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On the Laplae Transform DeompositionAlgorithm for Solving Nonlinear Di�erentialEquationsA. R. Vahidi �, Gh. Asadi CordshooliDepartment of Mathematis, Shahr-e-Rey Branh, Islami Azad University, Tehran, Iran.Reeived 20 Deember 2010; revised 1 Marh 2011; aepted 21 Marh 2011.|||||||||||||||||||||||||||||||-AbstratIn this paper, we present a omparative study between the Adomian deomposition method(ADM) and the Laplae transform deomposition algorithm (LTDA) for solving nonlineardi�erential equations. For the Bratu's boundary value problem and the DuÆng's equation,we show that the LTDA is equivalent to the ADM.Keywords : Adomian deomposition method; Laplae transform deomposition algorithm; Bratu'sproblem; DuÆng's equation||||||||||||||||||||||||||||||||{1 IntrodutionSometimes using several numerial methods to solve a nonlinear problem may give similarresults. It is notieable that applying di�erent numerial methods to solve a problem mayprovide just the same results. For example it is shown that using the ADM and suessiveapproximation method for linear integral equations [8℄, give just the same results and alsoit will be hold for the ADM and the power series method for di�erential equations [9℄, andthe ADM and the Jaobi iterative method for system of linear equation [6℄.From the beginning of 1980's that George Adomian introdued his deompositionmethod, this method has been applied to a wide lass of funtional equations [1, 2℄ and itis demonstrated that the method provides aurate and omputable solutions for a widelass of linear or nonlinear funtional equations.The LTDA is an approah based on the ADM, whih is onsidered as an e�etivemethod in solving many problems beause it provides, in general, a rapidly onvergentseries solution. Sine the Laplae transform onverts the di�erentiation to simple algebraioperations and as the algebrai equations are solvable by the ADM, we an ombine the�Corresponding author. Email address: alrevahidi�yahoo.om.17



18 A. R. Vahidi, Gh. Asadi Cordshooli = IJIM Vol. 3, No. 1 (2011) 17-23Laplae transform and the ADM to solve di�erential equations. The LTDA approximatesthe exat solution with a high degree of auray using only few terms of the iterativesheme [5℄. Many authors have used this method to solve the Bratu's equation [7℄, theDuÆng equation [11℄, and integro-di�erential equation [10℄.In this paper, we use both introdued methods to solve two famous and nonlinearproblems, namely Bratu and DuÆng equations. We will show that these methods areequivalent.2 Bratu's boundary value problemIn this setion, we apply the ADM and the LTDA for the Bratu's boundary value problemand show that the results are exatly the same.2.1 ADM for solving the Bratu's boundary value problemConsider the Bratu's boundary value problem as follow�u00(x) = �eu(x) ; u(0) = 0; u(1) = 0; � > 0: (2.1)Denoting d2dx2 by G, we have G�1 as two-fold integration from 0 to x, through whih thedi�erential equation in (2.1), an be written asGu(x) = ��eu(x): (2.2)After operating with the inverse operator G�1, substituting the initial ondition u(0) = 0and onsidering u0(0) = k, one getsu(x) = kx+G�1(��eu(x)): (2.3)In the ADM, the solution u(x) is onsidered as an in�nite seriesu(x) = 1Xn=0 un(x); (2.4)and the nonlinear part of the equation (2.3) is replaed byN(u(x)) = 1Xn=0An(x); (2.5)where A0ns are the Adomian's polynomials that an be alulated by the following formulaAn = 1n! [ dnd�nN( 1Xi=0 �iui(x))℄�=0; n = 0; 1; 2; : : : : (2.6)Substituting (2.4) and (2.5) into (2.3), we obtain1Xn=0un(x) = u(0) + u0(0)x� �L�1( 1Xn=0An): (2.7)



A. R. Vahidi, Gh. Asadi Cordshooli = IJIM Vol. 3, No. 1 (2011) 17-23 19Considering the initial onditions given in the problem (2.1), we an hoose the �rst termof the series (2.4) as follows:u0(x) = kx; (2.8)and its other terms will be obtained by the reursion relationui+1(x) = ��Z x0 Z x0 Aidxdx: (2.9)The omponents of ui(x) for n = 1; 2; 3 an be obtained using (2.12) asu1(x) = �( 1k2 + xk � ekxk2 ); (2.10)u2(x) = ��2( 54k2 + x2k3 � ekxk4 + xekxk3 � e2kx4k4 ); (2.11)u3(x) = 2�3(� e3kx24k6 � e2kx4k6 + xe2kx4k5 � 5ekx8k6 + 3xekx4k5 � x2ekx4k4 + 1112k6 + x4k5 ): (2.12)Similarly, the omponents un(x) are alulated for n = 4; 5; : : : but they are not listed herefor brevity.2.2 LTDA for solving Bratu's problemS. A. Khuri in [7℄ applied the LTDA to solve the equation (1). We desribe this proedurebriey as follow.Operating both sides of the di�erential equation given in (2.1) by Laplae transformintegral operator (denoted throughout this paper by L), givesL[u00(x)℄ = ��L[eu(x)℄: (2.13)Applying the formulas of the Laplae transform, tends tos2L[u(x)℄� u(0)s� u0(0) = ��L[eu(x)℄: (2.14)Using the initial ondition u(0) = 0 and onsidering u0(0) = k, yieldss2L[u(x)℄ = k � �L[eu(x)℄; (2.15)that an be solved for L[u℄ asL[u(x)℄ = ks2 � �s2L[eu(x)℄: (2.16)Now, the Bratu's di�erential equation is onverted to the algebrai equation (2.16) thatwill be solved using ADM. By substituting (2.4) and (2.5) into (2.16), we obtainL[ 1Xn=0 un(x)℄ = ks2 � �s2L[ 1Xn=0An(x)℄: (2.17)



20 A. R. Vahidi, Gh. Asadi Cordshooli = IJIM Vol. 3, No. 1 (2011) 17-23We an replae the Laplae transform by the summation and sine Laplae transform isa linear operator, the following result will be hold1Xn=0L[un(x)℄ = ks2 � �s2 1Xn=0L[An(x)℄: (2.18)Choosing L[u0℄ = ks2 and L[ui+1(x)℄ = � �s2L[Ai(x)℄ and alulating the inverse of theLaplae transform, we obtainu0(x) = kx; (2.19)u1(x) = �( 1k2 + xk � ekxk2 ); (2.20)u2(x) = ��2( 54k2 + x2k3 � ekxk4 + xekxk3 � e2kx4k4 ); (2.21)u3(x) = 2�3(� e3kx24k6 � e2kx4k6 + xe2kx4k5 � 5ekx8k6 + 3xekx4k5 � x2ekx4k4 + 1112k6 + x4k5 ); (2.22)The omponents un(x) are alulated for n = 4; 5; : : : but for brevity they will notbe listed. Comparing (2.8)- (2.12) by (2.19)-(2.22), one by one, shows that ui(x) fori = 0; 1; :::; 3 obtained by the LTDA are just as the same terms obtained by the ADM.3 DuÆng problemIn this setion, we apply the methods ADM and LTDA for a spiial version of the DuÆngequation. The DuÆng equationy00 + 3y � 2y3 = osxsin2x; (3.23)with the initial onditions y(0) = y0(0) = 1 [4℄ is solved using ADM and LTDA in thissetion.3.1 ADM for solving the DuÆng equationDenoting d2dt2 by G, we have G�1 as a two-fold integration given by G�1(:) = R x0 R x0 (:)dxdx.Using the operator G, the equation (3.23) beomesGy = f(x)� 3y + 2y3; (3.24)where f(x) has seven terms of the Taylor expansion of exitation term about x = 0 asfollow f(x) = osxsin2x ' 1� x� 3x22 + x36 + 7x48 � x5120 � 61x6240 : (3.25)Applying the inverse operator G�1 on both sides of (3.24) and onsidering the initialondition, yield y = t+G�1[f(x)℄� 3G�1[y℄ + 2G�1[y3℄: (3.26)



A. R. Vahidi, Gh. Asadi Cordshooli = IJIM Vol. 3, No. 1 (2011) 17-23 21In order to apply the ADM let y = 1Xn=0 yn; (3.27)and N(y) = y3 = 1Xn=0An; (3.28)where An's are the Adomian polynomials depending on y0; y1; : : : ; yn. Replaing (3.27)and (3.28) into (3.26), we obtainy0 = t+G�1f(x) = x+ 13 � 760x5 + 612520x7 � 547181440x9 (3.29)and the reurrene relationyn+1 = �3G�1[yn℄ + 2G�1[An℄; n = 0; 1; 2; : : : (3.30)using (3.30), we an obtain the omponents of yi as follows:y1 = �12 x3 + 120x5 + 47840x7 � 8960480x9 + : : : (3.31)y2 = 340x5 � 340x7 � 52320160x9 + : : : (3.32)y3 = �3560x7 + 29960x9 + : : : (3.33)Similarly, the omponents yn are alulated for n = 3; 4; : : : that was skipped to belisted here.3.2 LTDA for solving the DuÆng problemE. Yusufoglu in [11℄ used the LTDA to solve the DuÆng equation that is explained brieyin this subsetion. Operating both sides of di�erential equation given in (3.23) by theLaplae transform integral operator givesL[y00℄ + L[3y℄� L[2y3℄ = L[f(x)℄: (3.34)Applying the the Laplae transform formulas and using the initial onditions, one getss2L[y℄� 1 + 3L[y℄� 2L[y3℄ = L[f(x)℄; (3.35)that an be solved for L[y℄ asL[y℄ = 1s2 � 3s2L[y℄ + 2s2L[y3℄ + 1s2L[f(x)℄: (3.36)Substituting (3.27) and (3.28) into (3.36), we obtainL[ 1Xn=0 yn℄ = 1s2 � 3s2L[ 1Xn=0 yn℄ + 2s2L[ 1Xn=0An℄ + 1s2L[f(x)℄: (3.37)
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