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Abstract

Integro-differential equations arise in various physical and biological problems. In this paper, a new
iterative technique for solving linear Volterra-Fredholm integro-differential equation (VFIDE) has
been introduced. The method is discussed in details and it is illustrated by solving some numerical
examples. The approximate solution is most easily produced iteratively via the recurrence relation.
Results are compared with the exact solutions, which reveal that new iteration method is very effective
and convenient.
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1 Introduction

I
ntegro-differential equations appear in many

scientific and physical applications such as

glassforming process, nanohydrodynamics, heat

transfer, diffusion process in general, neutron dif-

fusion and biological species coexisting together

with increasing and decreasing rates of gener-

ating, and wind ripple in the desert. In this

study, we consider the following linear Volterra-

Fredholm integro-differential equation [7]
v′(x) = f(x) +

∫ x
0 K1(x, t) v(x) dt+∫ 1

0 K2(x, t) v(x) dt, 0 ≤ x, t < 1,
v(0) = α.

(1.1)
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where v(x) and f(x) are in L2([0, 1)) and K1(x, t)

and K2(x, t) belong to L2([0, 1) × [0, 1)). More-

over K1(x, t), K2(x, t) and f(x) are known and

v(x) is unknown. We assume equation (1.1) has

a unique solution.

In the past years, many powerful techniques

have been developed to find solutions of linear

VFIDE. Rahmani et al. [7] employed the Block

Pulse Functions and their operational matri-

ces for solving linear Volterra-Fredholm integro-

differential equation. In [1], the homotopy analy-

sis method was used to determine solution to lin-

ear integro-differential equation. Homotopy per-

turbation method and finite difference method for

such problem have been proposed by Raftari [6].

Zarebnia and Nikpour utilized Sinc-collocation

method for approximate of the linear Volterra

integro-differential equations with boundary con-

21

http://ijim.srbiau.ac.ir/


22 A. Jafarian, /IJIM Vol. 15, No. 1 (2023) 21-26

ditions in [19]. In 2006 Daftardar-Gejji and Jafari

[5] presented their new iterative method (NIM)

for solving linear and nonlinear functional equa-

tions. Recently, the applications of new iterative

method have appeared in the works of many sci-

entists and researchers [2, 4, 11]. The new it-

erative method is general and can be applied to

solve the linear and nonlinear Volterra-Fredholm

integro-differential equations.

The remaining part of the paper is organized

as follows. In section 2, the NIM is introduced.

In section 3, we extend the application of the

method to construct analytical approximate so-

lution to Volterra-Fredholm integro-differential

equation. Several examples are employed to illus-

trate the advantage, accuracy and computational

efficiency of this approach in section 4. A short

summary are expressed in final.

2 New Iterative Method

Consider the following general functional equa-

tion [5, 12, 13]

v = N(v) + f (2.2)

where N is a nonlinear operator from a Banach

space B → B and f is a known function. We are

looking for a solution v of equation (2.2) having

the series form

v =
∞∑
i=1

vi(t), (2.3)

The nonlinear operator N can be decomposed as

N
(∑n

i=1 vi
)
=

N(v0) +
∞∑
i=1

[
N

(∑i
j=0 vj

)
−N

(∑i−1
j=0 vj

)]
(2.4)

From equation (2.3) and (2.4), equation (2.2) is

equivalent to∑n
i=1 vi =

f +N(v0) +
∞∑
i=1

[
N

(∑i
j=0 vj

)
−N

(∑i−1
j=0 vj

)]
(2.5)

We define the recurrence relation
v0 = f,
v1 = N(v0),
vm+1 = N(v0 + ...+ vm)−N(v0 + ...+ vm−1),

m = 1, 2, . . . .
(2.6)

Then

(v0+. . .+vm+1) = N(v0+. . .+vm), m = 1, 2, . . . .

and
∞∑
i=1

vi = f +N
(∑∞

i=0 vi
)
,

The k-term approximate solution of (2.2) and

(2.3) is given by v =
∑k

i=0 vi.

3 Analysis of the method for
VFIDE

In this section we will use the NIM for VFIDE.

First, we integrate from equation (1.1) in the

interval [0, x]. Therefore, equation (1.1) can be

presented as the following simple form

v(x) = α+
∫ x
0 f(η) dη+

∫ x
0

∫ η
0 K1(η, t) v(η) dtdη+∫ x

0

∫ 1

0
K2(η, t) v(η) dtdη. (3.7)

Now, we extend the technique described in pre-

vious section to solve equation (3.7). Some first

terms of the successive approximation series are

as follows: The k-term approximate solution of

(2.2) and (2.3) is given by

v(x) = v0(x) + v1(x) + . . .+ vk(x).

4 Numerical Experiments

In this section, several examples of linear

Volterra-Fredholm integro-differential equations

are provided to clarify the reliability and effec-

tiveness of the novel technique. For comparison

the approximate solution given by NIM with the

exact solution, we calculate the absolute error for

all of them.
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 v′(x) = 11 + 17x− 2x3 − 3x4 +
∫ x
0 t v(x) dt+

∫ 1
0 (x− t) v(x) dt,

v(0) = 0.

(4.9)

Example 4.1. Consider the following linear

Volterra-Fredholm integro-differential equations

with the exact solution

v(x) = 6x + 12x2 [10].

In this case, we have f(x) = 11+17x−2x3−3x4,

k1(x, t) = t and k2(x, t) = x − t. Following the

algorithm given in previous section, some first

terms of the successive approximation series are

as follows

v0(x) = (x(−6x4 − 5x3 + 85x+ 110))/10,

v1(x) = (x(−9x7 − 10x6 + 357x4 + 770x3 +

3416x− 4723))/840,

v2(x) = −(x(324x10 + 440x9 − 25245x7 −
72600x6 − 676368x4 + 1558590x3+

2002935x− 2150324))/3326400,

...

Hence the series solution of equation (4.9)

is given by

v(x) = (x(−324x10 − 440x9 − 10395x7 +

33000x6 + 94248x4 − 172590x3+

39798825x+ 20037644))/3326400 + . . ..

Table 1 show the absolute errors for differ-

ences between the exact solutions and the

approximate solutions obtained by NIM at some

points.

Example 4.2. We consider the following linear

Fredholm integro-differential equations with the

exact solution

v(x) = e3x [1]. v′(x) = 3ex − 1
3(2e

3 + 1)x+
∫ 1
0 3xt v(x) dt,

v(0) = 1.
(4.10)

In this case, we have f(x) = 3ex − 1
3(2e

3 + 1)x,

k1(x, t) = 0 and k2(x, t) = 3xt. By the al-

gorithm given in previous section, we can see

that, some first terms of NIM series are as follows

v0(x) = e3x − (1043x2)/152,

v1(x) = x2(e3/3− 2729/1134),

v2(x) = x2((11e3)/24 − 996/301) − x2(e3/3 −
2729/1134),

...

Hence the series solution of equation (4.10)

is given by

v(x) = e3x +(11x2e3)/24− (2858x2)/281+ . . ..

Table 2 displays the values of absolute er-

rors at some x’s.

Example 4.3. Let us consider the following lin-

ear Volterra integro-differential equations with the

exact solution

v(x) = sin(x) [7, 14].
v′(x) = 1−

∫ x
0 v(x) dt,

v(0) = 0.
(4.11)

In this case, we have f(x) = 1, k1(x, t) = −1

and k2(x, t) = 0. Following the algorithm given

in previous section, some first terms of the

successive approximation series are as follows

v0(x) = x,
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Table 1: Absolute errors between the exact solution and approximate solution

x Absolute Error for k = 10 Absolute Error for k = 16

0.1 1.1223e-010 1.5700e-016
0.2 2.1402e-010 2.5896e-016
0.3 3.0662e-010 2.9601e-016
0.4 3.9125e-010 2.5477e-016
0.5 4.6818e-010 1.2151e-016
0.6 5.3555e-010 1.1421e-016
0.7 5.8813e-010 4.5516e-016
0.8 6.1612e-010 8.9176e-016
0.9 6.0427e-010 1.3971e-015
1.0 5.3186e-010 1.9226e-015

Table 2: Absolute errors between the exact solution and approximate solution

x Absolute Error for k = 30 Absolute Error for k = 36

0.1 1.1400e-014 2.6584e-017
0.2 4.5601e-014 1.0634e-016
0.3 1.0260e-013 2.3926e-016
0.4 1.8240e-013 4.2535e-016
0.5 2.8500e-013 6.6461e-016
0.6 4.1041e-013 9.5703e-016
0.7 5.5861e-013 1.3026e-015
0.8 7.2961e-013 1.7014e-015
0.9 9.2341e-013 2.1533e-015
1.0 1.1400e-012 2.6584e-015

v1(x) = −x3/6,

v2(x) = x5/120,

v3(x) = −x7/5040,

v4(x) = x9/362880,

...

Hence the series solution of equation (4.11)

is given by

v(x) = x − x3/6 + x5/120 − x7/5040 +

x9/362880− x11/39916800+

x13/6227020800− . . ..

The solution v(x) in a closed form is

v(x) = sin(x), which is the exact solution.

The behavior of the exact and approximate

solutions are illustrated in figure 1.

5 Conclusion

In this letter, we used an application of new itera-

tive method for solving linear Volterra-Fredholm

integro-differential equation. From the given nu-

merical examples, tables 1-2 and figure 1, we con-

clude that the method is accurate and efficient to

implement for solving linear Volterra-Fredholm

integro-differential equation. The approximate

solutions obtained by NIM are compared with ex-

act solutions.
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v
˙0
(x
)=

α
+

∫ x 0
f
(η
)
d
η
,

v 1
(x
)
=

∫ x 0

∫ η 0
K

1
(η
,t
)
v 0
(η
)
d
td
η
+

∫ x 0

∫ 1 0
K

2
(η
,t
)
v 0
(η
)
d
td
η
,

v 2
(x
)
=

( ∫ x 0

∫ η 0
K

1
(η
,t
)
( v 0

(η
)
+

v 1
(η
)) d

td
η
+

∫ x 0

∫ 1 0
K

2
(η
,t
)
( v 0

(η
)
+

v 1
(η
)) d

td
η
) −

( ∫ x 0

∫ η 0
K

1
(η
,t
)v

0
(η
)
d
td
η
+

∫ x 0

∫ 1 0
K

2
(η
,t
)v

0
(η
)
d
td
η
)

. . . y m
+
1
(x
)
=

( ∫ x 0

∫ η 0
K

1
(η
,t
)
( ∑ m i=

1
v i
(η
)) d

td
η
+

∫ x 0

∫ 1 0
K

2
(η
,t
)
( ∑ m i=

1
v i
(η
)) d

td
η
) −

( ∫ x 0

∫ η 0
K

1
(η
,t
)
( ∑ m

−
1

i=
1

v i
(η
)) d

td
η
+

∫ x 0

∫ 1 0
K

2
(η
,t
)
( ∑ m

−
1

i=
1

v i
(η
)) d

td
η
) (3

.8
)

Figure 1: Comparison between exact re-
sults and the 5th-order NIM approximate re-
sults for Example 4.3.
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