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Abstract

The purpose of this paper is to present some n-tuple fixed point and n-tuple coincidence point results
in C∗-algebra-valued metric spaces using the concept of an α-series applied to a series of mappings.
At the end of the paper, we give an example and an application to support our main results.

Keywords : C∗-algebra-valued; α-series; n-tuple fixed point; n-tuple coincidence point; Compatible;
Weakly reciprocally continuous.

—————————————————————————————————–

1 Introduction

S
ince 1922 (when Banach presented his famous

result, known as the Banach fixed point the-

orem), the fixed point theory has piqued the in-

terest of numerous researchers.

There is a great literature on this topic, and
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it is currently a very active research field. See

[4, 5, 7, 8, 13, 15] for more information.

The concept of α-series was introduced by Si-

hag in 2014. This concept was later generalized

to two-dimensional and three-dimensional fixed

point theorems in generalized metric spaces (see

[5, 11, 14] for more information).

The concept of a C∗-algebra valued metric

space was introduced in 2014, in which, instead of

the set of real numbers, the set of all positive ele-

ments of a unit C∗-algebra was used. Later, cou-

pled fixed point theorems in C∗-algebra-valued b-

metric spaces, as well as tripled fixed points and

tripled coincidence points in C∗-algebra-valued

metric spaces, were investigated in [1, 11], and

[10], respectively.

The goal of this article is to prove some n-tuple

coincidence point and fixed point theorems in C∗-

algebra-valued metric spaces for a self-mapping g

and a sequence {Tζ}ζ∈N0 of n-variate mappings.
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An application and an example are also provided

to support our results. In addition, we demon-

strate the existence and uniqueness of a n-tuple

common fixed point for a function g : X → X and

the sequence of mappings Tζ : Xn → X, where

(X,A, d) represents a C∗-valued algebra metric

space.

Throughout this article, N is the set of positive

integers and N0 = N ∪ {0}. An unital algebra

with the unit I is denoted by A and θ is the zero

element. An involution on A correspond to the

conjugate linear map κ 7→ κ∗ on A is a map-

ping such that ȷ∗∗ = ȷ and (ȷ℘)∗ = ℘∗ȷ∗ for all

ȷ, ℘ ∈ A. The pair (A, ∗) is called an ∗-algebra. A
Banach ∗-algebra is an ∗-algebra A with the com-

plete submultiplicative norm so that ∥ ȷ∗ ∥=∥ ȷ ∥,
for all ȷ ∈ A. A C∗-algebra is a Banach ∗-algebra
so that ∥ ȷ∗ȷ ∥=∥ ȷ ∥2 for all ȷ ∈ A. Let H

be a Hilbert space and B(H) be the set of all

bounded linear operators on H. Then B(H) is a

C∗-algebra with the operator norm. Let Asa be

the family of all self-adjoint elements in A. An

element ȷ ∈ A is positive (ȷ ≥ θ) if ȷ ∈ Asa and

σ(ȷ) = {λ ∈ C | λI − ȷ is not invertible} ⊆ R+,

where σ(ȷ) is the spectrum of ȷ ∈ A. Taking

A+ = {ȷ ∈ A : ȷ ≥ θ}, then A+ = {ȷ∗ȷ : ȷ ∈ A}
[9]. Note that a partial order ⪯ on Asa can be

defined as follows:

ȷ ⪯ ℘ if and only if ℘− ȷ ⪰ θ.

If ȷ, ℘ ∈ Asa and q ∈ A, then ȷ ≤ ℘ ⇒ q∗ȷq ≤
q∗℘q, and if ȷ, ℘ ∈ A+ are invertible, then ȷ ≤
℘ =⇒ θ ≤ ℘−1 ≤ ȷ−1.

2 Preliminaries

This section provides preliminaries that include

definitions and results about the n-tuple fixed

point for nonlinear contractive mappings defined

on complete C∗-algebra-valued metric spaces.

Now, we state some basic definitions and re-

sults regarding C∗-algebra-valued metric spaces

and tripled (and n-tuple) fixed point concepts.

Definition 2.1. [7] If the function d : X2 → A (

X is a nonempty set) be such that for all υ,ϖ, η ∈
X:

(i) θ ≤ d(υ,ϖ) and d(υ,ϖ) = θ iff υ = ϖ;

(ii) d(υ,ϖ) = d(ϖ, υ);

(iii) d(υ,ϖ) ≤ d(υ, η) + d(η,ϖ) ,

then (X,A, d) is called a C∗-algebra-valued metric

space.

Definition 2.2. [12] Let F : X3 −→ X. We say

that (υ, ι, κ) ∈ X3 is a tripled fixed point of F if

F (υ, ι, κ) = υ, F (ι, υ, ι) = ι, F (κ, ι, υ) = κ.

Definition 2.3. [12] Let (X, d) be a metric space.

The function d : X3 → X which is given as fol-

lows

d [(υ, ι, κ), (u, v, w)] = d(υ, u) + d(ι, v) + d(κ,w),

is a metric on X3. It will be denoted for conve-

nience by d, too.

We provide related n-dimensional definitions

(note that X is a nonempty set).

Definition 2.4. [3] An element (x1, ..., xn) ∈ Xn

is called a n-tuple fixed point of F : Xn → X if

xi = F (xi, xi+1, ..., xn, x1, ..., xi−1),

where 1 ≤ i ≤ n.

Definition 2.5. [3] An element (x1, ..., xn) ∈ Xn

is called a n-tuple coincidence point of F : Xn →
X and g : X → X if

gxi = F (xi, xi+1, ..., xn, x1, ..., xi−1),

where 1 ≤ i ≤ n.

Definition 2.6. [6] The mappings F : Xn → X

and g : X → X are called commutating if

gF (x1, ..., xn) = F (gx1, ..., gxn),

for all x1, . . . , xn ∈ X.

We now generalize the definitions of compat-

ibility and weakly reciprocal continuity, as pre-

sented in [2] and [3], to include all n-variate map-

pings F and self-mappings of g.

Definition 2.7. Let (X,A, d) be a C∗-algebra-

valued metric space. The mappings F : Xn → X

and g : X −→ X are called compatible if

lim
ζ→+∞

d
(
g(F (xiζ , x

i+1
ζ , . . . , xnζ , x

1
ζ , . . . , x

i−1
ζ )),

F (gxiζ , gx
i+1
ζ , . . . , gxnζ , gx

1
ζ , . . . , gx

i−1
ζ )

)
= 0,
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where 1 ≤ i ≤ n, whenever {xiζ}, 1 ≤ i ≤ n are

sequences in X, so that

lim
ζ→+∞

F (xiζ , x
i+1
ζ , . . . , xnζ , x

1
ζ , . . . , x

i−1
ζ )

= lim
ζ→+∞

gxiζ := xi,

for some xi ∈ X. They are called weakly compat-

ible if

gxi = F (xi, xi+1, . . . , xn, x1, . . . , xi−1),

implies

g(F (xi, xi+1, . . . , xn, x1, . . . , xi−1))

= F (gxi, gxi+1, . . . , gxn, gx1, . . . , gxi−1),

where 1 ≤ i ≤ n, for some (x1, · · ·xn) ∈ Xn.

Definition 2.8. The mappings F : Xn → X and

g : X −→ X are called reciprocally continuous if

lim
ζ→+∞

g(F (xiζ , x
i+1
ζ , . . . , xnζ , x

1
ζ , . . . , x

i−1
ζ ))

= gxi

and

lim
ζ→+∞

F (gxiζ , gx
i+1
ζ , . . . , gxnζ , gx

1
ζ , . . . , gx

i−1
ζ )

= F (xi, xi+1, . . . , xn, x1, . . . , xi−1),

whenever {xiζ}, 1 ≤ i ≤ n, are sequences in X,

such that

lim
ζ→+∞

F (xiζ , x
i+1
ζ , . . . , xnζ , x

1
ζ , . . . , x

i−1
ζ )

= lim
n→+∞

gxiζ := xi,

for some xi ∈ X, 1 ≤ i ≤ n.

Definition 2.9. The mappings F : Xn → X

and g : X −→ X are called weakly reciprocally

continuous if

lim
ζ→+∞

g(F (xiζ , x
i+1
ζ , . . . , xnζ , x

1
ζ , . . . , x

i−1
ζ ))

= gxi,

or

lim
ζ→+∞

F (gxiζ , gx
i+1
ζ , . . . , gxnζ , gx

1
ζ , . . . , gx

i−1
ζ )

= F (xi, xi+1, . . . , xn, x1, . . . , xi−1),

whenever {xiζ}, 1 ≤ i ≤ n, are sequences in X

such that

lim
ζ→+∞

F (xiζ , x
i+1
ζ , . . . , xnζ , x

1
ζ , . . . , x

i−1
ζ )

= lim
n→+∞

gxiζ := xi,

for some xi ∈ X 1 ≤ i ≤ n.

Definition 2.10. [12] The nonempty set X is

said to be regular provided that:

(i) xζ ⪯ x for all ζ ≥ 0, where xζ → x is a

non-decreasing sequence,

(ii) y ⪯ yζ for all ζ ≥ 0 where yζ → x is a

non-increasing sequence.

3 Main results

In this section, we first state Definitions 2.7-2.9

for the sequence of n-variate mappings {Tζ}ζ∈N0

and a self-mapping g as follows:

Definition 3.1. Let (X,A, d) be a C∗-algebra-

valued metric space, and let Tζ : X
n → X and g :

X −→ X. {Tζ}ζ∈N0 and g are called compatible

if

lim
ζ→+∞

d
(
g(Tζ(x

i
ζ , x

i+1
ζ , . . . , xnζ , x

1
ζ , . . . , x

i−1
ζ )),

Tζ(gx
i
ζ , gx

i+1
ζ , . . . , gxnζ , gx

1
ζ , . . . , gx

i−1
ζ )

)
= 0,

where 1 ≤ i ≤ n and {xiζ}, 1 ≤ i ≤ n are se-

quences in X such that

lim
ζ→+∞

Tζ(x
i
ζ , x

i+1
ζ , . . . , xnζ , x

1
ζ , . . . , x

i−1
ζ )

= lim
n→+∞

gxiζ+1 := xi,

for some xi ∈ X. They are said to be weakly com-

patible if

gxi = Tζ(x
i, xi+1, . . . , xn, x1, . . . , xi−1),

implies

g(Tζ(x
i, xi+1, . . . , xn, x1, . . . , xi−1))

= Tζ(gx
i, gxi+1, . . . , gxn, gx1, . . . , gxi−1),

where 1 ≤ i ≤ n.
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Definition 3.2. Let (X,A, d) be a C∗-algebra-

valued metric space, and Tζ : Xn → X and

g : X −→ X. {Tζ}ζ∈N0 and g are called weakly

reciprocally continuous if

lim
ζ→+∞

g(Tζ(x
i
ζ , x

i+1
ζ , . . . , xnζ , x

1
ζ , . . . , x

i−1
ζ ))

= gxi,

whenever {xiζ}, 1 ≤ i ≤ n are sequences in X,

such that

lim
ζ→+∞

Tζ(x
i
ζ , x

i+1
ζ , . . . , xnζ , x

1
ζ , . . . , x

i−1
ζ )

= lim
n→+∞

gxiζ+1 := xi,

for some xi ∈ X and 1 ≤ i ≤ n.

Definition 3.3. Let {an} be a sequence in a

C∗-algebra with positive elements. The series∑+∞
n=1 an is called an α-series, if there are α ∈ A

with ∥ α ∥< 1 and mα ∈ N such that
∑k

i=1 ai ≤
αk for each k ≥ mα.

Example 3.1. Any convergent series with posi-

tive elements is an α-series. Also, the divergent

series
∑+∞

n=1

1

n
, for each α ∈ A with ∥ α ∥< 1, is

an α-series.

Definition 3.4. Let (X,A, d) be a C∗-algebra-

valued metric space, Tζ : X
n → X and g : X −→

X. {Tζ}ζ∈N0 and g satisfy the (K) property if

d(Tζ(x1, . . . , xn), Tζ′(y1, . . . , yn))

≤ β∗ζ,ζ′ [d(gx1, Tζ(x1, . . . , xn))

+ d(gy1, Tζ′(y1, . . . , yn))]βζ,ζ′

+ γ∗ζ,ζ′d(gy1, gx1)γζ,ζ′ (3.1)

for all xi, yi ∈ X, where 1 ≤ i ≤ n, xi ̸= yi,

∥ βζ,ζ′ ∥< 1, ∥ γζ,ζ′ ∥< 1 for all ζ, ζ ′ ∈ N0,∑+∞
ζ=1 (βζ,ζ+1 + γζ,ζ+1)

2 (1 − β2ζ,ζ+1)
−1 is an α-

series, and lim
r→+∞

supβr,ζ < 1.

Let (X,A, d) be a C∗-algebra-valued metric

space. Let g be a continuous self-mapping on

X and {Tζ}ζ∈N0 be a sequence of mappings from

Xn into X, so that Tζ(X
n) ⊆ g(X), g(X) ⊆ X

is complete, {Tζ}ζ∈N0 and g are weakly recipro-

cally continuous, compatible, and satisfy the con-

dition (K). If g(X) is regular, then {Tζ}ζ∈N0 and

g have a n-tuple coincidence point, i.e., there is

xi ∈ X, 1 ≤ i ≤ n, so that

gxi = Tζ(x
i, xi+1, ..., xn, x1, ..., xi−1),

for all 1 ≤ i ≤ n.

Proof. Let xi0 ∈ X where 1 ≤ i ≤ n. Since

T0(X
n) ⊆ g(X), we can define xi1 ∈ X, (1 ≤

i ≤ n) such that

gxi1 = T0(x
i
0, x

i+1
0 , . . . xn0 , x

1
0, . . . x

i−1
0 ).

Again, since T0(X
n) ⊆ g(X), there exist xi2 ∈

X, 1 ≤ i ≤ n such that

gxi2 = T1(x
i
1, x

i+1
1 , . . . xn1 , x

1
1, . . . x

i−1
1 ).

Continuing this process, we make the sequence

{xir}, (1 ≤ i ≤ n) in order to

gxir+1 = Tr(x
i
r, x

i+1
r , . . . xnr , x

1
r, . . . x

i−1
r ), (3.2)

for all r ≥ 0. By (3.1), we get

d(gx1r, gx
1
r+1)

= d(Tr−1(x
1
r−1, . . . , x

n
r−1), Tr(x

1
r, . . . , x

n
r ))

≤ β∗r−1,r[d(gx
1
r−1, Tr−1(x

1
r−1, . . . , x

n
r−1))

+ d(gx1r, Tr(x
1
r, . . . , x

n
r ))]βr−1,r

+ γ∗r−1,rd(gx
1
r, gx

1
r−1)γr−1,r

= β∗r−1,r[d(gx
1
r−1, gx

1
r) + d(gx1r, gx

1
r+1)]βr−1,r

+ γ∗r−1,rd(gx
1
r, gx

1
r−1)γr−1,r

= β∗r−1,rd(gx
1
r−1, gx

1
r)βr−1,r

+ β∗r−1,rd(gx
1
r , gx

1
r+1)

1
2d(gx1r , gx

1
r+1)

1
2βr−1,r

+ γ∗r−1,rd(gx
1
r, gx

1
r−1)γr−1,r

= (βr−1,r + γr−1,r)
∗d(gx1r−1, gx

1
r)

(βr−1,r + γr−1,r)

+ | βr−1,rd(gx
1
r, gx

1
r+1)

1
2 |2

=| (βr−1,r + γr−1,r)d(gx
1
r−1, gx

1
r)

1
2 |2

+ | βr−1,rd(gx
1
r, gx

1
r+1)

1
2 |2 .

It follows that

d(gx1r, gx
1
r+1)

≤ (βr−1,r + γr−1,r)
2(1− β2r−1,r)

−1

d(gx1r, gx
1
r−1). (3.3)
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Similarly, we obtain

d(gx2r, gx
2
r+1)

≤ (βr−1,r + γr−1,r)
2 (1− β2r−1,r)

−1

d(gx2r, gx
2
r−1),

...,

d(gxnr , gx
n
r+1)

≤ (βr−1,r + γr−1,r)
2 (1− β2r−1,r)

−1

d(gxnr , gx
n
r−1). (3.4)

Adding (3.3)-(3.4), we have

δr =
n∑

i=1

d(gxir, gx
i
r+1)

≤ (βr−1,r + γr−1,r)
2 (1− β2r−1,r)

−1

[
n∑

i=1

d(gxir, gx
i
r−1)]

= (βr−1,r + γr−1,r)
2 (1− β2r−1,r)

−1δr−1

≤ (βr−1,r + γr−1,r)
2 (1− β2r−1,r)

−1

(βr−2,r−1 + γr−2,r−1)
2

(1− β2r−2,r−1)
−1δr−2

≤ . . .

≤
r−1∏
ζ=0

(βζ,ζ+1 + γζ,ζ+1)
2

(1− β2ζ,ζ+1)
−1δ0.

Moreover, for all s > 0, we get

n∑
i=1

d(gxir, gx
i
r+s)

≤
n∑

i=1

d(gxir, gx
i
r+1) +

n∑
i=1

d(gxir+1, gx
i
r+2)

+ · · ·+
n∑

i=1

d(gxir+s−1, gx
i
r+s)

≤
r−1∏
ζ=0

(βζ,ζ+1 + γζ,ζ+1)
2 (1− β2ζ,ζ+1)

−1δ0

+

r∏
ζ=0

(βζ,ζ+1 + γζ,ζ+1)
2 (1− β2ζ,ζ+1)

−1δ0

+ . . .

+

r+s−2∏
ζ=0

(βζ,ζ+1 + γζ,ζ+1)
2 (1− β2ζ,ζ+1)

−1δ0

=

r+s−1∑
k=r

k−1∏
ζ=0

(βζ,ζ+1 + γζ,ζ+1)
2 (1− β2ζ,ζ+1)

−1δ0.

Then, we have

∥
n∑

i=1

d(gxir, gx
i
r+s) ∥

≤∥
r+s−1∑
k=r

k−1∏
ζ=0

(βζ,ζ+1 + γζ,ζ+1)
2

(1− β2ζ,ζ+1)
−1 ∥ δ0.

Let α and nα be as in Definition 3.3. For all

r ≥ nα, using the fact that the non-negative num-

bers geometric mean is less than or equal to the
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arithmetic mean, it follows that

∥
n∑

i=1

d(gxir, gx
i
r+s) ∥

≤∥
r+s−1∑
k=r1

k

k−1∑
ζ=0

(βζ,ζ+1 + γζ,ζ+1)
2 (1− β2ζ,ζ+1)

−1

k

∥

δ0

≤∥

(
r+s−1∑
k=r

αk

)
∥ δ0

≤ ∥ αr ∥
1− ∥ α ∥

δ0.

Now, letting r → +∞, we conclude that

lim
r→+∞

∥
n∑

i=1

d(gxir, gx
i
r+s) ∥= 0, 1 ≤ i ≤ n,

which implies that

lim
r→+∞

∥ d(gxir, gxir+s) ∥= 0.

Thus, {gxir}, (1 ≤ i ≤ n) are Cauchy sequences

in X. Since g(X) is complete, there are pi ∈ X

so that

lim
r→+∞

{gxir} = g(pi) := xi, (1 ≤ i ≤ n).

So, we have

lim
r→+∞

g(xir+1)

= lim
r→+∞

Tr(x
i
r, x

i+1
r , . . . xnr , x

1
r, . . . x

i−1
r )

= xi, (1 ≤ i ≤ n).

Since {Tζ}ζ∈N0 and g are compatible and

weakly reciprocally continuous, one has

lim
r→+∞

Tr(gx
i
r, gx

i+1
r , . . . , gxnr , gx

1
r, . . . , gx

i−1
r )

= gxi, (1 ≤ i ≤ n).

Now, we show that {Tζ}ζ∈N0 have n-tuple coinci-

dence points. According to (3.1), we obtain

d(Tr(gx
1
r, . . . gx

n
r ), Tζ(x

1, . . . xn))

≤ β∗r,ζ [d(ggx
1
r, Tr(gx

1
r, . . . gx

n
r ))

+ d(gx1, Tζ(x
1, . . . xn))]βr,ζ

+ γ∗r,ζd(gx
1, ggx1r)γr,ζ .

Taking the limit as r → +∞, we obtain

Tζ(x
1, . . . , xn) = g(x1) as βr,ζ < 1. Similarly,

it can be proved that

Tζ(x
2, . . . , xn, x1) = g(x2),

. . .

Tζ(x
n, . . . , xn−1) = g(xn).

Thus, (x1, · · · , xn) is a n-tuple coincidence point

of {Tζ}ζ∈N0 and g.

Taking g the identity mapping in Theorem 3,

we have Let (X,A, d) be a complete C∗-algebra-

valued metric space. Let {Tζ}ζ∈N∪{0} be a se-

quence of mappings from Xn into X, so that {Tζ}
and Id : X → X satisfy the (K) property. If X is

regular, then {Tζ}ζ∈N0 has a n-tuple fixed point,

that is, there exists xi ∈ Xn (1 ≤ i ≤ n) such

that

xi = Tζ(x
i, xi+1, ..., xn, x1, ..., xi−1),

for all ζ ∈ N0.

For the existence and uniqueness of a n-tuple

common fixed point, we need the next definition.

For simplicity, we set n = {1, · · · , n}.

Definition 3.5. For xi, ui ∈ X (1 ≤ i ≤ n), we

say that (xi)
n
i=1 is n-tuple comparable with (ui)

n
i=1

if

xi ≥ uσ(i) or xi ≤ uσ(i)

where

σ ∈ Π = {σj | σj : n → n, σj(i) = k,

k
mod n≡ i+ j, 0 ≤ k ≤ n− 1}.

On the other hand, the elements of Π are the per-

mutations of n, which preserve the order (modu-

lus n).

Replacing xi and uσ(i) with gxi and guσ(i), respec-

tively, one says that (xi)
n
i=1 is n-tuple comparable

with (ui)
n
i=1 with respect to g.

Let (X,A, d) be a C∗-algebra-valued metric

space. Let g be a self-mapping onX and {Tζ}ζ∈N0

be a sequence of mappings from Xn into X.

Let {Tζ}ζ∈N0 and g be w-compatible and satisfy



S. Hadi Bonab et al., /IJIM Vol. 5, No. 2 (2023) 95-105 101

the condition (K). If {Tζ}ζ∈N0 have n-tuple co-

incidence points comparable with respect to g,

then {Tζ}ζ∈N0 and g have a unique n-tuple com-

mon fixed point, that is, there exists a unique

(x1, · · · , xn) ∈ Xn such that

xi = g(xi)

= Tζ(x
i, xi+1, ..., xn, x1, ..., xi−1),

where 1 ≤ i ≤ n.

Moreover, the common fixed point of {Tζ}ζ∈N0

and g is of the form (ȷ, · · · , ȷ) for some ȷ ∈ X.

Proof. From Theorem 3, the set of n-tuple coin-

cidence points is non-empty. First, we show that

if (x1, · · · , xn) and (u1, · · · , un) be n-tuple coinci-

dence points, then gxi = gui(1 ≤ i ≤ n). Since

the set of n-tuple coincidence points is n-tuple

comparable, applying condition (3.1), we get

d(gx1, gu1)

= d(Tζ(x
1, . . . , xn), Tζ′(u

1, . . . , un))

≤ β∗ζ,ζ′ [d(gx
1, Tζ(x

1, . . . , xn)

+ d(gu1, Tζ′(y
1, , . . . , yn))]βζ,ζ′

+ γ∗ζ,ζ′d(gu
1, gx1)γζ,ζ′ ,

that is,

(1− γ2ζ,ζ′)d(gx
1, gu1)

≤ β2ζ,ζ′ [d(gx
1, Tζ(x

1, . . . , xn)

+ d(gu1, Tζ′(y
1, , . . . , yn))].

So,

d(gx1, gu1)

≤ β2ζ,ζ′(1− γ2ζ,ζ′)
−1[d(gx1, Tζ(x

1, . . . , xn)

+ d(gu1, Tζ′(y
1, , . . . , yn))].

This induces that

∥ d(gx1, gu1) ∥≤ ∥ β2ζ,ζ′ ∥∥ (1− γ2ζ,ζ′)
−1 ∥

∥ d(gx1, Tζ(x1, . . . , xn)
+ d(gu1, Tζ′(y

1, , . . . , yn)) ∥ .

Therefore, since γζ,ζ′ < 1, it follows that

d(gx1, gu1) = 0, that is, gx1 = gu1. Similarly, it

can be proved that gxi = guj , where 1 ≤ i, j ≤ n.

So

gx1 = · · · = gxn = gu1 · · · = gun.

Therefore, {Tζ}ζ∈N0 and g have a unique n-tuple

point of coincidence

(gx1, · · · , gx1). Now, let gx1 = ȷ. Then we have

ȷ = gx1 = Tζ(x
1, · · · , x1).

By w-compatibility of {Tζ}ζ∈N0 and g, we have

gȷ = ggx1

= g(Tζ(x
1, · · · , x1))

= Tζ(gx
1, · · · , gx1)

= Tζ(ȷ, · · · , ȷ).

On the other hand, Tζ(gx
1, · · · , gx1) = gx1.

Hence, (gȷ, . . . , gȷ) is a n-tuple coincidence point

of {Tζ}ζ∈N0 and g. So, gȷ = gx1. Thus,

ȷ = gȷ = Tζ(ȷ, · · · , ȷ).

Therefore, (ȷ, · · · , ȷ) is the unique n-tuple com-

mon fixed point of {Tζ}ζ∈N0 and g.

4 Example

We give an example to support our main results.

Example 4.1. Let X = [0, 1]. Define d(x, y) =

|x − y|. Then (X,A, d) is a complete C∗-valued-

algebra metric space. Fix n ∈ N and n > 1. We

define

βζ,ζ′ =
1

n2ζ+1
and γζ,ζ′ =

1

nζ
for all ζ, ζ ′ ∈ N,

and consider the mappings Tζ : Xn → X and

g : X → X defined by

Tζ(x1, · · · , xn) =
x1 + · · ·+ xn

nζ
and

g(x) = 3nx

for all ζ = 1, 2, . . . and x1, · · · , xn ∈ X. We

prove by mathematical induction that {Tζ}ζ∈N0

and g satisfy the condition (K). We know that

the greatest value of the first side in (3.1) corre-

sponds to ζ = 1 and ζ ′ → ∞. Suppose that for

ζ = 1 and ζ ′ = k, we have

| x1 + · · ·+ xn
n

− y1 + · · ·+ yn
nk

|

≤ 1

n3
[| 3nx1 −

x1 + · · ·+ xn
n

|

+ | 3ny1 −
y1 + · · ·+ yn

nk
|] 1
n3

+
1

n
| 3n(y1 − x1) |

1

n
.
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Now, for ζ ′ = k + 1, we have

C : =| x1 + · · ·+ xn
n

− 1

n
(
y1 + · · ·+ yn

nk
) |

≤ 1

n3
[| 3nx1 −

x1 + · · ·+ xn
n

|

+ | 3y1 −
1

n
(
y1 + · · ·+ yn

nk
) |] 1

n3

+ 3 | y1
n

− x1 |
1

n
:= D.

That is,

C ≤ 1

n

[
| x1 + · · ·+ xn

n
− y1 + · · ·+ yn

nk
|
]

+
n− 1

n
| x1 + · · ·+ xn

n
|

≤ 1

n
(
1

n3

[
| 3nx1 −

x1 + · · ·+ xn
n

|

+ | 3ny1 −
y1 + · · ·+ yn

nk
| 1
n3

)

+
1

n
(3 | y1 − x1 |)

1

n

+
n− 1

n
| x1 + · · ·+ xn

n
|≤ D.

Since d(x, y) is symmetric, the role of ζ and ζ ′

can be changed with each other and reach a sim-

ilar result. Thus, the inequality (3.1) for every

ζ, ζ ′ holds. Moreover, the series

+∞∑
ζ=1

(
βζ,ζ+1 + γζ,ζ+1

1− βζ,ζ+1

)
=

+∞∑
ζ=1

nζ+1 + 1

n2ζ+1 − 1
,

where n > 1, is an α-series with α =
1

2
. Thus,

all the hypotheses of Theorem 3 hold. Here,

(0, · · · , 0) is a n-tuple coincident point (it is the

unique n-tuple common fixed point) of g and

{Tζ}ζ∈N0.

5 Application

We search an x(t) = {xζ(t)}nζ=1 (a finite sequence

in the variable ζ) to be a solution of the integral

equation

x(t) = h(t)

+

∫
µ
f1ζ (t, s, x(s)) + . . .+ fnζ (t, s, x(s))ds, (5.5)

for all t, s ∈ µ, where µ is a Lebesgue measurable

set so that m(µ) <∞.

Denote by X = L∞(µ) the set of essentially

bounded measurable functions on µ.

Suppose that

(i) f1ζ , . . . , f
n
ζ : µ2 × R −→ R and h ∈ L∞(µ);

(ii) there is k ∈ (0, 12) so that for all x1, x2 ∈ R,

0 ≤ |f1ζ (t, s, x1(s))− f1ζ (t, s, x
2(s))|

≤ k(x1 − x2),

− k(x1 − x2) ≤ |f2ζ (t, s, x1(s))
− f2ζ (t, s, x

2(s))|≤ 0,

...

0 ≤ |fnζ (t, s, x1(s))− fnζ (t, s, x
2(s))|

≤ k(x1 − x2), (5.6)

for all s, t ∈ µ with

k ≤ β2ζ,ζ′ =
1

n4ζ+2
and k ≤ γ2ζ,ζ′ =

1

n2ζ
.

If the conditions (i)− (ii) hold, then (5.5) ad-

mits a unique solution in L∞(µ).

Proof. Let X = L∞(µ) and B(L2(µ)) be the set

of bounded linear mappings on the Hilbert space

L2(µ). We equip X with the metric d : X ×X →
B(L2(µ)) given as follows:

d(f, g) =M|f−g|,

where M|f−g| is the multiplication operator on

L2(µ). It is clear that (X,B(L2(µ)), d) is a

complete C∗-algebra-valued metric space. Define

Tζ : X
n −→ X by

Tζ(x1, . . . , xn)(t)

=

∫
µ
(f1ζ (t, s, x

1(s)) + . . .+ fnζ (t, s, x
n(s)))ds

+ h(t),

for all x1, . . . , xn ∈ X and s, t ∈ µ.

Now, we have

d(Tζ(x1, . . . , xn), Tζ′(y1, . . . , yn))

=M|Tζ(x1,...,xn)−Tζ′ (y1,...,yn)|.
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Using (5.6), we have∣∣∣∣∣Tζ(x1, . . . , xn)(t)− Tζ′(y1, . . . , yn)(t)

∣∣∣∣∣
=

∣∣∣∣∣
∫
µ
f1ζ (t, s, x

1(s)) + . . .+ fnζ (t, s, x
n(s))ds

−
∫
µ
f1ζ (t, s, y

1(s)) + . . .+ fnζ (t, s, y
n(s))ds

∣∣∣∣∣
=

∣∣∣∣∣
∫
µ
(f1ζ (t, s, x

1(s))− f1ζ (t, s, y
1(s)))

+ . . .+ (fnζ (t, s, x
n(s))− fnζ (t, s, y

n(s)))ds

∣∣∣∣∣
≤
∫
µ

∣∣∣∣∣(f1ζ (t, s, x1(s))− f1ζ (t, s, y
1(s)))

+ . . .+ (fnζ (t, s, x
n(s))− fnζ (t, s, y

n(s)))

∣∣∣∣∣ds
≤ k(|x1 − y1|+ . . .+ |xn − yn|)
≤ k(∥ x1 − y1 ∥∞ + . . .+ ∥ xn − yn ∥∞),

for all s, t ∈ µ.

Therefore, for every Λ ∈ L2(µ), we have

∥ Tζ(x1, . . . , xn)(t)− Tζ′(y1, . . . , yn)(t) ∥
=∥M|Tζ(x1,...,xn)(t)−Tζ′ (y1,...,yn)(t)| ∥

= sup
∥Λ∥=1

(M|Tζ(x1,...,xn)(t)−Tζ′ (y1,...,yn)(t)|Λ,Λ)

= sup
∥Λ∥=1

∫
µ
|Tζ(x1, . . . , xn)(t)

− Tζ′(y1, . . . , yn)(t)|Λ(t)Λ(t)dt

≤ sup
∥Λ∥=1

∫
µ
|Λ(t)|2dt.(k(∥ x1 − y1 ∥∞

+ . . .+ ∥ xn − yn ∥∞))

≤ k(∥ x1 − y1 ∥∞ + . . .+ ∥ xn − yn ∥∞)

≤ |γζ,ζ′ |2(∥ x1 − y1 ∥∞ + . . .+ ∥ xn − yn ∥∞)

= γ∗ζ,ζ′(∥ x1 − y1 ∥∞ + . . .+ ∥ xn − yn ∥∞)γζ,ζ′ .

As a result,

d(Tζ(x1, . . . , xn), Tζ′(y1, . . . , yn))

≤ β∗ζ,ζ′ [d(x
1, Tζ(x1, . . . , xn)

+ d(y1, Tζ′(y1, . . . , yn)]βζ,ζ′

+ γ∗ζ,ζ′d(y
1, x1)γζ,ζ′ .

All conditions in Corollary 3 are fulfilled, so there

is a unique solution of (5.5) in L∞(µ).

6 Conclusions

There are many generalizations of metric spaces,

and numerous fixed point results have been ob-

tained. In this paper, we used the α-series for

a sequence of mappings to prove certain n-tuple

fixed point and n-tuple coincidence point results

in C∗-algebra-valued metric spaces. Note that

the α-series is wider than the convergent series.

An example and an application were given to sup-

port our results and to distinguish them from the

other results. Our results extended and general-

ized the relevant results in [5, 7, 10, 12, 14].
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