r) + p2 y2(t; r) + � � � ) =
1X
j=0

yj(t; r): (4.32)

Similarly as before, we can obtain for Eq. (9) the following results:

p0 :

8<: y0(t; r) = y0(r);

y0(t; r) = y0(r);
(4.33)

p1 :

8><>: y1(t; r) =
R t
t0 f(s; r) ds+

R t
t0 g(y0(s; r); y0(s; r)) ds;

y1(t; r) =
R t
t0 f(s; r) ds+

R t
t0 h(y0(s; r); y0(s; r)) ds;

(4.34)

and for k � 1, we have

pk+1 :

8><>: yk+1(t; r) =
R t
t0 g(yk(s; r); yk(s; r)) ds;

yk+1(t; r) =
R t
t0 h(yk(s; r); yk(s; r)) ds:

(4.35)
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The exact solutions of (9) , therefore, can be obtained by setting p = 1, i.e.

y(t; r) = lim
p!1

Y (t; r) =
1X
j=0

yj(t; r); (4.36)

y(t; r) = lim
p!1

Y (t; r) =
1X
j=0

yj(t; r): (4.37)

5 Numerical results

In this section, we apply HPM to two examples. We Compare results with exact solu-
tions in Tables 1-4 for a �xed t, so, approximate solutions and exact solutions are compared
in Figs. 1, 3, 5 and 7. The three-dimensional plot of the error between the exact solutions
and the approximate solutions obtained by HPM is shown in Fig. 2, 3, 4 and 6. We use
MATLAB software in all the calculations done in this section.

Example 4.1. Consider the following FIVP8<: y0(t) = 2� y(t)� (t2 + 1);

y(0) = (r; 2� r):
(5.38)

Note that this problem has two solutions By theorem 3.3 depending on How we write the
two crisp equations and then how we can fuzzify them. Then, for solving Eq. (38), we
have two di�erent cases.
Case (1): If we consider y0(t) in the �rst form ((i)-di�erentiable), we have to solve the
following di�erential system:8<: y0(t; r) = 2 y(t; r) + t2 + 1; y(0; r) = r;

y0(t; r) = 2 y(t; r) + t2 + 1; y(0; r) = 2� r:
(5.39)

The exact solution of the system is given by8<: y(t; r) = (r + 3
4)e2t � 1

4(2t2 + 2t+ 3);

y(t; r) = (11
4 � r)e2t � 1

4(2t2 + 2t+ 3):
(5.40)

Now, we solve Eq. (39) via HPM and compare approximate solution with exact solution
(40).

According to Eqs. (28), (29) and (30), we have

p0 :

8<: y0(t; r) = r;

y0(t; r) = 2� r;
(5.41)

p1 :

8<: y1(t; r) = (1 + 2r)t+ 1
3 t

3;

y1(t; r) = (5� 2r)t+ 1
3 t

3;
(5.42)
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and for k � 1, we have

pk+1 :

8><>: yk+1(t; r) = 2
R t
t0 yk(s; r) ds;

yk+1(t; r) = 2
R t
t0 yk(s; r) ds:

(5.43)

We approximate y(t; r) and y(t; r), with �6(t; r) and �6(t; r), respectively, as follows:

�6(t; r) =
5X
i=0

yi(t; r) = r + (1 + 2r)t+ (1 + 2r)t2 + (1 +
4
3
r)t3 + (

1
2

+
2
3
r)t4

+ (
1
5

+
4
15
r)t5 +

1
45
t6 +

2
350

t7;

�5(t; r) =
5X
i=0

yi(t; r) = (2� r) + (5� 2r)t+ (5� 2r)t2 + (
11
3
� 4

3
r)t3 + (

11
6
� 2

3
r)t4

+ (
11
15
� 4

15
r)t5 +

1
45
t6 +

2
350

t7:

Table 1 show the comparison of the exact solution and the approximate solution obtained
by HPM at t = 0:1 and t = 0:3 for any r 2 [0; 1]. Also, in Fig. 1, we compare the exact
solution with the approximate solution. The three-dimensional plot of the error between
the exact solution and the approximate solution is shown in Fig. 2.

Table 1
The results for six-term approximate of HPM in Example 4.1 case 1.

t = 0:1 t = 0:3
r jy � �6j jy � �6j jy � �6j jy � �6j
0 4.5763e-08 2.2875e-07 3.5512e-05 1.7711e-04

0.1 5.4912e-08 2.1960e-07 4.2592e-05 1.7003e-04
0.2 6.4062e-08 2.1045e-07 4.9672e-05 1.6295e-04
0.3 7.3211e-08 2.0130e-07 5.6752e-05 1.5587e-04
0.4 8.2360e-08 1.9215e-07 6.3832e-05 1.4879e-04
0.5 9.1510e-08 1.8300e-07 7.0912e-05 1.4171e-04
0.6 1.0066e-07 1.7385e-07 7.7992e-05 1.3463e-04
0.7 1.0981e-07 1.6470e-07 8.5072e-05 1.2755e-04
0.8 1.1896e-07 1.5556e-07 9.2152e-05 1.2047e-04
0.9 1.2811e-07 1.4641e-07 9.9232e-05 1.1339e-04
1.0 1.3726e-07 1.3726e-07 1.0631e-04 1.0631e-04
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Fig. 1. (a) Comparing y(t; r) and �6(t; r) in Example 4.1 case 1. (b) Comparing y(t; r) and
�6(t; r) in Example 4.1 case 1.
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Fig. 2. (a) The error of �6(t; r) in Example 4.1 case 1. (b) The error of �6(t; r) in Example 4.1
case 1.

Case (2): If we consider y0(t) in the second form ((ii)-di�erentiable), we have to solve
the following di�erential system:8<: y0(t; r) = 2 y(t; r) + t2 + 1; y(0; r) = 2� r;

y0(t; r) = 2 y(t; r) + t2 + 1; y(0; r) = r:
(5.44)
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The exact solution is given by8<: y(t; r) = 7
4e

2t + (r � 1)e�2t � 1
4(2t2 + 2t+ 3);

y(t; r) = 7
4e

2t + (1� r)e�2t � 1
4(2t2 + 2t+ 3):

(5.45)

Now, we solve Eq. (44) via HPM and compare approximate solution with exact solution
(45).

According to Eqs. (33), (34) and (35), we have

p0 :

8<: y0(t; r) = 2� r;
y0(t; r) = r;

(5.46)

p1 :

8<: y1(t; r) = (1 + 2r)t+ 1
3 t

3;

y1(t; r) = (5� 2r)t+ 1
3 t

3;
(5.47)

and for k � 1, we have

pk+1 :

8><>: yk+1(t; r) = 2
R t
t0 yk(s; r) ds;

yk+1(t; r) = 2
R t
t0 yk(s; r) ds:

(5.48)

We approximate y(t; r) and y(t; r), with �6(t; r) and �6(t; r), respectively, as follows:

�6(t; r) =
5X
i=0

yi(t; r) = r + (5� 2r)t+ (1 + 2r)t2 + (
11
3
� 4

3
r)t3 + (

1
2

+
2
3
r)t4

+ (
1
5

+
11
15
r)t5 +

1
45
t6 +

2
315

t7;

�5(t; r) =
5X
i=0

yi(t; r) = (2� r) + (1 + 2r)t+ (5� 2r)t2 + (1 +
4
3
r)t3 + (

11
6
� 2

3
r)t4

+ (
1
5

+
4
15
r)t5 +

1
45
t6 +

2
350

t7:

Table 2 show the comparison of the exact solution and the approximate solution obtained
by HPM at t = 0:1 and t = 0:3 for any r 2 [0; 1]. Also, in Fig. 3, we compare the exact
solution with the approximate solution. The three-dimensional plot of the error between
the exact solution and the approximate solution is shown in Fig. 4.

Table 2
The results for six-term approximate of HPM in Example 4.1 case 2.
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t = 0:1 t = 0:3
r jy � �6j jy � �6j jy � �6j jy � �6j
0 5.0845e-08 2.2367e-07 4.6676e-05 1.6595e-04

0.1 5.9486e-08 2.1503e-07 5.2640e-05 1.5698e-04
0.2 6.8127e-08 2.0639e-07 5.8603e-05 1.5402e-04
0.3 7.6769e-08 1.9774e-07 6.4567e-05 1.4806e-04
0.4 8.5410e-08 1.8910e-07 7.0530e-05 1.4209e-04
0.5 9.4051e-08 1.8046e-07 7.6494e-05 1.3613e-04
0.6 1.0269e-07 1.7182e-07 8.2458e-05 1.3017e-04
0.7 1.1133e-07 1.6318e-07 8.8421e-05 1.2420e-04
0.8 1.1997e-07 1.5454e-07 9.4385e-05 1.1824e-04
0.9 1.2862e-07 1.4590e-07 1.0035e-04 1.1228e-04
1.0 1.3726e-07 1.3726e-07 1.0631e-04 1.0361e-04
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Fig. 3. (a) Comparing y(t; r) and �6(t; r) in Example 4.1 case 2. (b) Comparing y(t; r) and �6(t; r)
in Example 4.1 case 2.
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Fig. 4. (a) The error of �6(t; r) in Example 4.1 case 2. (b) The error of �6(t; r) in Example 4.1
case 2.
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Example 4.2. Consider the following FIVP8<: y0(t) = �3� y(t)� et;
y(0) = (r � 1; 1� r):

(5.49)

Similarly as before, we have two di�erent cases.
Case (1): If we consider y0(t) in the �rst form ((i)-di�erentiable), we have to solve the
following di�erential system:8<: y0(t; r) = �3 y(t; r) + et; y(0; r) = r � 1;

y0(t; r) = �3 y(t; r) + et; y(0; r) = 1� r:
(5.50)

The exact solution of the system is given by8<: y(t; r) = (r � 1)e3t � 1
4e
�3t + 1

4e
t;

y(t; r) = (1� r)e3t � 1
4e
�3t + 1

4e
t:

(5.51)

Now, we solve Eq. (50) via HPM and compare approximate solution with exact solution
(51).

According to Eqs. (28), (29) and (30), we have

p0 :

8<: y0(t; r) = r � 1;

y0(t; r) = 1� r;
(5.52)

p1 :

8<: y1(t; r) = (et � 1)� 3(1� r)t;
y1(t; r) = (et � 1)� 3(r � 1)t;

(5.53)

and for k � 1, we have

pk+1 :

8><>: yk+1(t; r) = 2
R t
t0 yk(s; r) ds;

yk+1(t; r) = 2
R t
t0 yk(s; r) ds:

(5.54)

We approximate y(t; r) and y(t; r), with �6(t; r) and �6(t; r), respectively, as follows:

�6(t; r) =
5X
i=0

yi(t; r) = (r � 1) + 61(et � 1) + (3r � 63)t+ (
9
2
r � 36)t2

+ (
9
2
r � 27

2
)t3 + (

27
8
r � 27

4
)t4 + (

81
40
r � 81

40
)t5;

�5(t; r) =
5X
i=0

yi(t; r) = (1� r) + 61(et � 1)� (3r + 57)t� (
9
2
r + 27)t2

+ (
9
2
r +

9
2

)t3 � 27
8
rt4 + (

81
40
� 81

40
r)t5:
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Table 3 show the comparison of the exact and the approximate solution obtained by HPM
at t = 0:1 and t = 0:3 for any r 2 [0; 1]. Also, in Fig. 5, we compare the exact solution
with the approximate solution. The three-dimensional plot of the error between the exact
solution and the approximate solution is shown in Fig. 6.
Table 3
The results for six-term approximate of HPM in Example 4.2 case 1.

t = 0:1 t = 0:3
r jy � �6j jy � �6j jy � �6j jy � �6j
0 1.3858e-06 7.2931e-07 1.0723e-03 6.1739e-04

0.1 1.2801e-06 6.2355e-07 9.8785e-04 5.3290e-04
0.2 1.1743e-06 5.1779e-07 9.0336e-04 4.4841e-04
0.3 1.0686e-06 4.1204e-07 8.1888e-04 3.6393e-04
0.4 9.6281e-07 5.0628e-07 7.3439e-04 2.7944e-04
0.5 8.5705e-07 2.0052e-07 6.4991e-04 1.9496e-04
0.6 7.5130e-07 9.4764e-08 5.6542e-04 1.1047e-04
0.7 6.4554e-07 1.0993e-08 4.8093e-04 2.5983e-05
0.8 5.3978e-07 1.1675e-07 3.9645e-04 5.8503e-05
0.9 4.3402e-07 2.2251e-07 3.1196e-04 1.4249e-04
1.0 3.2827e-07 3.2827e-07 2.2748e-04 2.2748e-04
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Fig. 5. (a) Comparing y(t; r) and �6(t; r) in Example 4.2 case 1. (b) Comparing y(t; r) and �6(t; r)
in Example 4.2 case 1.
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Fig. 6. (a) The error of �6(t; r) in Example 4.2 case 1. (b) The error of �6(t; r) in Example 4.2
case 1.

Case (2): If we consider y0(t) in the second form ((ii)-di�erentiable), we have to solve
the following di�erential system:8<: y0(t; r) = �3 y(t; r) + et; y(0; r) = 1� r;

y0(t; r) = �3 y(t; r) + et; y(0; r) = r � 1:
(5.55)

The exact solution is given by8<: y(t; r) = (r � 5
4)e�3t + 1

4e
t;

y(t; r) = (3
4 � r)e�3t + 1

4e
t:

(5.56)

Now, we solve Eq. (55) via HPM and compare approximate solution with exact solution
(56).

According to Eqs. (33), (34) and (35), we have

p0 :

8<: y0(t; r) = 1� r;
y0(t; r) = r � 1;

(5.57)

p1 :

8<: y1(t; r) = (et � 1)� 3(1� r)t;
y1(t; r) = (et � 1)� 3(r � 1)t;

(5.58)

and for k � 1, we have

pk+1 :

8><>: yk+1(t; r) = 2
R t
t0 yk(s; r) ds;

yk+1(t; r) = 2
R t
t0 yk(s; r) ds:

(5.59)
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We approximate y(t; r) and y(t; r), with �6(t; r) and �6(t; r), respectively, as follows:

�6(t; r) =
5X
i=0

yi(t; r) = (r � 1) + 61(et � 1)� (3r + 57)t+ (
9
2
r � 36)t2

� (
9
2
r +

9
2

)t3 + (
27
8
r � 27

4
)t4 + (

81
40
� 81

40
r)t5;

�5(t; r) =
5X
i=0

yi(t; r) = (1� r) + 61(et � 1) + (3r � 63)t+ (
9
2
r + 27)t2

+ (
9
2
r � 27

2
)t3 � 27

4
rt4 + (

81
40
r � 81

40
)t5:

Table 4 show the comparison of the exact solution and the approximate solution obtained
by HPM at t = 0:1 and t = 0:3 for any r 2 [0; 1]. Also, in Fig. 7, we compare the exact
solution with the approximate solution. The three-dimensional plot of the error between
the exact solution and the approximate solution is shown in Fig. 8.
Table 4
The results for six-term approximate of HPM in Example 4.2 case 2.

t = 0:1 t = 0:3
r jy � �6j jy � �6j jy � �6j jy � �6j
0 1.2989e-06 6.4242e-07 8.8038e-04 4.2543e-04

0.1 1.2019e-06 5.4535e-07 5.1506e-04 3.6014e-04
0.2 1.1048e-06 4.4828e-07 7.4980e-04 2.9485e-04
0.3 1.0077e-06 3.5121e-07 6.8451e-04 2.2956e-04
0.4 9.1068e-07 2.5414e-07 6.1922e-04 1.6427e-04
0.5 8.1361e-07 1.5707e-07 5.5393e-04 9.8980e-05
0.6 7.1654e-07 6.0007e-07 4.8864e-04 3.3689e-05
0.7 6.1947e-07 3.7062e-07 4.2335e-04 3.1602e-05
0.8 5.2240e-07 1.3413e-07 3.5806e-04 9.6893e-05
0.9 4.2533e-07 2.3120e-07 2.9277e-04 1.6218e-04
1.0 3.2827e-07 3.2827e-07 2.2748e-04 2.2748e-04
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Fig. 7. (a) Comparing y(t; r) and �6(t; r) in Example 4.2 case 2. (b) Comparing y(t; r) and �6(t; r)
in Example 4.2 case 2.
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Fig. 8. (a) The error of �6(t; r) in Example 4.2 case 2. (b) The error of �6(t; r) in Example 4.2
case 2.

6 Conclusion

In this paper, we applied Homotopy Perturbation Method (HPM) for approximate solv-
ing of the FIVP. The original FIVP is replaced by two parametric ordinary di�erential
equations which are then solved approximately using the HPM. HPM provides the com-
ponents of the exact solution, where these components should follow the summation give
in (21). The exact solutions are compared with solutions obtained by means of the HPM.
The results show that this method is useful for �nding an accurate approximation of the
exact solution. Also, this method can be used for solving N -th fuzzy di�erential equations.
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