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Abstract

Fuzzy analytical hierarchy process (FAHP) is one of the most popular multi-criteria decision mak-
ing (MCDM) techniques in which the weights of criteria and the evaluation measures of alternatives
are generated based on fuzzy pairwise comparisons. There are many approaches for determining the
weights from pairwise comparison matrices (PCM). Some of them have calculated the interval weights
at all alphacuts. However, in some MCDM techniques (like technique for order preference by similar-
ity to ideal solution (TOPSIS), vlsekriterijumska optimizacija i kompromisno resenje (VIKOR), and
FAHP), it is needed to calculate normalized crisp weights. In this paper, the authors extend an index
where interval weights obtained at all alphacuts are converted into the crisp weight. Finally, several
illustrative examples in the literature are considered to show the verification of the proposed index
and the obtained results are then compared with weights extracted by fuzzy preference programming
(FPP). The results show that our approach is suitable for obtaining the crisp weights and also, has
the similar ranking orders with those of the others.

Keywords : Fuzzy analytical hierarchy process; Alphacut; Multi-criteria decision making; Optimiza-
tion; Fuzzy sets.

—————————————————————————————————–

1 Introduction

A
multi-criteria decision making (MCDM) prob-

lem can be stated as the process of deter-

mining the best alternative among all the possi-
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ble alternatives with respect to different criteria.

Another significant advantage of MCDM tech-

niques is that they can take into account both

quantitative and qualitative criteria Bozbura er

al. [1]. According to Guitoni and Martel’s

classification Guitoni and Martel [2], the meth-

ods of solving a MCDM problem can be decom-

posed into the four groups: (1) the elementary

methods (e.g. weighted sum, maximin method);

(2) the single synthesizing criterion (e.g. tech-

nique for order preference by similarity to ideal

solution (TOPSIS), analytical hierarchy process
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Table 1: General reviews of the MCDM techniques.

Author (s) Hybrid and improved methods of MCDM

Manouselis and Costopoulou [3] Analysis and classification of multi-criteria recommender systems
El-Wahed [4] Intelligent fuzzy MCDM
Chu and Lin [5] An extension to fuzzy MCDM
Zavadskas and Turskis [6] MCDM methods in economics
Bragge et al. [7] Scholarly communities of research in MCDM:

a bibliometric research profiling study
Liou and Tzeng [8] MCDM methods in economics
Liou [9] New concepts and trends of MCDM
Aruldoss et al. [10] A survey on MCDM methods and its applications

(AHP)); (3) the outranking methods (e.g. elimi-

nation and et choice translating reality (ELEC-

TRE), preference ranking organization method

for enrichment evaluation (PROMETHEE)); and

(4) the mixed methods (e.g. fuzzy conjunc-

tive/disjunctive method). Tabel 1 presents the

hybrid and improved techniques of MCDM.

Perhaps among all the MCDM techniques, the

AHP approach is the simplest and the most pop-

ular approach which was first developed by saaty

[11]. In this method, the MCDM problem is

transformed into the hierarchical structure. The

raw data of this method are presented as pair-

wise comparisons, which are the relative impor-

tance of a criterion (an alternative) over other

criteria (alternatives). On the other hand, due to

the different subjective judgements of managers

when evaluating elements, there is this possibil-

ity that crisp values cannot state the decision-

maker (DM)s uncertain preference level. There-

fore, fuzzy concept was first proposed by Zadeh

[12]. The fuzzy version of the AHP, i.e. fuzzy

AHP (FAHP), was introduced by Van Laarhoven

and Pedrycz [13], where fuzzy ratios as triangu-

lar membership functions are applied to compare

criteria (alternatives). Buckley [14] derived pri-

orities from pairwise comparison matrices (PCM)

having trapezoidal membership functions. Boen-

der et al. [15] proposed an improved approach to

resolve priority normalization of Van Laarhoven

and Pedryces method. Deng [16] extended an

improved fuzzy method to implement the multi-

criteria problems in a simple manner. Leung and

Cao [17] investigated the consistency and rank-

ing issues and suggested a fuzzy consistency def-

inition by taking into account a tolerance devi-

ation. There are several approaches for deriv-

ing priorities in FAHP. Some methods are as fol-

lows: the fuzzy least square method [18], method

based on the fuzzy modification of the logarith-

mic least squares [15], the fuzzy geometric mean

method [14], the direct fuzzification of the λmax

method [19], the synthetic extend analysis [20],

the interval arithmetic [21], fuzzy preference pro-

gramming (FPP) [22]. The last case applies to

the two linear and nonlinear optimization models

for generating weights from both consistent and

inconsistent fuzzy comparison matrices (FCMs).

The linear programming model is an optimiza-

tion problem based on alpha-cuts decomposition

where the fuzzy judgements are converted into a

set of interval comparisons and a tolerance pa-

rameter which can be selected to one if all com-

parisons are symmetric. It transforms the inter-

val prioritization into a fuzzy linear programming

problem. Whereas, the nonlinear programming

model is able to generate the consistency index

and normalized crisp weights vector from FCMs

concurrently. Accordingly, the AHP method has

been applied by many researchers in the different

decision-making scopes like management, manu-

facturing, industrial, etc.

Table 2 shows the different applications of the

AHP method under the different environments

(crisp, fuzzy, interval type-2 fuzzy numbers, etc.).

Unfortunately, the most of above approaches

apply the consistency ratio (CR) after defuzzy-

fying the fuzzy pairwise comparisons. In addi-

tion, such an approach is time consuming when

the number of alternatives or criteria is high.
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Table 2: Hybrid and improved methods (applications) of AHP.

Author (s) Specific area

nut et al. [23] Shopping center sites
Yksel and Dadeviren [24] Balanced Scorecard
Khademi-Zare et al. [25] Ranking customer attributes in quality function deployment (QFD)
Sun [26] Evaluating different notebook computer ODM companies
Taha and Rostam [27] Machine tool selection
Yu et al. [28] Ranking e-commerce websites in an e-alliance
Yang et al. [29] Vessel selection for a particular cargo transfer
Aydogan [30] Evaluating performance indicators
Dalalah et al. [31] Supplier selection problem
Hatami-Marbini and Tavana [32] Supplier selection problem for a high-technology manufacturing company
Jahanshahloo et al. [33] Evaluating six cities for establishing a data factory
Jolai et al. [34] Supplier selection and order allocation problem
Kara [35] Supplier selection problem
Kuo and Liang [36] Selecting the location of an international distribution center
Singh and Benyoucef [37] Supplier selection for a sealed-bid reverse auction
Wang et al. [38] Supplier selection problem
Kalantari et al. [39] A decision support system for evaluating production policies
Vahdani et al. [40] Robot selection problem
KarimiAzari et al. [41] Risk assessment model selection
Vahdani et al. [42] Assessing the performance of property responsibility insurance companies
Ghoseiri and Lessan [43] Waste disposal site selection
Rostamzadeh et al. [44] Entrepreneurial activity
Kabak et al. [45] Building energy performance
Erdoan and Kaya [46] Ranking private universities
Temur et al. [47] Facility location selection
Mokhtarian et al. [48] Facility location selection problem
Rashid et al. [49] Robot selection problem
Krohling and Pacheco [50] Ranking evolutionary algorithms
Dymova et al. [51] System analysis engineer selection
Yang et al. [52] Service quality assessment
Yong et al. [53] Dynamic risk assessment of metro station
Chen [54] Landfill site selection, supplier selection, and car evaluation
ebi and Otay [55] Facility location selection problem
Kumar et al. [56] Telecom sector
Uygun et al. [57] Industry
Chang et al. [58] e-book business model
Lupo [59] International airport quality
Parameshwaran et al. [60] Robot selection
Ghorabaee [61] Robot selection problem
Abbasimehr and Tarokh [62] Ranking reviewers in online communities
RazaviToosi and Samani [63] Water management strategies
Wang et al. [64] Green Supplier Selection
Efe [65] ERP system selection
Chang et al. [66] Government
Azadeh and Zadeh [67] Maintenance policy selection
Dehghani et al. [68] Evaluating service quality of public transportation
Putra et al. [69] Determining quality of gemstones
alik et al. [70] Evaluating territorial units
Ucal Sari et al. [71] Developing an integrated discounting strategy
Jain et al. [72] Supplier selection
TOPSIS
Yazdi et al. [73] Risk analysis of a spherical storage hydrocarbon tank
Beltro and Carvalho [74] Prioritizing Construction Risks
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Table 2. Continue

Other techniques integrated with AHP

TOPSIS
Analytic network process (ANP)
QFD, TOPSIS
TOPSIS
PROMETHEE
TOPSIS
Approximate interval TOPSIS
TOPSIS
Fuzzy decision-making trial and evaluation laboratory (DEMATEL) and fuzzy TOPSIS
Fuzzy TOPSIS and fuzzy elimination and choice translation reality (ELECTRE I)
Data envelopment analysis (DEA) and TOPSIS with interval data
Fuzzy TOPSIS and multi-period goal programming
Two-stage stochastic programming and fuzzy TOPSIS
DEMATEL, fuzzy ANP, fuzzy simple additive weighting (SAW) and fuzzy TOPSIS
Entropy method and fuzzy TOPSIS
Fractional programming, quadratic programming, and interval valued intuitionistic fuzzy TOPSIS
Mixed-integer mathematical programming, and fuzzy TOPSIS
Modified TOSIS with fuzzy approach
Fuzzy TOPSIS and nominal group technique
Fuzzy ANP, fuzzy TOPSIS, and fuzzy vlsekriterijumska optimizacija i kompromisno resenje (VIKOR)
ELECTRE
VIKOR, TOPSIS
ANP
Type-2 fuzzy TOPSIS
Type-2 fuzzy TOPSIS
Interval-valued fuzzy TOPSIS
Interval-valued fuzzy TOPSIS
TOPSIS
Interval type-2 fuzzy TOPSIS
Interval type-2 fuzzy TOPSIS
Type-2 fuzzy TOPSIS
Interval type-2 fuzzy TOPSIS
Interval type-2 fuzzy TOPSIS
DEA
ANP, DEMATEL
VIKOR, TOPSIS, GRA
ELECTRE
delphi, VIKOR
Interval type-2 fuzzy VIKOR
Interval type-2 fuzzy TOPSIS
TOPSIS, Max-Min
TOPSIS
TOPSIS
VIKOR, ANP
Fuzzy TOPSIS
Interval type-2 fuzzy TOPSIS
-
DEA
Goal programming
TOPSIS
AHP
-
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Moreover, if CR is not satisfied, DMs should

revise their judgements. Some researchers de-

rived weights vector from ICMs. Saaty and Var-

gas [76] proposed interval numbers for the judg-

ments in the AHP and then, obtained the pri-

ority vector from the given interval multiplica-

tive preference relations using the Monte Carlo

simulation method. They also put forward dif-

ficulties using this approach. Arbel [77] consid-

ered the interval judgements from the upper tri-

angular part of the reciprocal interval matrix as

linear constraints on the unknown priorities and

then, formed the prioritization problem as a lin-

ear programming model. Kress [78] mentioned

the ineffectiveness of Arbels method for solving

n(n − 1) linear programs to deal with inconsis-

tent interval comparison matrices (ICMs). Arbel

and Vargas [79] constructed a hierarchical prob-

lem as a nonlinear programming model in which

all local weights are considered as decision vari-

ables. In this technique, local weights optimum

may not be global optimum because of the non-

convexity of the feasible region. Salo and Hmli-

nen [80] found the maximum and minimum fea-

sible values for all interval priorities and incorpo-

rated the resulting extended intervals into further

synthesis of global interval priorities. The main

limitation of this approach is that it requires con-

sistent interval preferences. Islam et al. [81] for-

mulated a lexicographic goal programming model

to find weights from inconsistent ICMs. They

also provided an algorithm for identification and

modification of inconsistent bounds. Haines [82]

suggested a statistical method to generate prior-

ities from ICMs. Two distributions on a feasi-

ble region are examined and their mean is then

used to rank. Mikhailov [83] put forward a new

approach to specify crisp priorities from interval

comparison judgements. By introducing linear

or nonlinear membership functions, the interval

judgements are transformed into fuzzy inequality

constraints. The two proposed linear or nonlin-

ear mathematical programs are capable for de-

riving priorities from consistent and inconsistent

interval judgements. The important features of

method are that this opportunity exists for addi-

tional prioritization of the initial judgements and
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a consistency index that measures the level of in-

consistency of interval judgements. Sugihara et

al. [84] suggested an interval regression analysis

approach. The proposed method is based on in-

terval regression analysis [85, 86]. It involves the

solution of lower and upper approximation mod-

els (the dual models) which are similar to rough

approximations. These two models are based on

the least upper and greatest lower bounds. Wang

et al. [87] proposed a two-stage logarithmic goal

programming (TLGP) model to generate weights

from consistent or inconsistent ICMs. The first

stage was devised to minimize the inconsistency

of ICMs and the second one was extended to ex-

tract weights. The weights were assumed to be

multiplicative rather than additive. In the hi-

erarchical structures, a nonlinear programming

method is used to aggregate local interval weights

into global interval weights. The TLGP is also

applicable to FCMs using levels of alpha-cuts and

the extension principle. Wang et al. [88] also

planned a method of test to check consistency of

ICM. If ICM is consistent, Arbels linear program-

ming model is used to extract interval weights and

if ICM is inconsistent, the eigenvector method-

based nonlinear programming approach is devel-

oped to attain interval weights. Wang and Elhag

[89] introduced a goal programming approach to

generate interval weights from ICM, which can be

either consistent or inconsistent. Xu and Chen

[90] defined the concepts of additive and multi-

plicative consistent interval fuzzy preference re-

lations and then, some simple and practical lin-

ear programming models offered for achieving the

priority weights from consistent or inconsistent

interval fuzzy preference relations. Liu et al. [91]

presented an incomplete interval multiplicative

preference relation (where some of its elements

cannot be given by the DM) and then, given

the definitions of consistent and acceptable in-

complete ones, respectively. Liu et al. [92] ex-

tended a new algorithm to obtain the priority

weights from consistent or inconsistent interval

fuzzy preference relations without the mathemat-

ical programming model to be solved.

Among all studies mentioned above, some of

them [87, 22, 81, 88, 89, 91, 93] can only be

applied to extract weights from consistent and

inconsistent ICMs. According to Wang et al.

[87], some of these approaches have the short-

comings. For example, Xu and Chen [93] ob-

tained the degree of possibility instead of crisp

values for criteria weights. To best of our knowl-

edge, Mikhailov [22]s model is only the method

which can derive the normalized crisp weights

from FCMs, whereas the others generate inter-

val weights. These approaches only represent the

ranking order and degrees of preference criteria

(alternatives) as w1
100
≻ w2

100
≻ . . .

100
≻ wN using

alpha-cut transformations of FCMs.

Recently, Jaganathan et al. [94] applied the

FAHP method to rank new manufacturing tech-

nologies. The hierarchy of their FAHP model is as

follows: the overall decision goal (the best tech-

nologies) is at the top level, criteria lie in the

middle level, and alternatives (technologies) are

at the bottom level. Their methodology was in

the general FAHP form with this difference that

they adopted two approaches, namely TLGP [87]

and FPP [22] when obtaining the weights of cri-

teria (alternatives) from FCMs. They concluded

that the FPP is more advantageous to solve a

multi-level multi-person FAHP problem (as men-

tioned in Section 8 of their paper). The TLGP

model for the case presented by Jaganathan et

al. [94] cause to the following discrepancies: (1)

it gives an interval-based priority vector; (2) the

weights vector forms a complicated fuzzy number

which are difficult to defuzzify and rank; (3) the

application of nonlinear programming approach

developed by Wang et al. [87] to obtain final

composite priority is very unsuitable to rank and

obtain final rankings (provides richer information

about the uncertain nature of the priorities); and

(4) it is not usable to the case of multi-level hi-

erarchy. However, it is only suitable for cases in

which one intends to specify the interval weights

for criteria (alternatives) from consistent and in-

consistent ICMs (see six numerical examples pre-

sented by Wang et al. [87]). Thus, they decided

to use FPP instead of TLGP for ranking the man-

ufacturing technologies. The goal of this paper

is to resolve the discrepancies discussed by Ja-

ganathan et al. [94] in order to derive normalized
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crisp weights from FCMs using the proposed in-

dex. It calculates the distance of the left and right

limits from the reference limits at all alpha-cuts

such that it calculates the unique crisp weight in-

stead of interval weights at alpha-cuts.

In this section, the methodology of TLGP is

explained. Assume that the triangular FCM,

Rn × n, is as follows:

Rn×n =
1 (a12, b12, c12) · · · (a1n, b1n, c1n)

(a21, b21, c21) 1 · · · (a2n, b2n, c2n)

.

.

.

.

.

.
.
.
.

.

.

.
(an1, bn1, cn1) (an2, bn2, cn2) · · · 1

 , (1.1)

whereaij and cij are lower and upper bounds,
respectively, and bij is the most likely value when
evaluating or comparing the criterion (alterna-
tive) i(i = 1, . . . , n) with respect to criterion (al-
ternative) i(j = 1, . . . , n). Since the interval num-
bers are used to TLGP, Jaganathan et al. [94]
first applied alphacut representations to convert
the above FCM into the following ICM, R′

n×n:

Rn×n(α) =
1 (l12(α), u12(α)) · · · (l1n(α), u1n(α))

(l21(α), u21(α)) 1 · · · (l2n(α), u2n(α))

.

.

.

.

.

.
.
. .

.

.

.
(ln1(α), un1(α)) (ln2(α), un2(α)) · · · 1

 ,

(2.1)

where

lij(α) = aij+α(bij−aij), uij(α) = cij−α(cij−aij),
(3.1)

Next, these interval comparisons are used to
generate the lower and upper weights at each
alpha-cut using the following Model (1):

Model(1)

Max/Min ln wi = xi − yi

xi − yi − xj + yj + pij ≥ lnlij(α), i = 1, ..., n; j = i + 1, ...n,

xi − yi − xj + yj − qij ≤ lnuij(α), i = 1, ..., n; j = i + 1, ...n,

n∑
i=1

(xi − yi) = 0,

n−1∑
i=1

n∑
j=i+1

(pij + qij) = J
∗
,

xi, yi ≥ 0, xiyi = 0, i = 1, ..., n,

pij, qij ≥ 0, pijqij = 0, i = 1, ..., n − 1; j = i + 1, ..., n,

where wi is the weight of criterion (alternative)
i(i = 1, . . . , n), as well as pij and qij are non-
negative real numbers which are subtracted and

added to lower and upper bound of constraints
lij(α) ≤ wi

wj
≤ uij(α) or lnlij(α) ≤ lnwi−lnwj ≤

lnuij(α), respectively. Obviously, the consistent
and inconsistent variables pij and qij should be
as small as possible. Since lnlnwi is nonnegative
while wi ≥ 0 and negative while wi < 0, the fol-
lowing nonnegative variables can be applied to
the Model (1):

xi =
lnwi + |lnwj

2
, i = 1, ..., n, (4.1)

yi =
−lnwi + |lnwj

2
, i = 1, ..., n, (5.1)

In addition, J∗ is the consistency index which
is determined by solving the following linear pro-
gramming Model (2) for all α ∈ [0, 1]:

Model(2)

MinimizeJ =
n−1∑
i=1

n∑
j=i+1

(pij + qij)

xi − yi − xj + yj + pij

≥ lnlij(α), i = 1, ..., n; j = i+ 1, ...n,

xi − yi − xj + yj − qij

≤ lnuij(α), i = 1, ..., n; j = i+ 1, ...n,
n∑

i=1

(xi − yi) = 0,

xi, yi ≥ 0, xiyi = 0, i = 1, ..., n,

pij, qij ≥ 0, pijqij = 0,

i = 1, ..., n− 1; j = i+ 1, ..., n,

If J is equal to zero, ICM is perfectly consistent
and If J isnt equal to zero, then it is inconsis-
tent. Interested readers can refer to Wang et al.
[87] for investigating the more detailed analysis.
As mentioned before, the above model can only
determine the interval weights at each alpha-level
from FCMs without a normalized crisp weight for
each criterion (alternative) to be obtained. On
the other hand, FPP is modeled by the following
Model (3):
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Model(3)

Maximizeµ

(mru − lru)µwu − wr + lruwu ≤ 0,

(uru − mru)µwu − wr + uruwu ≤ 0,

N∑
i=1

wi = 1, wi > 0, i = 1, ..., N

r = 1, ..., N − 1, r = 2, ..., N, u > r.

where N is the number of criteria, lru, uru and
mru are the lower, upper bounds and most likely
value of triangular fuzzy numbers in FCMs, re-
spectively, when experts compare rth criterion
(alternative) with respect to uth criterion (alter-
native). wi is the weight of criterion i and is the
consistency index. If = 1, then the FCM is said
to be consistent, and if is negative, then the ma-
trix is said to be strongly inconsistent. The rest
of this paper is organized as follows: In Section
2, the proposed index is presented. In Section 3,
the proposed index is applied to four numerical
examples as scientific evidences and finally, dis-
cussion and conclusion is summarized in Section
4.

2 The proposed index (limit
distance mean (LDM))

In this section, the authors apply a ranking
method in order to integrate the lower and up-
per weights of all alpha-cuts under each criterion
(alternative) i(i = 1, . . . , n) to a normalized crisp
weight. Let µŴ (x) is partitioned into two MFs

µl(x) and µr(x) (the left and right MF of Ŵ ). In
addition, assume that µmin(x) and µmax(x) be
minimum and maximum reference limits, respec-
tively, as shown in Fig. 1. On the other hand, let
wmin
α , wmax

α , wl
α, and wr

α be the measures gen-
erated by intersection of level with the µmin(x),
µmax(x), µl

α(x) and µr
α(x). Hence, LDM can be

calculated by using the following expression:

LDM(W̃ ) = ∑1
α=0.1(µ

r
α(x) − µmin

α (x))∑1
α=0.1(µ

r
α(x) − µmin

α (x)) −
∑1

α=0.1(µ
l
α(x) − µmax

α (x))
, (1.2)

where α=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, and 0.9. Note that (µr

α(x) − µmin
α (x)) and

(µl
α(x) − µmax

α (x) are the positive and negative
values. Thus, the negative sign is considered in
the denominator. To simplify the calculations,

Figure 1: The left, right, minimum, and maximum
reference limits.

Eq. 1.2 can be converted into the following equa-
tion:

LDM(W̃ ) =

∑1
α=0.1|(w

r
α − wmin

α )|∑1
α=0.1|(wr

α − wmin
α |) −

∑1
α=0.1|(wl

α − wmax
α |)

, (2.2)

It is obvious that the bigger the measure of
above index indicates the higher the importance
of criterion (alternative).

Although the weights obtained by using Eq.
2.2 are crisp, in order to satisfy the normaliza-
tion condition with wi ≥ 0 for i = 1, . . . , n, they
should be normalized. Therefore, the following
normalized LDM (NLDM) is suggested:

NLDMi =

(W̃ ) =
∑1

α=0.1|(wr
α−wmin

α )|∑1
α=0.1|(wr

α−wmin
α |)−

∑1
α=0.1|(wl

α−wmax
α |)∑n

i=1

∑n
i=1|(wr

α−wmin
α )|∑1

α=0.1|(wr
α−wmin

α |)−
∑1

α=0.1|(wl
α−wmax

α |)

,

i = 1, ..., n, (3.2)

where the denominator guarantees normalization
condition. Briefly, the following algorithm is pro-
posed to generate the normalized crisp weights
from FCMs using the TLGP model:

1. Convert the FCM (1) into ICM (2) by using
Eq. 3.1 for all i, j = 1, ..., n.

2. Obtain J∗ by using Model (2) for all alpha-
cuts. If J∗ is near to zero, the comparison
matrix is perfectly consistent, then go to step
3, otherwise correct the comparisons in FCM
(1) and go to the first step again.

3. Obtain the interval weights by using Model
(1) for all α=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9,1 for each criterion i (alternative
i) (i = 1, ..., n).
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Figure 2: The hierarchical structure of FAHP for
optimal manufacturing technology selection.

4. Convert the interval weights extracted by step
3 into a normalized crisp weight for each cri-
terion i (alternative i)(i = 1, ..., n) by using
Eq. 3.2.

In the next section, application of our approach
is presented to four real examples and the crisp
weights are compared with the weights generated
by using Model (3) [22]:

3 The illustrative examples

In order to show the applications of NLDM, the
authors present four examples in the literature as
scientific evidences for resolving the discrepancies
of TLGP stated by Jaganathan et al. [94].

Example 3.1. Consider the MCDM problem of
new manufacturing technology selection presented
by Jaganathan et al. [94]. The hierarchy is con-
structed in such a way that the overall decision
goal is at the top level, five decision criteria are
in the middle level, and four decision alternatives
lie at the bottom level, as shown in Fig. 1. The
DM is then asked to express his/her evaluation
in terms of triangular fuzzy numerical values by
comparing the decision elements (criteria or al-
ternatives) at each level. Table presents the fuzzy
scales used to DMs evaluation in order to con-
struct FCM in FAHP. The value of can is se-
lected 0.25, 0.5, 0.75, or 1. However, according
to Jaganathan et al. [94], the DM is arbitrary for
selecting the fuzzy scales in addition to the fuzzy
scales presented in Table 3. This issue can reduce
the failure rates in FAHP.

Here, NLDM is only adopted to a FCM in
which criteria (in middle level) are compared, as

presented in Table 4. The interested reader can
refer to Jaganathan et al. [94] for showing other
FCMs, which compare alternatives as pairwise
with respect to each criterion.

As shown in Table , five criteria: monetary,
flexibility, environmental consciousness, risk, and
quality are evaluated as pairwise according to
DMs standpoints using the triangular fuzzy num-
bers. By transforming the triangular numbers in
Table into ICM by using the alpha-cut represen-
tations created by using Eq. 3.1 (see Table ), the
lower and upper weights are obtained for each cri-
terion by solving the Model (1) at eleven alpha-
cuts, i.e.α=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9,1, as shown in Table .

In next step, in order to generate the normal-
ized crisp weights for each criterion, NLDMi(i =
1, . . . , n) is calculated by using Eq. 3.2. These
measures are presented in Table . Moreover, the
normalized crisp weights by FPP (the last row in
Table ) are determined in order to compare with
weights derived by our approach.

Example 3.2. Consider the following FCM,
which has been examined by Wang et al. [87]:

The above FCM can be transformed into the
following ICM by using alpha-cut representation:

For recent ICM, the lower, and upper weights
are obtained by solving the Model (1) at seven
alpha-cuts, i.e. α=0.0, 0.2, 0.4, 0.6, 0.8, 1.0 and
are written in Table 7. The weights extracted by
the index and FPP are presented in Table 7 as
well.

Example 3.3. Consider FCM presented by
Biswas et al. [95] as follows:

According to Table 8, four criteria: profitabil-
ity, initial investment, raw material availability,
and buyer demand are assessed as pairwise ac-
cording to DMs standpoints. By transforming
the triangular numbers in Table 8 into the ICM
(2) by using Eq. (1.3) (see Table 9), the lower
and upper weights for each criterion are deter-
mined by solving the Model (1) at eleven alpha-
cuts, as represented in Table 10. In addition,
NLDMi(i = 1, . . . , n) is calculated by using Eq.
(2.3), as shown in Table 10. In order to compare
our results with those than FPP, they have also
been presented in this table.
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Table 3: Fuzzy scales for constructing PCM in FAHP.

Fuzzy scale Definition

∼
1= (

∼
1 −δ,

∼
1 +δ) Equal importance of one element over another

∼
3= (

∼
3 −δ,

∼
3 +δ) Weak importance of one element over another

∼
5=

∼
5 −δ,

∼
5 +δ) Strong importance of one element over another

∼
7= (

∼
7 −δ,

∼
7 +δ) Very strong importance of one element over another

∼
9= (

∼
9 −δ,

∼
9 +δ) Absolute importance of one element over another

∼
2,

∼
4,

∼
6,

∼
8 Intermediate values

Reciprocals Reciprocals for inverse comparison

Table 4: FCM of criteria.

Monetary Flexibility Environmental Risk Quality
consciousness

Monetary (1,1,1) (1/6,1/5,1/4) (1,2,3) (2/5,1/2,2/3) (2/7,1/3,2/5)
Flexibility (1,1,1) (7,8,9) (5/2,3,7/2) (1,2,3)
Environmental consciousness (1,1,1) (1/4,1/3,1/2) (1/8,1/7,1/6)
Risk (1,1,1) (1/2,2/3,1)
Quality (1,1,1)

Table 5: ICM.

Monetary Flexibility Environmental
consciousness

Monetary 1 ( 1/6+0.03α,
1

4
− 0.05α) (1+α, 3− α)

Flexibility 1 (7+α, 9− α)
Environmental 1
consciousness

Risk
Quality

Table 5 Continue

Risk Quality

(2/5+0.1α, 2/3− 0.16α) (2/7+0.04α, 2/5− 0.06α)
(5/2+0.5α, 7/2− 0.5α) (1+α, 3− α)
(1/4+0.08α, 1/2− 0.16α) (1/8+0.01α, 1/6− 0.02α)
1 (1/2+0.16α, 1− 0.33α)

1

Example 3.4. Consider the following FCM con-
structed by Ayhan [96]:

where five criteria: quality, origin, cost, deliv-
ery, and after sales are assessed as pairwise ac-
cording to DMs preferences through the triangu-
lar fuzzy numbers. Table 12 presents ICM (2)
at all the alpha-cuts by using Eq. 3.1. More-

over, the lower and upper weights for each cri-
terion are obtained by solving the Model (1) at
eleven alpha-cut levels, as presented in Table 13.
Now,NLDMi(i = 1, . . . , n) is calculated by using
Eq. 3.2. These measures are presented in Table
13. In order to evaluate the effectiveness of the
proposed approach, the normalized crisp weights
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Table 6: Weights obtained by Wang et al. [87], our approach, and comparison with Mikhailov-model [22].

Alpha [wL
1 , w

U
1 ] [wL

2 , w
U
2 ] [wL

3 , w
U
3 ] [wL

4 , w
U
4 ] [wL

5 , w
U
5 ]

0.0 [0.527,0.675] [2.365,2.920] [0.276,0.341] [0.944,1.024] [1.748,2.165]
0.1 [0.544,0.658] [2.450,2.840] [0.285,0.330] [0.976,1.150] [1.798,2.086]
0.2 [0.573,0.642] [2.542,2.738] [0.294,0.319] [1.007,1.101] [1.850,2.012]
0.3 [0.580,0.621] [2.637,2.690] [0.303,0.309] [1.048,1.070] [1.904,1.942]
0.4 [0.572,0.627] [2.644,2.775] [0.297,0.319] [1.003,1.085] [1.840,1.940]
0.5 [0.561,0.616] [2.708,2.843] [0.305,0.330] [1.032,1.079] [1.781,1.872]
0.6 [0.552,0.599] [2.788,2.910] [0.314,0.341] [1.033,1.074] [1.729,1.804]
0.7 [0.559,0.581] [2.885,2.963] [0.324,0.338] [1.041,1.067] [1.693,1.739]
0.8 [0.575,0.582] [2.979,3.016] [0.322,0.333] [1.045,1.060] [1.659,1.678]
0.9 [0.551,0.604] [2.859,3.189] [0.300,0.349] [1.014,1.111] [1.592,1.743]
1.0 [0.529,0.625] [2.782,3.365] [0.280,0.361] [0.984,1.163] [1.531,1.810]

NIi 0.0651 0.4749 0.0110 0.1528 0.2963
Weights derived by FPP 0.0871 0.4141 0.0472 0.1582 0.2934

Table 7: Weights obtained by Wang et al. [87], our approach, and comparison with Mikhailov-model [22].

Alpha [wL
1 , w

U
1 ] [wL

2 , w
U
2 ] [wL

3 , w
U
3 ] [wL

4 , w
U
4 ]

0.0 [2.328,3.408] [1.000,1.809] [0.553,1.000] [0.293,0.429]
0.2 [2.424,3.282] [1.087,1.730] [0.578,0.919] [0.304,0.412]
0.4 [2.522,3.162] [1.171,1.651] [0.605,0.853] [0.316,0.396]
0.5 [2.571,3.104] [1.212,1.611] [0.620,0.824] [0.322,0.388]
0.6 [2.621,3.047] [1.253,1.572] [0.636,0.797] [0.328,0.381]
0.8 [2.723,2.936] [1.334,1.493] [0.669,0.749] [0.340,0.367]
1.0 [2.828,2.828] [1.414,1.414] [0.707,0.707] [0.353,0.353]

NIi 0.4688 0.2229 0.0970 0.0180
Weights derived by FPP 0.5233 0.2666 0.1333 0.0666

Table 8: Weights obtained by Wang et al. [87], our approach, and comparison with Mikhailov-model [22].

Profitability Initial investment Raw material availability Buyer demand

Profitability (1,1,1) (3/2,2,5/2) (2/3,1,3/2) (1,1,1)
Initial investment (2/5,1/2,2/3) (1,1,1) (2/3,1,3/2) (2/3,1,3/2)
Raw material availability (2/3,1,3/2) (2/3,1,3/2) (1,1,1) (3/2,2,5/2)
Buyer demand (1,1,1) (2/3,1,3/2) (2/5,1/2,2/3) (1,1,1)

Table 9: Weights obtained by Wang et al. [87], our approach, and comparison with Mikhailov-model [22].

Profitability Initial investment Raw material availability Buyer demand

Profitability 1 (3/2+0.5α, 5/2− 0.5α) (2/3+0.33α, 3/2− 0.5α) (1,1)
Initial investment 1 (2/3+0.33α, 3/2− 0.5α) (2/3+0.33α, 3/2− 0.5α)
Raw material availability 1 (3/2+0.5α, 5/2− 0.5α)
Buyer demand 1

by FPP (the last row in Table 13) and the weights
obtained by Ayhan [96] approach have also been
presented in the above table. Obviously, the sim-
ilar ranking order have obtained based on all ap-
proaches.

4 Discussion and conclusion

In this paper, NLDM was proposed to resolve the
discrepancies stated by Jaganathan et al. [94]
when they adopted TLGP for generating the crisp
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Table 10: Weights obtained by Wang et al. [87], our approach, and comparison with Mikhailov-model [22].

Alpha [wL
1 , w

U
1 ] [wL

2 , w
U
2 ] [wL

3 , w
U
3 ] [wL

4 , w
U
4 ]

0.0 [0.907,1.180] [0.689,0.898] [1.123,1.395] [0.872,1.100]
0.1 [0.915,1.228] [0.698,0.916] [1.080,1.337] [0.845,1.089]
0.2 [0.926,1.289] [0.729,0.930] [1.061,1.312] [0.816,1.072]
0.3 [0.936,1.348] [0.696,0.944] [1.036,1.340] [0.785,1.065]
0.4 [0.951,1.410] [0.718,0.961] [1.034,1.317] [0.758,1.052]
0.5 [0.968,1.450] [0.706,0.977] [1.018,1.211] [0.743,1.043]
0.6 [0.985,1.316] [0.716,0.999] [1.001,1.211] [0.718,1.023]
0.7 [1.006,1.371] [0.721,0.995] [1.002,1.336] [0.717,1.006]
0.8 [1.019,1.158] [0.771,0.988] [1.012,1.345] [0.765,0.992]
0.9 [1.032,1.106] [0.888,0.975] [1.028,1.084] [0.904,0.973]
1.0 [1.052,1.069] [0.938,0.946] [1.055,1.066] [0.938,0.949]

NIi 0.3110 0.1577 0.3332 0.1978
Weights derived by FPP 0.2552 0.1850 0.3272 0.2303

Table 11: FCM.

Quality Origin Cost Delivery
After sales

Quality (1,1,1) (1,1,1) (4,5,6) (6,7,8)
(4,5,6)
Origin (1,1,1) (1,1,1) (4,5,6) (6,7,8)
(6,7,8)
Cost (1/6,1/5,1/4) (1/6,1/5,1/4) (1,1,1) (1/4,1/3,1/2)
(2,3,4)
Delivery (1/8,1/7,1/6) (1/8,1/7,1/6) (2,3,4) (1,1,1)
(1/6,1/5,1/4)
After sales (1/6,1/5,1/4) (1/8,1/7,1/6) (1/4,1/3,1/2) (4,5,6)
(1,1,1)

Table 12: ICM.

Quality Origin Cost Delivery
After sales

Quality 1 (1,1) (4+α,6-α) (6+α,8-α)
(4+α,6-α)
Origin 1 (4+α,6-α) (6+α,8-α)
(6+α,8-α)
Cost 1 (1/4+0.083α,1/2-0.166α)
(2+α,4-α)
Delivery 1
(1/6+0.033α,1/4-0.05α)
After sales
1

weights from FCMs. They couldnt obtain the
crisp weights for the pairwise comparisons pre-
sented in Table 4 using Model (1) and proposed
the Mikhailov nonlinear programming model [22].
In order to show the effectiveness of the suggested
approach, our NLDM was then applied to four

real examples in the literature.

In example 3.1, the five normalized crisp
weights obtained by our approach are 0.0651,
0.4749, 0.0110, 0.1528 and 0.2963, respectively, as
shown in Table 6. By comparing the crisp weights
determined by our NLDM with those obtained by
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Table 13: Weights obtained by the different approaches.

Alpha [wL
1 , w

U
1 ] [wL

2 , w
U
2 ] [wL

3 , w
U
3 ] [wL

4 , w
U
4 ] [wL

5 , w
U
5 ]

0.0 [2.704,2.718] [2.718,2.718] [0.535,0.557] [0.405,0.413] [0.595,0.605]
0.1 [2.704,2.718] [2.718,2.718] [0.535,0.557] [0.405,0.413] [0.595,0.605]
0.2 [2.705,2.718] [2.715,2.718] [0.509,0.525] [0.409,0.413] [0.626,0.629]
0.3 [2.707,2.718] [2.715,2.718] [0.518,0.520] [0.412,0.414] [0.628,0.631]
0.4 [2.718,2.718] [2.717,2.718] [0.519,0.521] [0.415,0.416] [0.623,0.625]
0.5 [2.715,2.718] [2.716,2.718] [0.519,0.521] [0.417,0.418] [0.620,0.621]
0.6 [2.718,2.718] [2.718,2.718] [0.519,0.521] [0.418,0.420] [0.616,0.618]
0.7 [2.718,2.718] [2.718,2.718] [0.518,0.520] [0.421,0.422] [0.612,0.614]
0.8 [2.713,2.718] [2.718,2.718] [0.518,0.519] [0.424,0.426] [0.610,0.612]
0.9 [2.711,2.718] [2.707,2.714] [0.516,0.518] [0.428,0.429] [0.619,0.611]
1.0 [2.692,2.717] [2.651,2.707] [0.514,0.519] [0.435,0.436] [0.610,0.613]

NIi 0.4640 0.4650 0.0245 0.0030 0.0425
FPP 0.3922 0.3998 0.0646 0.0517 0.0841
Ayhan [96] 0.3830 0.4090 0.0740 0.0570 0.0760

Table 14: Weights obtained by the different approaches.

The difference between two consecutive weights by NLDM The difference between two consecutive weights by FPP

w˙1-w˙2=0.2459 w˙1-w˙2=0.2567
w˙2-w˙3=0.1259 w˙2-w˙3=0.1333
w˙3-w˙4=0.0790 w˙3-w˙4=0.0677

Mikhailov-model [22], the authors note that the
crisp weights of criteria 1 and 3 have the varia-
tions based on the reasons discussed below, but,
crisp weights of criteria 2, 4 and 5 have the par-
tial differences. Moreover, in example , the nor-
malized crisp weights generated by our index are
0.4688, 0.2229, 0.0970, and 0.0180, respectively,
as shown in Table 7. Although, these weights
have the variations with those given by FPP
(which are 0.5233, 0.2666, 0.1333, and 0.0666, re-
spectively), the ranking order by three models are
identical (the ranking order given by TLGP is as

w1
100
≻ w2

100
≻ . . .

100
≻ wN , where

100
≻ shows the

degree of preference a weight over next weight).
Obviously, the ranking order by TLGP provides
the information about the degrees of preference of
weights but it cannot determine normalized crisp
weights for each element. On the other hand, the
difference between each two consecutive weights
based on the above ranking order by NLDM and
FPP are as follows: As shown in above table,
the above variations are almost similar based on
both models. There are similar arguments for ex-
amples example and . In other words, although
these differences of weights influence total score

of a criterion (alternative), it does not change
the ranking order of criteria (alternatives) when
application to MCDM techniques. FPP gener-
ates the weights of criteria using a nonlinear op-
timization model. It determines the crisp weights
and the consistency index from FCMs simulta-
neously. But, the second approach (TLGP) is
based on a discrete multiple stage methodology
as follows: (1) transforming FCMs into the ICMs
using alphacut transformations; (2) attaining J∗

by incorporating the interval numbers into Model
(2); (3) obtaining the interval weights by using
Model (1); and (4) converting the interval weights
into the crisp weights by NLDM. Unlike the first
approach, the normalized crisp weights are then
determined in several stages. Thus, this point
can be concluded which differences in the num-
ber of stages, the nature of generating the crisp
weights of two methodologies and type of com-
putational tool or software result in errors arisen
from rounding the decimal part of weights. It
proves the variations of two weights obtained for
each criterion as explained above. In spite of
such differences, the ranking order of criteria and
the degree of importance between them for both
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models are almost the same. This argument ver-
ifies the effectiveness of the proposed approach
for obtaining the crisp weights. The advantage
of the proposed index is that it determines crisp
weights from the interval weight generated by
TLGP. Many approaches and optimization mod-
els exist where the weights of criteria and/or the
evaluation measures of alternatives with respect
to criteria are determined in the interval form at
alpha cuts. According to our index, these weights
can be transformed into the crisp measures. It is
usable to each number alternatives and criteria in
the different decision-making problems and also,
it calculates the similar ranking order for criteria
weights.
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