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Abstract 

We are interested in proposing the convex fuzzy functions from  into  to describe 

the concepts of left and right generalized derivatives. In this way, several properties 

of the concepts are discussed. As well, the notions of generalized subdifferential for 

these functions are studied and calculated. Finally, the properties of the concepts are 

illustrated and applied through some examples. 
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1. Introduction  

At first, in 1967, Hukuhara defined the difference between two intervals in such a way that 

for each interval A the algebraic difference 0A A− =  always exists [1]. Based on this 

definition, Puri and Ralescu defined the Hukuhara difference (H-difference) in 1983. 

According to this derivative, a differentiable function in its support interval has an increasing 

length [2]. After that, Bede and Gal introduced the strong generalized derivative using  

H-difference. Hereupon, a differentiable function in its support interval has a decreasing 

length [3]. Also, they presented the weak generalized derivative as an extension of their strong 

generalized derivative. Since the H-difference of fuzzy numbers only exists in limited terms, 

an extension of it was presented by Stefanini in 2010, which is called the generalized 

Hukuhara difference [4]. Many times, the gH-difference obtains when the H-difference does 

not exist, but not always. Therefore, Bede and Stefanini nominated the generalized difference 

(g-difference), that always exists for the fuzzy numbers defined on  [5]. But, the  

g-difference result is not always a fuzzy number. Hence, Gomes and Barros suggested the 

convex hull of the resulting set [6]. Finally, Bede and Stefanini proposed the concepts of 

generalized Hukuhara differentiability (gH-differentiability), Level-wise gH-differentiability 

(
gHL -differentiability) and generalized differentiability (g-differentiability) [5]. 

On the other hand, there are many essential topics in fuzzy optimization, among which fuzzy 

convex analysis is the most significant. The convexity of fuzzy mapping was presented by 

Nada and Car in 1992 [7]. The fuzzy mapping convexity and its optimization applications 

were produced in [8-12]. Quasi-convexity and convexity were explored by Yan-Xu for fuzzy 

functions [11]. Also, pseudo-convexity was investigated by Syau for multi-variable fuzzy 

functions [13]. Furukawa was interested in Lipschitz continuity and convexity for fuzzy 

functions [14]. Various descriptions of several types of convexity for fuzzy mapping can be 

seen in [8,9,15]. Thence, Noor presented the fuzzy preinvex functions and their properties 

[16]. The directional derivatives and subdifferential for convex fuzzy mappings from 
n

 into 

 in terms of H-difference were investigated by Wang and Wu [17] and in this way, for 

convex fuzzy mappings on n-dimensional scales were established by Wang, Qin, and Agarwal 

[18]. 

This paper includes the fuzzy topological concepts, such as g-differentiability of convex fuzzy 

functions and its properties. Fuzzy differentiability, especially g-differentiability, is one of the 

important properties of fuzzy functions. Since many functions used in fuzzy convex 

optimization problems do not have this property, a more comprehensive notion called 

generalized subdifferentiability (g-subdifferentiability) is defined as a tool for solving such 

problems. Furthermore, the revolutionary idea behind the g-subdifferential concept, which 

distinguished it from other notions of fuzzy derivatives is its set-valued property in each  -

cut as the non-smoothness indication of a convex fuzzy function around the reference 

individual point. For this reason, we define and start studying the theoretical aspect of 

generalized subdifferential (g-subdifferential) in terms of  -cuts (or the set of generalized 

subgradients (g-subgradients)) for convex fuzzy functions and our aim is not to consider the 

real applications. It is clear that this research can be widely used in the control systems of 

electronic and engineering fuzzy optimization. In the following, Level-wise generalized 

Hukuhara subdifferential (
gHL -subdifferential) and g-subdifferential concepts are developed 

and calculated in terms of  -cuts for convex fuzzy functions. Eventually, we survey the 
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properties of these concepts, one of which is that a convex fuzzy function may not be  

gHL -differentiable at a point in its domain, but the concepts of 
gHL -subdifferential and  

g-subdifferential at this point exist. This expression is the most important advantage of this 

paper. 

Our paper construction is as you can see; First, in Section 2, several fuzzy concepts,  

g-difference, and g-differentiability are expressed. Then, in Section 3, convex fuzzy functions 

are studied, and the left and right generalized derivatives of these functions are considered in 

Section 4. After that, g-subgradients and g-subdifferential of these functions are analyzed and 

some results are in Section 5. Finally, these concepts are calculated precisely in some practical 

examples. 

 

2. Literature review 

This section contains the fundamental explanations that are the preliminaries of this paper. 

The fuzzy numbers set denoted by , which is convex, normal, and upper semi-continuous, 

that is compactly supported fuzzy sets determined over . If x ; the support of x  is 

specified as  supp( ) : ( ) 0x t x t=   . If  0,1  , the  -cuts of x  are determined by 

   : ( )x t x t


=    and the closure of the support of x  is considered for 0-cut (we 

abbreviated by cl(supp( x )) the closure of the support of  x ), i.e., 
0[ ] (supp( ))x cl x= .  

Moreover, if  0,1   we express  x


 by ,x x 

− +   , which is closed. If   and 

,x y , the scalar multiplication and addition in terms of  -cuts are determined, 

respectively by    =x x
 

   and      = + x y x y
  

 . Suppose that a b c d  

, a trapezoidal fuzzy number is defined by , , ,x a b c d= , which for each  0,1  ; its 

-cuts are   ( ) ( ),x a b a d d c


 = + − − −   . Note that, if b c=  then , ,x a b d=  is a 

triangular fuzzy number. The H-difference is defined by H zx y z x y=  =  ; and its 

 -cuts are   ,Hx y x y x y   

− − + + = − −  , if it exists. It is outstanding that 0Hx x =  

for each x , (0 represents the singleton  0 ), but 0x x−  . 

Definition 2.1. Here and subsequently, CK  stands for the set of all closed and bounded 

intervals in , i.e.,  | [ , ] : , ,  CK P P p p p p p p− + − + − += =   [19]. 

Definition 2.2. If  , we define   as the below form [17]: 

1,       ,
 

0,       .

if x

if x

=
= 


 

 Indeed,  can be embedded in . 
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Definition 2.3. Suppose that ,x y  with   ,x x x 

− + =    and   ,y y y 

− + =   . For each 

 0,1  , we determine the below terms [17]: 

1. ,x y x y x y   

− − + +   ; 

2. ,x y x y x y  . 
 

Definition 2.4. Let K  . The fuzzy number    is the (necessarily unique) infimum 

of ,K  if it is a lower bound of K  and if for every lower bound  of K , we have   . 

This fuzzy number is indicated by inf K , and by min K  when inf K K . The supremum 

of K  is  sup inf |K K = − −  . This fuzzy number is denoted by max K  when 

sup K K [17]. 

Definition 2.5. The fuzzy function :  →  is increasing, if )( ) (x y   for every 

,x y  with x y . Similarly,   is decreasing, if )( ) (x y   for every ,x y  with 

x y [17]. 

Proposition 2.1. Suppose that x . It can be determined entirely by ( , )x x x− += , where 

the endpoints are the real-valued functions  , : 0,1x x− + →  fulfilling the below terms [5]: 

1. ( )x x− −=   is increasing, monotonic, bounded, right-continuous for 0 =  

and left-continuous for each ( 0,1  ; 

2. ( )x x+ +=   is decreasing, monotonic, bounded, right-continuous for 0 =  

and left-continuous for each ( 0,1  ; 

3. x x 

− + , for each  0,1  . 

Proposition 2.2. Suppose that  : (0,1]C    is a collection of real intervals with the below 

terms [5]: 

1. CC K  , for each ( 0,1  ; 

2. C C  , for each 0 1    , i.e., they are nested; 

3. 
1

n

n

C C 



=

= , for any increasing convergence sequence (0,1]n   with n → . 

Then a unique fuzzy number x  exists with  
0

(0,1]

x cl C



 
=  

 
 and  x C

=  for each 

 0,1 .  Lemma 2.1. Suppose that : →  and 0t   [5]. If 

1.  
0

lim ( ) ,
tt

t C C C  
 − +

→
 = =    uniformly w.r.t.  0,1  ; 
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2. C  satisfies the terms in Proposition 2.2 or ,C C 

− +
 satisfy the terms in Proposition 

2.1; 

then 
0

lim ( )
t t

t C
→

= , where   ,C C C C  

− + = =   .  

Definition 2.6. [5] The gH-difference of x, y , if it exists, is obtained by 

( )   ,       

( )  ( 1) .

gHx

i x y z

y z or

ii y x z

= 


=  
 =  −

 

In terms of  -cuts: 

      min  , ,max  , gHx x y x y x y x yy        

− − + + − − + + 
 

  = − − − −  . 

 The below cases are possible when 
gHz yx =  exists: 

Case (i) 

 

    increasing,        

     decreasing,       

,    0,1 .               

z x y

z x y

z z

  

  

  

− + +

+ − −

− +

 = −


= −
   

 

Case (ii) 

 

   increasing,            

   decreasing,           

,    0,1 .                  

z x y

z x y

z z

  

  

  

− − −

+ + +

− +

 = −


= −
   

 

It is evident that z  if and only if Cases (i) and (ii) are both valid. 

Definition 2.7. [5] If 0 0: ( , ) ,  ( , ),   and  ( , )a b t a b h t h a b →   +  . The gH-

derivative of   at 0t  is determined by 

0 0 0
0

1
( ) lim ( ) ( )gh gH

h
t t h t

h
  

→
  = +  .     (2.1) 

  is said to be gH-differentiable at 0t  if 
0( )gh t   exists and satisfies (2.1). 

Theorem 2.1. [5] If : ( , )a b →  and  ( ) ( ), ( )t t t 
  − + =    such that the real 

functions ( )t
−

 and ( )t
+

 are uniformly w.r.t.  0,1   differentiable at ( , )t a b , then 

for each  0,1  , ( )gh t  exists and in terms of  -cuts, gh  is defined by 

( ) ( ) ( ) ( )(mi (n ,( ) ), ) ( ,max ) ( )gh t t t t t   
    − + − + 


    

 
   
 

 =  
 

. 
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Definition 2.8. [5] Suppose that :[ , ]a b →  and 
0 ( , )t a b . If ( ) 0( )t

− 
 and ( ) 0( )t

+ 
 

exist, then 

1.  for all  0,1  ,   is said to be [(i)-gH]-differentiable at 
0t  if 

( ) ( )0 0 0( ) ( ), ( )gh t t t 
  − +    =   

 
,     (2.2) 

2. for all  0,1  ,   is said to be [(ii)-gH]-differentiable at 
0t  if   

( ) ( )0 0 0( ) ( ), ( )gh t t t 
  + −    =   

 
.     (2.3) 

Definition 2.9. [5] Suppose that : ( , )a b → , 0 0( , ),   and  ( , )t a b h t h a b  +  . The 

gHL -derivative of   at 0t  is determined as the set of interval-valued gH-derivatives, if they 

exist, i.e., 

   ( )0 0 0
0

1
( ) lim ( ) ( )

ghL
h

gHt t h t
h

  
  

→
 = + . 

  is said to be 
gHL -differentiable at 

0t , if for each  0,1  , 0( )
ghL Ct K   

and the 
gHL -derivative of   at 0t  is the collection of intervals 

  0( ) : 0,1
ghL t     and represented by 0( )

ghL t . 

Definition 2.10. [5] The g-difference of x,y  is determined for any  0,1   in terms 

of  -cuts by 

   ( )g gHox y c nv x y
 

 

 
  =   

 
.     (2.4)  

Proposition 2.3. [5] The g-difference of x,y  exists and it is in . For any  0,1  , 

the g-difference in terms of  -cuts is determined by 

   inf min  , ,supmax  , gx x y x y x y xy y    



 

 


− − + + − − +



+



 
   = − − −


−


.  

Remark 2.1. [5] If 
gHx y , then 

gH g yx y x= ; particularly 0gx x = . 

Proposition 2.4. [5] If x,y , then 

1. 0 ( )g g gy xx y= ; 

2. ( ) g y xx y+ = ; 

3. g gy y x z z zx = =  = − ; also, 0z x y=  = . 

Proposition 2.5. If x,y , the below terms are available: 
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1. If x y , then 0gx y ; 

2. If 0x , then 0g x ; 

3. If x y , then 0gx y . 

Proof. According to Proposition 2.1 in [1], if x y  then 0gHx y . Furthermore, by 

Remark 2.1, 
g gH yx y x= , so 0gx y . (2) and (3) are proved, similarly.     

Definition 2.11. [5] The Hausdorff distance of x,y is determined by 

 
    

0,1
*

( , ) sup gHD x y x y
 



= , 

 the norm of the interval  ,x y  is determined by 

   
*

, max ,x y x y= . 

Whereas the gH-difference    gHx y
 

 always exists, we can say the metric D  is well-

defined. Consequently, ( ), D  is a complete metric space. This definition is equal to the 

normal definitions of metric fuzzy numbers spaces, e.g., [20-23]. 

Proposition 2.6. [5] For any x,y , we obtain 

 
    

0,1
*

( , ) sup =gH gD yxx xy y
 



= , and . (.,0)D= . 

Remark 2.2. [5] By Remark 2.1, whenever 
gHx y  exists, we can conclude 

( , )= =g gHD x y y yx x . 

Definition 2.12. [5] The g-derivative of : ( , )a b →  is determined for any 0 ( , )t a b  by 

0 0

0
0

( ) ( )
( ) limg

h

gt h t
t

h

 


→

+
 = ,     (2.5) 

where h  be such that 0 ( , )t h a b+  .   is said to be g-differentiable at 0t , if 

0( )g t   satisfying (2.5) exists. 

Theorem 2.2. [5] If : ( , )a b →  is uniformly 
gHL -differentiable at 0t , then 

0( )g t  exists, 

and in terms of  -cuts, 
g  is determined by 

 0 0( ) ( ) 0, 1,   
ghg Lt tconv

 


  



   
 

= 





.     (2.6) 
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Theorem 2.3. [5] If :[ , ]a b → ,  ( ) ( ), ( )t t t 
  − + =    such that ( )

− 
 and ( )

+ 
 

exist w.r.t. t , uniformly w.r.t.  0,1  , then 
g  exists and in terms of  -cuts, it is 

determined by 

( ) ( ) ( ) ( )(inf min ,( ) ( ), ) ( ), (u )s pmaxg t t t t t  
  




    − +

 

− + 


    
 

   
 

 =  
 

. 

 

3. Convex fuzzy functions 

Here, we assign the fuzzy function :  → , where  is half-open, open or closed, 

finite or infinite. For simplicity of notation, we write the interior of  by 
o

. It means that 

if 
0

ot  , h  is such that 
0 0, ot h t h+ −  . 

Definition 3.1. [17]   is convex, if 

( )( ) ( ) ( ) ( )1 1 ,    , ,    0 1.t w t w t w       + −  −       

Definition 3.2 A fuzzy set-valued function : 2  →  is convex, if 

( )( ) ( ) ( ) ( )1 1 ,    , ,    0 1.t w t w t w       + −   −       

Theorem 3.1. [17] If  ( ) ( ), ( )t t t 
  − + =   , then 

(i)   is convex if and only if ( )t
−

 and ( )t
+

 are both convex for each  0,1 

. 

(ii)   is increasing (decreasing) if and only if ( )t
−

 and ( )t
+

 are both increasing 

(decreasing) for each  0,1  . 

In the next sections, we will look more closely at the properties of the convex fuzzy functions. 

In the beginning, we will state the below lemmas. 

Lemma 3.1.   is convex, if and only if for each , ,z w t  with z w t  , we get 

( ) ( ) ( ).
t w w z

w z t
t z t z

  
− −


− −

     (3.7) 

Proof. Suppose that   is convex and , ,z w t  be arbitrary with z w t  . If :
t w

t z


−
=

−
, 

then 1
w z

t z


−
− =

−
. So 0 1  , and ( )1w z t = + − . By the convexity of  , we get 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 1
t w w z

w z t z t z t
t z t z

         
− −

= + −  − = 
− −

. 
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Vice versa, assume that (3.7) holds for each , ,z w t  with z w t  . Let ,z t  be 

arbitrary with z t  and 0 1  , then 

( )
( ) ( )

( )
( ) ( ) ( )

1
1 1 1 1 1 .

z
z t z t z z z t z z t

 
       

 − +
 → −  − → + −  + −   + −  

Also, we get 

( ) ( )
( ) ( )

0 1
1 1 .

t
z t z t z t t t t

 
     

  + −
 →  → + −  + − =  

Thus, ( )1z z t t  + −  . By the hypothesis we have 

( )( )
( )( )

( )
( )

( ) ( ) ( ) ( )
1 1

1 1 .
t z t z t z

z t z t z t
t z t z

   
        

− + − + − −
+ −  =  −

− −
Which justifies the convexity of  .    

Lemma 3.2. If   is convex, then for each , ,z w t  with z w t  , we get 

( ) ( ) ( ) ( ) ( ) ( )
.

g g gw z t z t w

w z t z t w

     

− − −
     (3.8) 

Proof. Let , ,z w t  be fixed and arbitrary, by setting ( ): 0,1
w z

x
t z

−
= 

−
. Therefore 

( ) ( )( ) ( ) ( )( )
t z

w w z z w z z x t z z
t z

   
− 

= − + = − + = − + 
− 

 

( ) ( )( )1w xt x z = + − .     (3.9) 

By the convexity of   and (3.9), we get 

( ) ( ) ( ) ( )1w x t x z   − . 

Then, we get 

( ) ( ) ( ) ( ) ( ) ( )g g g

w z
w z x t z t z

t z
     

−
   =   −

, 

and equivalently 

( ) ( ) ( ) ( )g gw z t z

w z t z

   

− −
. 

Also, we can see that  

( ) ( ) ( ) ( ) ( ) ( ) ( )1g g g

w t
w z x t z t z

t z
     

−
   − =   −

. 

The proof is completed by showing that 
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( ) ( ) ( ) ( )
.     

g gt z t w

t z t w

   

− −
   

  

4. Left and Right generalized derivatives of the convex fuzzy functions 

Throughout this part, we assign :    →  as a convex fuzzy function and introduce 

the left and right g-derivatives for it. Also, the basic properties of these concepts can be 

visualized easily. 

Definition 4.1. The left and right gH-derivatives of   at 0t   are respectively determined 

as below: 

0 0

0
0

( ) ( )
( ) limgh

h

gHt t h
t

h

 


+−
→

−
 = ,     (4.10) 

0 0

0
0

( ) ( )
( ) limgh

h

Hgt h t
t

h

 


++
→

+
 = .     (4.11) 

  is left and right gH-differentiable at 
0t , if 

0 0( ), ( )gh ght t − +
   , respectively satisfying 

(4.10) and (4.11) exist. 

Definition 4.2. If 
0

ot   and  0,1  . The left 
gHL -derivative of   at 0t  is determined 

as the set of interval-valued left gH-derivatives, if they exist, i.e., 

   0 0

0
0

( ) ( )
( ) lim

ghL
h

gHt t h
t

h

 


 


+−
→

−
 = .     (4.12) 

  is left 
gHL -differentiable at 0t , if for each  0,1  , 0( )

ghL Ct K−
  . The left 

gHL -

derivative of   at 0t  is determined by the collection of intervals   0( ) : 0,1
ghL t  −

   and 

denoted by 0( ).
ghL t−

  Similarly, the right 
gHL -derivative of   at 0t  is determined by 

  0( ) : 0,1
ghL t  +

   and denoted by 0( )
ghL t+

 , where 

   0 0

0
0

( ) ( )
( ) lim .

gh

g

h

H

L

t h t
t

h

 


 


++
→

+
 =      (4.13) 

Definition 4.3. The left and right g-derivatives of   at 
0

ot   are respectively defined as 

below: 

0 0

0
0

( ) ( )
( ) limg

h

gt t h
t

h

 


+−
→

−
 = ,     (4.14) 

0 0

0
0

( ) ( )
( ) limg

h

gt h t
t

h

 


++
→

+
 = .     (4.15) 
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  is left and right g-differentiable at 
0t , if 

0 0( ), ( )g gt t − +
    respectively satisfying 

(4.14) and (4.15) exist. 

Definition 4.4. For any 
0

ot   and  0,1  , consider 

   0 0

0

( ) ( )
( , )

gh

gH

L

t t h
S t h

h

 


 
−

−
= , 

and 

   0 0

0

( ) ( )
( , )

ghL

gHt h t
S t h

h

 


 
+

+
= . 

Note that, for each  0,1  , 0 0( , ) , ( , )
gh ghL L CS t h S t h K − +  . The left and right 

gHL -

quotients of   at 
0t  are determined by the collections of intervals   0( , ) : 0,1

ghLS t h  −   

and   0( , ) : 0,1
ghLS t h  +  , respectively. These functions are considered as the functions 

of h , and denoted by 0( , )
ghLS t h−  and 0( , )

ghLS t h+ , respectively. 

Definition 4.5. The left and right g-quotients of   at 
0

ot   are considered as the functions 

of h  and respectively determined as below: 

0 0

0

0 0

0

( ) ( )
( , ) ,

( ) ( )
( , ) .

g

g

g

g

t t h
S t h

h

t h t
S t h

h

 

 

−

+

−
=

+
=

 

Theorem 4.1. If   is uniformly left and right 
gHL -differentiable at 

0

ot  , then   is left 

and right g-differentiable at 0t . Also, uniformly w.r.t.  0,1  , the collection of intervals 

   

   

0 0

0

0 0

0

( ) ( )
( , ) ,

( ) ( )
( , ) ,

gH

gH

g

g

t t h
S t h conv

h

t h t
S t h conv

h

 


 

 


 

 

 

−



+



 −
  =     

 

 +
  =     

 

 

respectively, converges to 0( )g t


−
    and 0( )g t


+
    as 0h +→ .    

Proof. Suppose that 
0

ot   and  0,1   denote the intervals 

   0 0

0

( ) ( )
( , )

gh

gH

L

t t h
S t h

h

 


 
−

−
= , 

0 0
0

lim ( , ) ( )
gh ghL L

h

b S t h t  
+ − −

→

= = , 
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   ( )0 0 0 0

1
( , ) ( , ) ( ) ( )

ghg gLS t h conv S t h t t h
h

  
 

 − −



 
  = = −  

 
, 

B conv b 

 

 
=  

 
. 

Suppose that 
0( , )gS t h−

 and B  are the fuzzy numbers that contain the collection of intervals 

  0( , ) : 0,1gS t h

−

     and   : 0,1B    as  -cuts, respectively. In fact, the  -cuts  

  0( , ) : 0,1gS t h

−

     and   : 0,1B    satisfy the terms in Proposition 2.1. 

We will prove the existence of 
0

0

lim ( , ) ,g
h

S t h B
+ −

→

=  and the left g-derivative of   at 
0t , 

accordingly, we will prove 
0( )g t B−

 = . 

Let us consider the intervals 
0 0 0( , )  ( , ) , ( , )g g gS t h S t h S t h 

− +

− − −
   =     and ,B B B  

− + =    

such that  

0 0( , ) inf ( , )
ghg LS t h S t h 

 

− −

− −


= , 0 0( , ) sup ( , )
ghg LS t h S t h 

 

+ +

− −


= , infB b 
 

− −


= , supB b 

 

+ +



= , 

and from the assumption uniformly w.r.t.  , 0( , )
ghLS t h −  converges to 0( )

ghL t −
  as 

0h +→ . So, for each 0,  0    exists, where 

 

 

0

0

0 ( , ) ,    0,1 ,
4 4

0 ( , ) ,    0,1 .
4 4

gh

gh

L

L

h b S t h b

h b S t h b

   

   

 
 

 
 

− − −

−

+ + +

−

   −   +  

   −   +  

 

According to the infimum and supremum definitions, for a given 0   and for each   and 

h , there exist 0,  1,2,3,4,i i  =  such that 

1 2

3 4

0 0

0 0

( , ) ( , ) ,  > ,
4 4

( , ) ( , ) ,  .
4 4

gh

gh

g L

g L

S t h S t h B b

S t h S t h B b

   

   

 

 

− − − −

− −

+ + + +

− −

 − −

 +  +

 

Consequently, for each 0   and  0,1  , 0   exists, such that if 0 h   , then 

1 10 0( , ) ( , ) > ,
4 4 4 2ghg LS t h S t h b B   

   − − − −

− − − − −  −  

2 20 0( , ) ( , ) ,
2 4 4 2ghL gB b S t h S t h   

   − − − −

− − −  − −  −  
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3 30 0( , ) ( , ) ,
4 4 4 2ghg LS t h S t h b B   

   + + + +

− − +  + +  +  

4 40 0( , ) ( , ) .
4 4 4 2ghL gB b S t h S t h   

   + + + +

− − +  + +  +  

Finally, for the same values of h , as 0 →  and passing to the limit as 0h +→ , we obtain 

 

 
 

 

0 0
*0 0 0,1

0 0
0 0,1

0 0

0
0 0 0,1

lim ( , ) lim sup ( , )

                               lim sup max ( , ) , ( , ) 0,

i.e.,

( ) ( )
lim , ( ) lim sup

g g
h h

g g
h

g
h h

g gH

g

S t h S t h

S t h B S t h B

t t h
D t S

h

B B




   






 


+ +

+

+ +

− −
→ → 

− − + +

− −
→ 

− −
→ → 

 =  

= − =

− 
 = 

 

−

 
 

0
*

0 0
0 0,1

( , )

                               lim sup max ( , ) , ( , ) 0.

g

g g

gH

h

t h

S t h B S t h

B

B



   




+

− − + +

− −
→ 

  

= − =−

 

We conclude that for each  0,1  , 
0( )g t−

  exists. Also, the existence of 
0( )g t+

  can be 

shown with a similar argument.     

Example 4.1. Suppose that the convex function ( ): 1,1 − →  is determined by  -cuts 

for each  0,1   as follows: 

  ( )( ) ( )( )( ) ( ), ( ) 1 1 , 1 1 .t t t t t 
    − +   = = − + + − +     

For a given ( )1,1t −  and for each  0,1  , ( )t
−

 and ( )t
+

 satisfy the terms in 

Proposition 2.1. Thus, a unique fuzzy number ( )t   exists with these  -cuts. 

Obviously, for each  0,1  , ( ) (0)
− 

 and ( ) (0)
+ 

 do not exist. On the other hand 

   

( ) ( )  ( ) ( ) 

( ) ( )

(0) (0 )
(0, )

1
                   inf min 1 , 1 ,supmax 1 , 1

1
                    = 1 , 1 .

gH

g

h
S h conv

h

h h h h
h

h h
h

 


 

   

 

   

 

−



 

 −
  =     

 

 = − + − − + −
  

 − + −  

Note that, for each  0,1  , (0, )gS h
−

    converges to  (0) 1 ,1g 
  −
  = − + −  , as 
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0h +→  and (0)g 
−
    satisfy the terms in Proposition 2.1. So   is left g-differentiable at

0t = . In the same way, we prove the right g-differentiability of   at 0t = . 

Lemma 4.1 The left and right g-quotients in Definition 4.5 exist on 
o

 and they are 

decreasing and increasing on 
o

, respectively. 

Proof. By the existence of ( ) ( )gt t h  − , we get 

( ) ( )
( , )

g

g

t t h
S t h

h

 
−

−
=  . 

We consider the fuzzy number ( , )gS t h−
 and denote 

1
( , ) ( ) ( ) ,g gS t h t t h

h
 

−
−

−
 = −    

1
( , ) ( ) ( )g gS t h t t h

h
 

+
+

−
 = −  . 

By Proposition 2.3, for any 0h   and for each  0,1   

( ) ( ) ( ) ( )
( , ) inf min ,

( ) ( ) ( ) ( )
                 supmax , ( , ) ,

g

g

t t h t t h
S t h

h h

t t h t t h
S t h

h h

   


 

   


 

   

   

− − + +

−

−


− − + +

+

−


 − − − − 
=  

  

 − − − − 
 = 

  

 

and 

   

1
( , ) ( ) ( )

1
inf min ( ) ( ), ( ) ( ) ,sup max ( ) ( ), ( ) ( ) .

ggS t h t t h
h

t t h t t h t t h t t h
h

 

       
   

 

       

−

− − + + − − + +

 

   = −   

 
= − − − − − − − − 

 

Since   is convex, by part (i) in Theorem 3.1, we conclude that for any fixed t , uniformly 

for  0,1  , ( )t
−

 and ( )t
+

 are convex. Also, they are both right continuous at 0 and 

left continuous for  0,1  , then the quotients of h are as below: 

( ) ( )
( , )

t t h
S t h

h

 


 − −
−

−

− −
= , 

( ) ( )
( , )

t t h
S t h

h

 


 + +
+

−

− −
= , 

which are both right continuous at 0 and left continuous for ( 0,1  . Moreover, 

( ) ( ) ( ) ( )
inf min ,

t t h t t h

h h

   

 

   − − + +



 − − − − 
 
  

, 

and 
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( ) ( ) ( ) ( )
supmax ,

t t h t t h

h h

   

 

   − − + +



 − − − − 
 
  

. 

satisfy the same properties. Therefore,  

 inf min ( , ) , ( , ) ,S t h S t h 
 

− +

− −


 

 supmax ( , ) , ( , ) ,S t h S t h 
 

− +

− −


 

w.r.t.  0,1   are respectively, increasing and decreasing; So, by Proposition 2.1, they 

determine a fuzzy number. As a consequence, for any  ot the  -cuts ( , )gS t h
−

    

define a fuzzy number, i.e., ( , )gS t h−  . 

Similarly, we obtain ( , )gS t h+  . For  ot  and 0h   consider  

( ) ( )
( , )

g

g

t t h
S t h

h

 
−

−
= . 

Let 0 h h  . We use the second inequality in (3.8) with z t h= −  and w t h= −  to obtain

( , ) ( , )g gS t h S t h− −
 . Therefore, ( , )gS t h−

 is decreasing w.r.t. h . Similarly, it can be seen 

that ( , )gS t h+
 is increasing w.r.t. h .     

Theorem 4.2. If   is uniformly left and right 
gHL -differentiable on 

o
, then left and right 

g-derivatives of   exist on 
o

. Also, for any 
ot  

0

( ) sup ( , )g g
h

t S t h− −


 =  , 
0

( ) inf ( , )g g
h

t S t h+ +


 = . 

Proof. Consider 
ot . By Lemma 4.1, ( , )gS t h−

 is decreasing on ( )0, o  . If 

( )1 0,  , then ( , )gS t h−
 is decreasing on ( 10, . Consequently, a fuzzy number  

exists, such that for each ( 10,h   , ( , )gS t h− , i.e., the collection 

(  1( , ) : 0,gS t h h −   is decreasing and bounded from above on 
o

. So, a subsequence 

0nh   exists, such that 0nh +→  as n → , and   

0 0

( ) ( )
lim ( , ) lim

( ) ( )
                    sup sup ( , ).

n

g n
n n

n

g
h

g

h

g

t t h
S t h

h

t t h
S t h

h

 

 

−
→ →

−
 

−
=

−
= =
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By Theorem 2.1 in [24], Theorem 3.1, and Lemma 4.1,  0,1S   exists such that 0mS =  

(for abbreviation mS  denotes the Lebesgue measure of S ) and 

0 0 0

lim ( , ) lim ( , ) , lim ( , )

                           = sup ( , ) ,sup ( , ) sup ( , ) ,

g n g n g n
n n n

g g g
h h h

S t h S t h S t h

S t h S t h S t h

 

  

− +

− − −
→ → →

− +

− − −
  

   =   

   =    

 

holds for any  0,1 \ S  . Let 
ot  and take a subsequence 0nh   such that 0nh +→  

as n → . Now consider the intervals 

   ( )
1

( , ) ( ) ( ) ,
ghL n gH n

n

S t h t t h
h

  
 − = −  

0

lim ( , ) sup ( , ) ( ) ,
gh gh ghL n L L

n h

b S t h S t h t   − − −
→ 

= = =  

and 

   ( )
1

( , ) ( , ) ( ) ( ) ,
ghg n L n n

n

gS t h conv S t h t t h
h

   
 

 − −



 
= = − 

 
 

.B conv b 

 

 
=  

 
 

Let ( , )g nS t h−
 and B  be the fuzzy numbers with the collection of intervals 

  ( , ) : 0,1g nS t h  −   and   : 0,1B    as  -cuts, respectively. In fact, the  -cuts 

  ( , ) : 0,1g nS t h  −   and   : 0,1B    satisfy the terms in Proposition 2.1. Consider 

the subsequence 0nh   such that 0nh +→  as n → , we will prove that 

0

lim ( , ) sup ( , ) ,g n g
n h

S t h S t h B− −
→ 

= =  exists. 

So, the left g-derivative of   at t  exists on 
o

 and equals to B . By denoting the intervals 

( , ) ( , ) , ( , )g n g n g nS t h S t h S t h  

− +

− − −
 =    and ,B B B  

− + =   , we get 

( , ) inf ( , ) ,  ( , ) sup ( , ) ,
gh ghg n L n g n L nS t h S t h S t h S t h   

   

− − + +

− − − −
 

= =  

inf ,  inf ,B b B b   
   

− − + +

 
= =  

with the same argument as the corresponding part of Theorem 4.1.  Let us consider 

 0,1 \ S  , then 
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*0,1

0,1 0 0 *

0,1

( , ) sup ( , )

                          = sup ( , ) , ( , ) sup ( , ) ,sup ( , )

                          = sup ( , ) , ( ,

g n g g n gH

g n g n gH g g
h h

g n g

S t h B S t h B

S t h S t h S t h S t h

S t h S t




   





− −


− + − +

− − − −
  

− +

− −


 =  

      

 
( )

*

0,1

) lim ( , ) , lim ( , )

                          = sup max lim ( , ) ( , ) , lim ( , ) ( , ) ,

n gH g n g n
n n

g n g n g n g n
n n

h S t h S t h

S t h S t h S t h S t h

  

   


− +

− −
→ →

− − + +

− − − −
→ →

     

− −

 

passing to the limit of a subsequence 0nh   such that 0nh +→  as n → , we get 

  *0,1

lim sup ( , ) 0,g n gH
n

S t h B


−
→ 

  =   

almost everywhere holds for  0,1  . It follows that  

0

( ) lim ( , ) sup ( , ) .g g n g
n h

t S t h S t h B− − −
→ 

 = = =  

Therefore,  
0

( ) sup ( , ).g g
h

t S t h− +


 =  

Similarly, since ( , )gS t h+
 is increasing and bounded from below on 

o
, there exists a 

subsequence 0nh   such that 0nh +→  as n →  and we obtain 

( ) ( ) ( ) ( )
0 0

lim ( , ) lim inf inf ( , ),
n g g

g n g
n n h h

n

t h t t h t
S t h S t h

h h

   
+ +

→ →  

+ +
= = =  

and consequently, 
0

( ) inf ( , ).g g
h

t S t h+ +


 =  Similarly, ( )g t+
  exists on 

o
.      

Theorem 4.3. If  ( ) ( ), ( )t t t 
  − + =   , such that ( )t

−
 and ( )t

+
 are convex, left and 

right differentiable w.r.t. t , uniformly for  0,1  , then   is left and right g-differentiable 

at t  and we have  

( ) ( ) ( ) ( )( ) inf min ( ), ( ) ,supmax ( ), ( ) ,g t t t t t       

    − + − +

− − − − − 

         =      
    

 

( ) ( ) ( ) ( )( ) inf min ( ), ( ) ,supmax ( ), ( ) .g t t t t t       

    − + − +

+ + + + + 

         =      
    

 

Proof. By Proposition 2.3, we obtain 
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( )

   

( ) ( ) 

1
, ( ) ( )

1
                    = inf min ( ) ( ), ( ) ( ) ,sup max ( ) ( ), ( ) ( )

1
                    = inf min , , , ,sup max

g gS t h t t h
h

t t h t t h t t h t t h
h

S t h S t h S
h

 

       
   

    

 

       

−

− − + + − − + +

 

− +

− − −
 

   = −   

 
− − − − − − − − 

 

( ) ( ) , , , .t h S t h
 

− +

−

 
 
 

Since the functions ( )t
−

 and ( )t
+

 are left differentiable at t , uniformly for  0,1  , we 

conclude that 

( )

( ) ( ) ( ) ( )

0 0

1
lim , lim ( ) ( )

                         inf min ( ), ( ) ,sup max ( ), ( ) ,

g g
h h

S t h t t h
h

t t t t

 

   
   

 

   

+ +−
→ →

− + − +

− − − − 

   = −   

       
=     

    

 

for any  0,1  . Moreover, the quotients ( ),S t h


−

−  and ( ),S t h


+

−  are decreasing and 

bounded from above. Thus, there exists a subsequence 0nh   such that 0nh +→  as n →

, we have 

( ) ( )
0 0

( ) ( ) ( ) ( )
lim , lim sup sup , ,n

n
n n h hn

t t h t t h
S t h S t h

h h

   

 

   − − − −
− −

− −
→ →  

− − − −
= = =  

( ) ( )
0 0

( ) ( ) ( ) ( )
lim , lim sup sup , .n

n
n n h hn

t t h t t h
S t h S t h

h h

   

 

   + + + +
+ +

− −
→ →  

− − − −
= = =  

The proof completes as the same part of Theorem 34 in [4]. Similarly, the right g-

differentiability of   can be proved.      

Corollary 4.1. If ( ), ( )g gt t + −
    exist on 

o
, then a subsequence 0nh   exists as 

n → , such that 

( )
0 0

( ) ( ) ( ) ( )
( ) lim sup sup , ,

g n g

g g
n h hn

t t h t t h
t S t h

h h

   
− −

→  

− −
 = = =  

( )
0 0

( ) ( ) ( ) ( )
( ) lim inf inf , .

n g g

g g
n h h

n

t h t t h t
t S t h

h h

   
+ +

→  

+ +
 = = =  

Theorem 4.4. The below terms are valid: 

(i) The functions 
g+
  and 

g−
  are increasing on 

o
. 

(ii) If , oc d  and c d . Then 

( ) ( )
00

( ) sup , inf , ( ),g g g g
hh

c S c h S c h c − − + +


 = =  
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( ) ( )
0 0

( ) inf , sup , ( ).g g g g
h h

c S c h S d h d + + − −
 

 = =  

Proof. The proof of (i) and (ii), are simultaneous. Suppose that , oc d  such that c d , 

then ,a b  exist, where  , ,c d a b  . Let 0h   be sufficiently small and 

0
2

d c
h

−
  , then c h c c h d h d d h−   +  −   + . By Lemma 3.2, we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
.

g g g gc c h c h c d d h d h d

h h h h

       − + − +
 

By the g-quotients, the above inequality is as below: 

( ) ( ) ( ) ( ), , , , ,g g g gS c h S c h S d h S d h− + − +      (4.16) 

from (4.16), passing to the limit as 0h +→  

( ) ( ) ( ) ( ),g g g gc c d d   − + − +
         (4.17) 

( ) ( ),

( ) ( ).

g g

g g

c c

c d

 

 

− +

+ −

 
 

 
     (4.18) 

By (4.17), we have 

( ) ( ),  ( ) ( ).g g g gc d c d   − − + +
     

Hence, 
g−
  and 

g+
  are increasing. Finally, by (4.18), we have  

( ) ( )
00

( ) sup , inf , ( ),g g g g
hh

c S c h S c h c − − + +


 = =  

( ) ( )
0 0

( ) inf , sup , ( ).g g g g
h h

c S c h S d h d + + − −
 

 = =       

 

5. Generalized subgradients and generalized subdifferential of the convex fuzzy 

functions 

First, in this section, we assign :  →  as a convex fuzzy function and study the 

concepts of 
gHL -subgradients, 

gHL -subdifferential, g-subgradients, and g-subdifferential for 

it. Then we illustrate how to calculate them. Eventually, we explain the properties of these 

concepts and use them in some examples for the functions lack g-differentiability property. 

Definition 5.1 If 0 0( ) , ( )
gh ghL L Ct t K  − +

    as the set of intervals of left and right  

gH-derivatives of   at 0t  exist and for each  0,1  , satisfy the following inequalities 
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   ( ) ( )( )

   ( ) ( )( )

0 0 0

0 0 0

( ) ( ) ( ) ,    t ,

( ) ( ) ( ) ,    t ,

gh

gh

gH L

gH L

t t t t t

and

t t t t t

 

 

  

  

−

+

  −  





 −  

 (5.19) 

then we say that 0( )
ghL t −

  and 0( )
ghL t +

  are 
gHL -subgradients of   at 

0t . For any 

 0,1  , the 
gHL − -subdifferential of   at 

0t  is the set of all 
gHL -subgradients of   at 

0t  and marked by 0( ) .
ghL t   

Note that,   is 
gHL − -subdifferentiable at 0t , if for each  0,1  , 0( ) .

ghL t     

Definition 5.2. If 
0

ot   and a fuzzy number 
gu   satisfies the following inequality 

0 0( ) ( ) ( ),    t ,g gt t u t t  −    

then 
gu  is said to be a g-subgradient of   at 0t . The g-subdifferential of   at 0t  is the set of 

all g-subgradients of   at 0t  and marked by 
0( )g t , i.e., 

 0 0 0( ) : ( ) ( ) ( ),    tg g g gt u t t u t t   =  −   . 

  is called g-subdifferentiable at 0t , if 
0( )g t  . The fuzzy elements of 

0( )g t  are the 

g-subgradients of   at 0t . 

Definition 5.3. If 
0

ot   and 
0 0( ), ( )g gt t − +

    satisfy the following inequalities 

0 0 0

0 0 0

( ) ( ) ( ) ( ),    t ,

( ) ( ) ( ) ( ),    t ,

g g

g g

t t t t t

and

t t t t t

  

  

−

+

 −  


  −  

     (5.20) 

then 
0( )g t−

  and 
0( )g t+

  are said to be g-subgradients of   at 0t . 

Theorem 5.1. If for any 
0

ot  ,   is uniformly left and right 
gHL -differentiable at 0t , then 

0 0 0( ), ( ) ( )g g gt t t  − +
    exist on 

o
 and for each  0,1   

   ( )

   ( )

0 0 0

0 0 0

( ) ( ) ( ) ( ),    t ,

( ) ( ) ( ) ( ),    t .

gh

gh

gH L

gH L

conv t t conv t t t

and

conv t t conv t t t

 
   

 
   

  

  

−

 

+

 

    
 −      

   




     −     


   

      (5.21) 
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Proof. Let 
0

ot   be arbitrary, from the assumption and Theorem 4.2, for each  , 0,1 ,    

,   we get  

       

0

0 0

0 0 0

0 0

( ) ( ) ( ) ( )
( ) sup ( ) ,    t .

gh gh

gH gH

L L
t t

t t t t
t t t

t t t t

   

 

   
 − −



 
 =     

 − − 

 

Since 0( )
ghL t −

  for each    is convex and closed, then 

   

   ( )

0

0 0

0

0 0 0 0

( ) ( )
( ) ,    t

          ( ) ( ) ( ) ( ),    t .

gh

gh

gH

L

gH L

t t
conv t conv t

t t

conv t t conv t t t t

 



   

 
   

 


  

−

 

−

 

   
         −    

   
  −     

   

(5.22) 

Note that, for each  , 0,1 ,       , we obtain 

       
0

0 0

0 0 0

0 0

( ) ( ) ( ) ( )
( ) inf ( ) ,    t .

gh gh

gH gH

L L
t t

t t t t
t t t

t t t t

   

 

   
 + +



 
 =     

 − − 

 

Since 0( )
ghL t +

 , for each    is convex and closed, then 

   

   ( ) ( )

0

0 0

0

0 0 0 0

( ) ( )
( ) ,    

          ( ) ( ) ( ) ( 5.),    .  2  3 

gh

gh

gH

L

gH L

t t
conv t conv t t

t t

conv t t conv t t t t t

 



   

 
   

 


  

+

 

+

 

   
         −    

   
  −     

   

      

According to part (ii) of Theorem 4.4, for each  , 0,1   , such that   , we get 

0 0 0 0( ) ( ) ( ) ( ) ,
gh gh gh ghL L L Lt t conv t conv t   

   

   − + − +

 

   
        

   
 

then 

0 0 0 0 0( ) ( ) ( ) ( ),    .
gh ghL Lconv t t t conv t t t t t 

   

 − +

 

   
 −  −     

   
     (5.24) 

According to (5.22) and (5.24), we get 

   ( )0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ),    .
gh ghgH L Lconv t t conv t t t conv t t t t t  

     

   + −

  

     
  −  −       

     

In the following 



IJDEA Vol.4, No.2, (2016).737-749  

F. Kavari, et al./ IJIM Vol.16, No.2, (2024), 97-125 

 

118 
 

   ( )0 0 0 0( ) ( ) ( ) ( ),    . 
ghgH Lconv t t conv t t t t t 

   

  −

 

   
 −     

   
    (5.25) 

Then by (5.22) and (5.25), for each  0,1   we obtain the first inequality of (5.21) for all 

t . Similarly, we can prove the second inequality.     

Definition 5.4. If   is uniformly left and right 
gHL -differentiable at 

0

ot  , then for any 

 0,1  the set of all 
gu


   , satisfy inequalities of (5.21) at 0t  for any t  is the  -cut 

of g-subdifferential of   at 0t  and denoted by 
0( )g t  . 

Note that,   for each  0,1   is said to be g-subdifferentiable at 0t  if for each  0,1  , 

0( )g t   .   

Remark 5.1. If   is g-differentiable at 0t  on , then    0 0( ) ( ) ,  0,1g gt t 
    =    . In 

the following lemma, we express the fundamental properties of the g-subdifferential in terms 

of  − cuts.   

Lemma 5.1. If : →  is convex and uniformly 
gHL -subdifferentiable at 

0t , then for 

each  0,1 , 
0( )g t   is closed and convex. 

Proof. At first, we will show that 
0( )g t  , for each  0,1   is closed. For  0,1  , let 

( )0( )g gu cl t 
     , according to Proposition 2.2, there exists a sequence of intervals 

0( )
n

g gu t 
      such that 

n
g gu u

 
   →    , i.e., 

1
n

g g

n

u u
 



=

   =    for each increasing 

sequences n → , converging to  0,1  . Since,   is uniformly 
gHL -subdifferentiable 

at 0t , for each  , 0,1 ,       , a sequence of intervals 0( )
n gh ghL Lu t −    exists such 

that 
1

gh n ghL L

n

u u 



− −

=

=  for each increasing sequences n n  , where n →  and 

n → . Therefore, by Theorem 5.1 for each  0,1 ,  1n n    we have 

   ( )
 

   ( )

0 0

0,1

0 0

( ) ( ) ( ),

( ) ( ) ( ),    ,

n
n

n gh

n n

gH g

gH L

conv t t conv u t t

conv t t conv u t t t

  


 
   

 

 



−

 

 
  −   

 

  
 −      

   

 

then, by taking the limit from the above inequalities as n → , we obtain 
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   ( )
 

0 0

0,1 1

0 0

1

( ) ( ) ( )

                 ( ) ( ),    .

n

n gh gh

gH g

n

L L

n

conv t t conv u t t

conv u t t conv u t t t

  
  

 

   

 


  =



− −

 = 

  
  −     

   

   
= − = −     

   

 

It follows that by theorem 35 in [4], for each  0,1  , 

   ( )0 0( ) ( ) ( ),    .gH gconv t t u t t t
  

 

 


 
  −     

 
 

Finally, according to Definition 5.4, we have 
0( ) .g gu t 

    
 We conclude that 

0( )g t  , 

for each  0,1   is closed. 

Now for the proof of convexity, let 
1 2 0, ( )g g gu u t  

         , and  0,1 , from the 

assumption for each  , 0,1 ,       , there exist 1 2 0, ( )
gh gh ghL L Lu u t  − −    such that 

for each  0,1  , 

   ( )0 1 0 ( ) ( )  ( ),    .
ghgH Lconv t t conv u t t t 

   

    −

 

   
 −     

   
      (5.26) 

and  

( )    ( ) ( )0 2 01  ( ) ( ) 1  ( ),    .
ghgH Lconv t t conv u t t t 

   

    −

 

   
−  − −     

   

 (5.27) 

By adding expressions (5.26) and (5.27), we have 

   ( ) ( )0 1 2 0( ) ( )  1  ( ),    .
gh ghgH L Lconv t t conv u conv u t t t  

     

   − −

  

      
 + − −         

      

Therefore by Theorem 5.1, for each  0,1  , 

( )1 2 0 1  ( )
gh ghL L gconv u conv u t  

   

  − −

 

    
+ −       

    

 

( )( )1 2 0 1  ( ) .g g gu u t  
      + −       

Hence, for each  0,1  , 
0( )g t   is convex.      

Proposition 5.1. If : ( , )a b →  is convex and uniformly 
gHL -subdifferentiable at 

0 ( , )t a b , then   is g-subdifferentiable at 0t  and for each  0,1   we have 
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 0 0 0( ) ( ) ( ) .
gh ghg L Lt conv t t  

 

  − +



 
  =  

 
 

Proof. According to Theorem 5.1, for each  0,1  ,    

   ( )0 0 0( ) ( ) ( ) ( ),    ( , ),
ghgH Lconv t t conv t t t t a b 

   

  −

 

   
 −     

   
     (5.28) 

   ( )0 0 0( ) ( ) ( ) ( ),    ( , ).
ghgH Lconv t t conv t t t t a b 

   

  +

 

   
 −     

   
    (5.29). 

Then, we get 0 0( ) ( )
gh ghL Lt t  +

    and 0 0( ) ( ) ,  
gh ghL Lt t    −

     , so  

 0 0 0( ) ( ) ( ) ,  .
gh gh ghL L Lt t t      − +

       

Since  0 0( ) ( )
gh ghL Lt t  − +

   for each    is convex and closed, then 

 0 0 0( ) ( ) ( ) .
gh ghL L gconv t t t  

 

  − +



 
    

 
 

Now let for any 
ghL Cu K −  , also for  0,1   be fixed and for any   , such that 

   0 0 0 0( ) ( ) ( ) ( ) .
gh gh gh gh gh ghL L L L g L Lu t t conv u u conv t t     

   

   − − + − − +

 

   
          

   

According to Definition 5.4, for each  0,1  , 

   ( )0 0( ) ( ) ( ),    ( , ).
ghgH Lconv t t conv u t t t a b 

   

  −

 

   
 −     

   
 

 If 0 0t t−  , by (5.28), we get 

   ( )0 0( ) ( ) ( )
ghgH Lconv t t conv u t t 

   

  −

 

   
 −   

   
.      (5.30) 

If 0 0t t−  , by (5.29), we get 

   ( )0 0( ) ( ) ( )
ghgH Lconv t t conv u t t 

   

  −

 

   
 −   

   
.      (5.31) 

Therefore, according to Definition 5.4 for each  0,1   inequalities of (5.30) and (5.31) at 

0t  for any t ( , )a b  are hold and 
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   ( )0 0

0

( ) ( ) ( ),    ( , )

( ) .

gh

gh

gH L

L g g

conv t t conv u t t t a b

conv u u t

 
   

 
 

 



−

 

−



   
 −     

   

 
  =     

 

 

Hence 

 0 0 0( ) ( ) ( ) .
gh ghL L gconv t t t  

 

  − +



 
    

 
 

In other words 

 0 0 0( ) ( ) ( ) .
gh ghL L gconv t t t  

 

  − +



 
    

 
 

We conclude that for each  0,1   we have 

 0 0 0( ) ( ) ( ) .
gh ghg L Lt conv t t  

 

  − +



 
  =  

 
       

Below, we give two practical examples, that show how to calculate the g-subdifferential in 

terms of  -cuts for convex fuzzy functions. 

Example 5.1. Suppose that : →  is determined as below:  

( ) 1,0,1 ,t t = −  

such that for each  0,1  , its  -cuts are determined by  

  ( ) ( )( ) 1 , 1t t t


  =  − −   . 

Obviously, ( ) 0( )t
− 

 and ( ) 0( )t
+ 

 do not exist, thus by [21],   is not 
gHL -differentiable 

at 0 0.t =  But   is 
gHL -subdifferentiable, and then it is g-subdifferentiable at 0 0.t =  Then 

according to Definition 5.4 and Proposition 5.1, for each  0,1   we get 

   ( )

 

(0) : ( ) (0) ( 0),  

              = : 1,1 ,  .

gh

gh

g g C gH L

g C L

u K conv t conv u t t

u K conv t conv u t t

  
   


   

  

 

−

 

−

 

     
  =   −        
     

     
   − −         
     

 

If 0t  , we obtain 
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 (0) = : 1,1 .g g C gu K conv u  
 

  


   
     − −       
   

     (5.32) 

If 0t  , we get 

 (0) = : 1,1 ( ) ,  
ghg g C Lu K conv t conv u t t 

   

   −

 

     
   − − −         
     

 

 = : 1,1 .g C gu K conv u
 

 

 


   
    − −       
   

     (5.33) 

Then according to Definition 5.4 and Proposition 5.1, gu


    for each  0,1   satisfies 

inequalities (5.32) and (5.33) at 0 0.t =  for any t , then we get 

  (0) = : 1,1 .g g C gu K u conv  
 

  


   
      − −     
   

 

( )t
−

 and 
0( )t

+
, for any 0t  ,  0,1   are both differentiable and 

( ) ( ) ( ) ( )( ) ( ) 1 ,   ( ) ( ) 1 .
t t

t t t t
t t

        − − + +
          

 = = −  = = −       
         

 

Example 5.2. Let : →  be convex and defined as follows 

( ) 1,2,3 2 ,t t =  

such that for each  0,1  , its  -cuts are defined by 

  ( ) ( )( ) 1 2 , 3 2 .t t t


  = + −    

Obviously, ( )t
−

 and 
0( )t

+
 are differentiable in . According to Definition 5.4 and 

Proposition 5.1, for each  0,1  , we get 

   ( )

 ( )  ( )( )

0 0 0

0 0

( ) : ( ) ( ) ( ),  

 = : 1 ,3 2 1 ,3 2 ( ),  .

gh

gh

g g C gH L

g C gH L

t u K conv t t conv u t t t

u K conv t t conv u t t t

  
   


   

  

   

−

 

−

 

     
  =   −        
     

     
   + − + −  −        
     

 

If 0t t , for each  0,1   we have 

  : 2 1 ,3 .g C gu K u
 

      + −         (5.34) 
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If 
0t t , for each  0,1   we have 

  : 2 3, 1 .g C gu K u
 

      − − −         (5.35) 

Therefore, according to Definition 5.4 and Proposition 5.1, gu


    for each  0,1   satisfies 

inequalities of (5.34) and (5.35) at 
0t  for any t . Also, according to Remark 5.1, for each 

 0,1   we have 

     ( ) 0 0( ) ( ) : 2 1 ,3 2 3, 1 .g g g C gt t u K u   
           = =   + − − − −       

 

6. Conclusion 

The concepts of g-difference and g-differentiability are so operational, that we 

utilized them to define the left and right g-derivatives for the convex fuzzy 

functions. Moreover, the concepts of 
gHL -subdifferential and g-subdifferential 

with their properties, and how to calculate the g-subdifferential for convex fuzzy 

functions in terms of  -cuts and their applications are explained with several 

practical examples. It is suggested to do some research, based on considering g-

subdifferential convex fuzzy mapping. 
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