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Abstract
This paper deals with the implementation of Haar wavelets to solve the optimal control
problem of linear time-varying singular systems with a quadratic cost functional. The
properties of Haar Wavelets are presented. The state variable, state rate and the control
vector are expanded in Haar orthogonal basis with unknown coefficients. The relation
between the coefficients of the state rate and state variable is provided and the necessary
condition of optimality is derived as a linear system of algebraic equations in terms of the
unknown coefficients of the state and control vectors. Illustrative example is included to
demonstrate the validity and applicability of the technique.
Keywords : Optimal control;Singular systems; Haar wavelets; Operational matrix; Orthogonal basis
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1 Introduction

The development of singular systems has been studied by some researchers [5, 6, 8, 11]. In
some analysis of neural networks, both singular systems [4] and bilinear systems [12] have
been used. For optimal control of singular systems Single-term Walsh series [1], Piecewise
linear polynomial functions [8] and Legendre wavelets [5] are used.

The orthogonal set of Haar functions is a group of square waves with magnitude of +2
i
2 ,

−2
i
2 , and 0, i = 0, 1, 2, · · · [9]. The use of Haar functions comes from the rapid convergence

feature of Haar series in expansions of functions compared with [2]. Lynch and Reis [7]
have Rationalized the Haar transform by deleting the irrational numbers and introducing
the integral power of two. This modification results in what is called the Rationalized
Haar (RH) transform. The RH transform preserves all the properties of the original Haar
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transform and can be efficiently implemented using digital pipeline architecture [10]. The
corresponding functions are known as RH functions. The RH functions are composed of
only three amplitudes +1, −1 and 0.

In the present paper we use the Haar wavelets approach for solving optimal control
of time-varying linear singular systems with a quadratic cost functional. The state vari-
able x(t), state rate ẋ(t) and control variable u(t) are expanded in the rationalized Haar
functions with unknown coefficients. The operational matrix of product is introduced, this
matrix together with the operational matrix of integration are then utilized to evaluate the
unknown coefficients. The main characteristic of this technique is that it reduces these
problems to those of solving system of algebraic equations thus greatly simplifying the
problem. A method of constrained extremum is applied which deals with adjoining the
constrains equation which is derived from the given dynamical system to the performance
index by a set of undetermined Lagrange multipliers. As a result, the necessary condi-
tions of optimality are derived as a system of x(t), u(t) and Lagrange multipliers. These
coefficients are determined in such a way that the necessary conditions for extremization
are imposed.
The paper is organized as follows: In section 2 we describe the basic properties of the
Rationalized Haar functions. Section 3 is devoted to the formulation of the optimal control
problem. In section 4 we apply the proposed method and in section 5, we report our
numerical findings and demonstrate the accuracy of the proposed method.

2 Properties of rationalized Haar functions

2.1 Rationalized Haar functions

The RH functions RH(r, t), r = 1, 2, 3, . . . are composed of three values +1 , -1 and 0
and can be defined on the interval [0, 1) as [9].

RH(r, t) =



1, J1 ≤ t < J1/2

−1, J1/2 ≤ t < J0

0, otherwise

(2.1)

where

Ju =
j − u

2i
, u = 0,

1

2
, 1.

The value of r is defined by two parameters i and j as

r = 2i + j − 1, i = 0, 1, 2, 3, . . . , j = 1, 2, 3, . . . , 2i

RH(0, t) is defined for i = j = 0 and is given by

RH(0, t) = 1, 0 ≤ t < 1.

The orthogonality property is given by∫ 1

0
RH(r, t)RH(v, t)dt =

{
2−n, r = v

0, r ̸= v
(2.2)
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where

v = 2n +m− 1, n = 0, 1, 2, 3, . . . , m = 1, 2, 3, . . . , 2n.

2.2 Function approximation

Function f , defined over the interval [0, 1) my be expanded into RH functions as

f(t) =
+∞∑
r=0

arRH(r, t), (2.3)

where ar is given by

ar = 2i
∫ 1

0
f(t)RH(r, t)dt, r = 0, 1, 2, . . . , (2.4)

with r = 2i + j − 1, i = 0, 1, 2, 3, . . . , j = 1, 2, 3, . . . , 2i and r = 0 for i = j = 0.
The series in Eq. (2.3) contains infinite terms. If, we let i = 0, 1, 2, . . . , α then the infinite
series in Eq. (2.3) is truncated up to its first k terms as

f(t) ≃
k−1∑
r=0

arRH(r, t) = ATΦ(t) (2.5)

where

k = 2α+1, α = 0, 1, 2, 3, . . . .

The RH functions coefficient vector A and RH functions vector Φ(t) are defined as

A = [a0, a1, . . . , ak−1]
T , (2.6)

Φ(t) = [ϕ0(t), ϕ1(t), . . . , ϕk−1(t)]
T (2.7)

where

ϕr(t) = RH(r, t) , r = 0, 1, 2, . . . , k − 1.

If each waveform is divided into eight intervals, the magnitude of the waveform can be
represented as

Φ̂8×8 =


ϕ0

ϕ1
...
ϕ7

 =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


. (2.8)

In Eq. (2.8) Each row denotes the order of the Haar functions. The matrix Φ̂k×k by
using the values of them at Newton-Cotes nodes can be expressed as

Φ̂k×k = [Φ(1/2k),Φ(3/2k), ...,Φ((2k − 1)/2k)]. (2.9)
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By using Eqs. (2.5) and (2.9) we get

[f(1/2k), f(3/2k), . . . , f((2k − 1)/2k)] = AT Φ̂k×k (2.10)

from Eq. (2.10) we get

AT = [f(1/2k), f(3/2k), . . . , f((2k − 1)/2k)] Φ̂−1
k×k, (2.11)

where

Φ̂−1
k×k = (

1

k
)Φ̂T

k×kdiag.

1, 1, 2, 2, 22, ..., 22︸ ︷︷ ︸
22

, 23, ..., 23︸ ︷︷ ︸
23

, ...,
k

2
, ...,

k

2︸ ︷︷ ︸
k
2

 . (2.12)

2.3 Operational matrix of integration

The integration of the Φ(t) defined in Eq. (2.7) is given by∫ t

0
Φ(t′)dt′ = PΦ(t) (2.13)

where P = Pk×k is the k × k operational matrix for integration and is given by

Pk×k =
1

2k

2kP k
2
× k

2
−Φ̂ k

2
× k

2

Φ̂−1
k
2
× k

2

0

 ,

with Φ̂1×1 = [1], P1×1 = [12 ], Φ̂ k
2
× k

2
and Φ̂−1

k
2
× k

2

can be obtained from Eqs. (2.9) and

(2.12), respectively.
Also, the integration of two RH vectors is∫ 1

0
Φ(t)ΦT (t)dt = D, (2.14)

where D is a diagonal matrix given by

D = diag.

1, 1,
1

2
,
1

2
,
1

22
, . . . ,

1

22︸ ︷︷ ︸
22

, . . . ,
1

2α
, . . . ,

1

2α︸ ︷︷ ︸
2α

 .

3 Problem statement

Find the control vector U(τ), and the corresponding state vector X(τ), τ ∈ [0, tf ], which
maximize (or minimize) the functional

J = H(X(tf ), tf ) +

∫ tf

0

(
XT (τ)Q(τ)X(τ) + UT (τ)R(τ)U(τ)

)
dτ (3.15)
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subject to
E(τ)Ẋ(τ) = A(τ)X(τ) +B(τ)U(τ), τ ∈ [0, tf ], (3.16)

X(0) = x0. (3.17)

where X(τ) and U(τ), are l × 1 and q × 1 vector respectively. In Eq. (3.15) Q(τ) and
R(τ) are positive semi definite and positive definite matrix, respectively. In Eq. (3.16)
the matrix E(τ) is a singular matrix with l × l dimension and A(τ) and B(τ) are matrices
with suitable dimensions. Also, tf denotes the final time which may be free. It is assumed
that the problem (3.15)-(3.17) has a unique solution. The time transformation τ = tf t is
introduced in order to use RH functions defined on t ∈ [0, 1). Using this transformation
(3.15)-(3.17) are replaced by

J = h(x(1), tf ) + tf

∫ 1

0

(
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

)
dt (3.18)

E(t)ẋ(t) = tf (A(t)x(t) +B(t)u(t)) , t ∈ [0, 1), (3.19)

x(0) = x0. (3.20)

4 The proposed method

Let:
Φ̂1(t) = Il ⊗ Φ(t), (4.21)

Φ̂2(t) = Iq ⊗ Φ(t), (4.22)

where Il and Iq are l× l and q× q dimensional identity matrices, Φ(t) is m× 1 vector and
⊗ denotes Kronecker product [3], Φ̂1(t) and Φ̂2(t) are vectors of order lm× l and qm× q,
respectively. Assume that each of ẋi(t) and each of uj(t), i = 1, 2, · · · , l, j = 1, 2, · · · , q,
can be written in terms of RH functions as

ẋi(t) = ΦT (t)Xi,

uj(t) = ΦT (t)Uj .

Then using Eqs. (4.21) and (4.22) we have

ẋ(t) = Φ̂T
1 (t)X, (4.23)

u(t) = Φ̂T
2 (t)U, (4.24)

where X and U are vectors of order lm× 1 and qm× 1 respectively given by

X = [XT
1 , X

T
2 , · · · , XT

l ]
T ,

U = [UT
1 , U

T
2 , · · · , UT

q ]
T .

Similarly we have
x(0) = Φ̂T

1 (t)d, (4.25)

where d is a vector of order lm× 1 given by

d = [dT1 , d
T
2 , · · · , dTl ]T .
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By integrating Eq. (4.23) from 0 to t we get

x(t)− x(0) =

∫ t

0
Φ̂T
1 (t

′)Xdt′ = (Il ⊗ ΦT (t))(Il ⊗ P T )X = Φ̂T
1 (t)P̂

TX (4.26)

where P is the operational matrix of integration given in Eq. (2.13). From Eqs. (4.25)
and (4.26) we obtain

x(t) = Φ̂T
1 (t)K, (4.27)

where K is a vector of order l × l given by

K = d+ P̂ TX.

4.1 The performance index approximation

By substituting Eqs. (4.24) and (4.27) in Eq. (3.18) we get

J(X,U) = ĥ(X, tf )

+tf

(
KT

(∫ 1

0
Φ̂1(t)Q(t)Φ̂T

1 (t)dt

)
K + UT

(∫ 1

0
Φ̂2(t)R(t)Φ̂T

2 (t)dt

)
U

)
and therefore

J(X,U) = ĥ(X, tf )

+tf

(
KT

(∫ 1

0
Q(t)⊗ Φ(t)ΦT (t)dt

)
K + UT

(∫ 1

0
R(t)⊗ Φ(t)ΦT (t)dt

)
U

)
. (4.28)

In the above equation, two expressions
∫ 1
0 Q(t)⊗ Φ(t)ΦT (t)dt and

∫ 1
0 R(t)⊗ Φ(t)ΦT (t)dt

will be computed by numerical methods. If the problem is time invariant, Q(t) and R(t)
are constant matrices, and therefore

∫ 1

0
Q⊗ Φ(t)ΦT (t)dt = Q⊗D,

∫ 1

0
R⊗ Φ(t)ΦT (t)dt = R⊗D.

4.2 The system dynamics approximation

We approximate the system dynamics as follows:
Let

E(t) = Φ̂T
1 (t)E, (4.29)

tfA(t) = Φ̂T
1 (t)A, (4.30)

tfB(t) = Φ̂T
2 (t)B. (4.31)

By substituting Eqs. (4.24), (4.27) and (4.29)-(4.31) in Eq.(3.19) we have

ET Φ̂1(t)Φ̂
T
1 (t)X = AT Φ̂1(t)Φ̂

T
1 (t)K +BT Φ̂2(t)Φ̂

T
2 (t)U,

therefore
Φ̂T
1 (t)Ẽ

TX = Φ̂T
1 (t)Ã

TK + Φ̂T
1 (t)B̃

TU.
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From the above equation we obtain

ẼTX − ÃTK − B̃TU = 0. (4.32)

Therefore, the minimization problem of Eq. (3.15) subject to Eqs. (3.16)-(3.17) reduces
to a parameter optimization problem, which can be stated as follows: Find X and U to
minimize

J∗(X,U, λ) = J(X,U) + λT (ẼTX − ÃTK − B̃TU) (4.33)

where λ is the Lagrange multiplier. The determining equations for the unknown X, U
and λ are

∂

∂X
J∗(X,U, λ) = 0, (4.34)

∂

∂U
J∗(X,U, λ) = 0, (4.35)

∂

∂λ
J∗(X,U, λ) = 0. (4.36)

Eqs. (4.34)-(4.36) are nonlinear equations that can be solved by Newton’s iterative
method.

5 Illustrative examples

Consider the linear singular system [5]0 1

0 0

ẋ1
ẋ2

 =

1 0

0 1

x1
x2

+

0
1

u, (5.37)

x(0) =

 1

−
√
2
2

 , (5.38)

with the cost function

J =
1

2

∫ 2

0

(
x21(τ) + x22(τ) + u2(τ)

)
dt. (5.39)

The problem is to find the optimal control u(τ) which minimizes J subject to Equations
(5.37) and (5.38).

To obtain the Haar wavelets approximations, we first convert the interval [0, 2] to [0, 1]
by means of the transformation τ = 2t. The analytic solution of the system (5.37) for
0 ≤ t < 1 is [1]

x(t) =

 exp(−
√
2t)

−1√
2
exp(−

√
2t)

 , (5.40)

and the optimal control is

u(t) =
1√
2
exp(−

√
2t). (5.41)
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By using the method of section 4, the example is solved. In the Tables 1 and 2, a compar-
ison is made between the values of x1(t) and u(t) using the present method with m = 128,
the method of [5] and the exact solution.

Table 1
Estimated and exact values of x1(t).

Haar wavelets Exact solution Legendre wavelets
time m=128 M=5, K=2

0.0 0.9989 1.0000 1.0012
0.1 0.7537 0.7536 0.7536
0.2 0.5689 0.5680 0.5671
0.3 0.4272 0.4280 0.4273
0.4 0.3224 0.3226 0.3225
0.5 0.2442 0.2431 0.2446
0.6 0.1834 0.1832 0.1832
0.7 0.1383 0.1381 0.1379
0.8 0.1042 0.1041 0.1039
0.9 0.0784 0.0784 0.0784
1.0 0.0591 0.0591 0.0595

Table 2
Estimated and exact values of u(t).

Haar wavelets Exact solution Legendre wavelets
time m=128 M=5, K=2

0.0 0.7072 0.7071 0.7079
0.1 0.5329 0.5329 0.5328
0.2 0.4014 0.4016 0.4010
0.3 0.3028 0.3027 0.3021
0.4 0.2284 0.2281 0.2280
0.5 0.1726 0.1719 0.1729
0.6 0.1293 0.1296 0.1296
0.7 0.0975 0.0976 0.0975
0.8 0.0735 0.0736 0.0735
0.9 0.0555 0.0555 0.0554
1.0 0.0418 0.0418 0.0420

6 Conclusion

The aim of the present work has been to develop an efficient and accurate method for
solving optimal control problem of singular systems with a quadratic cost functional using
Haar wavelets. The technique is based on approximation of dynamic systems and perfor-
mance index into Haar series by using the values of them at Newton-Cotes nodes. The
problem has been reduced to solving a system of algebraic equations. The matrices Φ̂k×k

and Φ̂−1
k×k introduced in Eqs. (2.9) and (2.12) contain many zeros, and these zeros make

the Haar transform faster than other orthogonal functions. The method can be imple-
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mented on a digital computer. It occupies less memory space and consumes less computer
time than method in [5]. Illustrative example has shown the validity and applicability of
the proposed method.
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