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Abstract

Characterizing distributions is the process of finding the unique properties that distinguish a particular
distribution from others. There are various methods for doing this, such as using moments, maximum
entropy, hazard rate, and so on. Nanda (2010) used failure rate and mean residual life functions
to characterizing some distributions. In this paper, we extend the results of Nanda (2010). We
characterize the Pareto, exponential, and Rayleigh distributions by refining the main results of that
paper. We take some inequalities from that paper and propose a new inequality. Then, we raise both
sides of the inequalities to some power and show that equality holds if and only if certain distributions
are characterized.

Keywords : Statistical distributions; Cauchy schwarz inequality; Hazard rate; Reliability.

—————————————————————————————————–

1 Introduction

C
haracterization of distributions through relia-

bility terms has been done by many authors

in the literature such as Galambos and Kotz [3],

Kotz and Shanbhag [5], Belzunce et al. [2], Nanda

et al. [1]. Also, in [4, 6, 7, 8], authors proved some

new results on entropy for certain well known dis-

tributions and give some characterization results

for life distributions via the links between en-

tropy, variance and etc. Life distributions are sta-

tistical distributions that describe the time they

take for an event to occur, such as the time to

failure of a component or the time to death of an
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organism. The Pareto distribution is often used

to model the lifetimes of items that are subject to

wear and tear, such as machine components and

electronic devices. The exponential distribution

is often used to model the lifetimes of items that

are subject to random failures, such as light bulbs

and radioactive atoms. The Rayleigh distribution

is often used to model the lifetimes of items that

are subject to fatigue, such as aircraft wings and

bridges.

Let X be a nonnegative absolutely continuous

random variable with probability density function

f(x) and survival function F (x) = P (X ≥ x).

We denote the failure rate of the distribution by

r(x) = f(x)

F (x)
. Recently, Nanda [1] proved some

interesting results in context of characterization

through failure rate and mean residual life func-

tion. Nanda [1] showed that for any nonnega-
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tive random variable X, E(Xr(X)) ≥ 2
1+c2

, with

equality if and only if X is exponentially dis-

tributed, and c is coefficient of variation. Also

he showed that for the same rv X, E( r(X)
X ) ≥

2
µ2(1+c2)

, the equality holds if and only if X has

Rayleigh distribution, with probability density

function, F (x) = 2θxe−θx2
, x ≥ 0 , θ > 0.

We first state the main two results of Nanda [1]

and then establish a characterization result for

Pareto distribution by the inequality on failure

rate. In the rest of the paper, we improve these

results by adding some power at the both sides

of inequalities to show some new characterization

results based on failure rate.

2 Main Results

At the entire of paper we assume that X is finite

and absolutely continuous.

First we mention some main results of [1].

Theorem 2.1. [1] For any nonnegative random

variable X, E(Xr(X)) ≥ 2
1+c2

, and the equality

holds if and only if X is exponentially distributed.

Theorem 2.2. [1] For any nonnegative random

variable X,

E(
r(X)

X
) ≥ 2

µ2(1 + c2)
,

and the equality holds if and only if X has

Rayleigh distribution, with probability density

function,

f(x) = 2θxe−θx2
, x ≥ 0 , θ > 0.

Theorem 2.3. For any nonnegative random

variable X ≥ c,

E(X3r(X)) ≥ 2

u−1 − k2
.

The equality holds if and only if X has Pareto

distribution. Also, u = µ2 + σ2, and k = c
u and

E(X2) is finite.

Proof. By the Cauchy-Schwartz inequality, we

have,

[

∫ ∞

c
xF (x) dx][

∫ ∞

c

x3f2(x)

F (x)
dx] ≥ (µ2 + σ2)2.

(2.1)

Using ∫ ∞

c
xF (x) dx =

µ2 + σ2

2
− c2

2

and ∫ ∞

c

x3f2(x)

F (x)
dx = E(X3r(X))

the inequality (1) reduces to

E(X3r(X)) ≥ 2

u−1 − k2
,

so equality holds if and only if we have some con-

stant A ≥ 2 such that, for any X ≥ c,

A

√
xF (x) =

√
x3f2(x)

F (x)
.

It is easy to show that, r(X) = A
x , which holds if

and only if X has Pareto distribution, that is,

F (x) = (xc )
−A x ≥ c.

Now question is that, if we add some power to

both sides of above inequalities what will be the

changes in the above results? For instance, if we

take some constant such as B, E[( r(X)
X )]3 ≥ B,

when does equality hold? In the rest of the paper

we answer to this question.

Theorem 2.4. For any nonnegative random

variable X,

E[(
r(X)

X
)]2

t+1−1 ≥ 22
t+1−1

u2t+1−1
, ∀t ≥ 0,

and the equality holds if and only if X has

Rayleigh distribution, with probability density

function, F (x) = 2θxe−θx2
, x ≥ 0 , θ > 0.

where u = µ2 + σ2.

Proof. We prove by induction on the t. The case

t = 0 is already established in Nanda [1]. Now

assume that Theorem holds for any 1 ≤ t ≤ n −
1.

E[(
r(X)

X
)]2

n−1 ≥ 22
n−1

u2n−1
. (2.2)

We prove theorem for t = n.

By the Cauchy-Schwartz inequality, we get,

[
∫∞
0 xF (x) dx][

∫∞
0

f2n+1
(x)

x2n+1−1F
2n+1−1

(x)
dx] ≥

[E(
r2

n−1(X)

X2n−1
)]2. (2.3)
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Table 1: Simulated Data

Distribution Parameter Sample Size Difference

4*Exponential 2*2.5 10000 0.039
1000000 0.0012

2*4.6 10000 0.0017
1000000 0

4*Rayleigh 2*2 10000 0.0252
1000000 0.0236

2*5 10000 0.0024
1000000 0.0037

Using (2), where t = n− 1 and the equalities,∫ ∞

0
xF (x) dx =

µ2 + σ2

2
=

u

2

and∫ ∞

0

f2n+1
(x)

x2n+1−1F
2n+1−1

(x)
dx = E[(

r(X)

X
)]2

n+1−1

the inequality (3) reduces to

E[(
r(X)

X
)]2

n+1−1 ≥ 22
n+1−1

u2n+1−1
,

so the equality holds if and only if we have some

constant E such that for any X ≥ 0,

√
xF (x) = E

1
2n

√√√√ f2n+1(x)

x2n+1−1F
2n+1−1

(x)

with some calculation we have, r(X) = X
E , which

holds if and only if X has Rayleigh distribution.

Theorem 2.5. For any nonnegative random

variable X, and ∀t ≥ 0

E[Xr2
t+1−1(X)] ≥ 22

t+1−1

u2t−1(1 + c2)2t
,

the equality holds if and only if X is exponentially

distributed.

Proof. The proof is similar to the theorem 2.4.

Corollary 2.1. In the theorem 2.5, set t=0, we

will have Theorem 2.3 of [1].

Theorem 2.6. For any nonnegative random

variable

X ≥ c, and ∀t ≥ 0

E[X2t+1+1r2
t+1−1(X)] ≥ 22

t+1−1

u2t−1(u−1 − k2)2t
,

the equality holds if and only if X has Pareto

distribution.

Proof. The proof is similar to the theorem 2.4.

Corollary 2.2. In the theorem 2.6, set t=0, we

will have Theorem 2.3 of [1].

3 Simulation Study and Con-
clusions

In this section, we present some results of simu-

lated and real data and also draw some conclu-

sions relevant to the research. For this purpose,

we generate data from exponential and Rayleigh

distributions with different values of parameters

and then evaluate some results obtained in this

paper. Table 1 shows the number of data points

(10000 and 1000000) generated under eachdistri-

bution and the differences between both sides of

the equalitiesproved by the theorems.The differ-

ence are close to zero, which indicates that the

sample size affects the accuracy of the results.

This suggests that one can use this method for

goodness of fit tests. To test this idea, we use two

real data sets about the lifespan of two electronic

equipment in an organizationin Brazil. These two

equipments are notebooks and PCs without mon-

itors. We assume that the lifespan follow expo-

nential distributions and apply the results of the
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theorems to test this hypothesis. Using MAT-

LAB software, we obtain the values of 0.7809 for

33 notebook lifespan data and 0.9032 for 113 PC

without monitor lifespan data. These values are

the differences between the left and right sides of

the equalities in the theorems. As a future work,

one can use these kinds of theorems to perform

goodness of fit tests.
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