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Abstract

In this paper, we present some characterizations of prime and maximal filters. Moreover, we introduce
∩-irreducible filters of an equality algebra, investigate some results about them and relations between
maximal, prime, ∨-irreducible and ∩-irreducible filters in equality algebra. Also, we introduce spec-
trum of an equality algebra and prove that the spectrum endowed with Zariski topology is a compact
T0 topological space and maximal spectrum (as a subspace of that) is a compact T1 topological space.
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1 Introduction

A
more general algebraic structure in logic with-

out contractions is residuated lattices [23]

and Ono [19] considered them as an algebraic

structure of substructural logics. Among log-

ical algebras, residuated lattices have received

the most attention due to their interesting prop-

erties and including two important sub-classes:

BL-algebras and MV-algebras. Fuzzy type the-

ory was developed as a higher order fuzzy logic.

Novák and De Beats generalized residuated lat-

tices and proposed EQ-algebra [18]. Recently,

Ganji Saffar defined the concepts of fuzzy n-fold

obstinate (pre)filter and maximal fuzzy (pre)filter

of EQ-algebras and discussed the properties of

them [8]. Because by replacing the product op-

∗Corresponding author. s.niazian@iautmu.ac.ir,
Tel:+98(21)26602642.

†Faculty of Medicine, Tehran Medical Sciences, Islamic
Azad University, Tehran, Iran.

eration with a lesser or equal operation, we get

an EQ-algebra again, Jenei [11] introduced a new

algebra, called equality algebra. Since equality

algebra can be a good alternative to possible al-

gebraic semantics for fuzzy type theory, the study

of equality algebra is very valuable.

In [5], it was proved that equality algebras and

BCK-meet semilattices (under distributivity con-

dition) correspond to each other. Because dif-

ferent filters have natural expressions as diverse

sets of provable formulas, filter theory has a sig-

nificant impact on the study of logical algebras.

For this, in [1], Borzooei et al. introduced some

types of filters in equality algebras. For more re-

cent studies about equality algebras, you can see

[2, 6, 10, 17, 20].

Algebra studies the property of operations and

algorithmic computations of a space, while topol-

ogy provide a framework to understanding the

geometric properties of it.

In recent years, the study of topological con-
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cepts on logical algebraic structures has received

much attention. To read more about the com-

monalities between topology and logical algebras,

you can refer to sources such as: In [9], G.

Georgescu et al. gave topological characteriza-

tions to the lifting property for Boolean elements

and several properties related to it. In [14], every

MV-algebra was equipped with a filter topology

which that became a topological MV-algebra. In

[7], Foruzesh et al. introduced the inverse topol-

ogy on the set of all minimal prime ideals of an

MV-algebra (namely Min(A) and showed that

Min(A), with the inverse topology is a compact

space, Hausdorff, T0-space and T1-space. (for

more details of these topological algebras, see

[4, 13, 16, 22, 24, 25].

In this paper, we characterize maximal and

prime filters. Furthermore, we bring forward ∩-
irreducible filters of an equality algebra and in-

vestigate basic properties of them. In [21], three

kinds of prime filters of residuated lattices are de-

fined and their properties are investigated. Simi-

larly, we give interesting results about the relation

between prime, ∨-irreducible and ∩-irreducible
filters of an equality algebra.

The paper is organized as: In Section 2, we gather

the basic notions and results on topology and

equality algebras, used in the squeal. In Sec-

tion 3, we study maximal, prime, ∨-irreducible
and ∩-irreducible filters. Then we get some in-

teresting results about them and investigate rela-

tion between them. In Section 4, we introduce

Zariski topology on equality algebra and show

that Spec() equipped with Zariski topology is a

compact T0-space. Moreover, maximal spectrum

of an equality algebra as a subspace of that is a

compact T1-space.

2 Preliminaries

In this section, we have compiled some basic

concepts about topology and equality algebra

that will be used in later sections. We only re-

mind some definitions and results. More concepts

about topology can be found in [15].

Recall that we say (A, τ) is a topological space,

where τ is a family of subsets of the set A satisfy-

ing: (i) A, ∅ ∈ τ , (ii) the intersection of any finite

members of τ is in it, and (iii) the any union of

members of τ is in it. Any member of τ is called

an open subset of A, and A \ U , is a closed set

which is the complement of an open set U . For

XSA, closure of X is the intersection of all closed

sets containing X and denoted by Cl(X). Also,

Cl(x) =
∩

{V SA| V is closed and x ∈ V }.

A subfamily {Uα}α∈I of τ is called a base of τ if

for every x ∈ U ∈ τ there exists an α ∈ I such

that x ∈ UαSU . A collection {Uα}α∈I of subsets

of A is said to be an open covering if its elements

are open subsets of A and the union of elements

of it is equal to A. The set XSA is called com-

pact if every open covering of X contains a finite

sub-collection that also covers X. A topological

space (A, τ) is compact space if each open cover-

ing of A is reducible to a finite one. Suppose the

topological space (A, τ), then

T0: for any x, y ∈ A and x ̸= y, there exists an

open set in A that contains x or y, but not both

of them.

T1: for all x, y ∈ A and x ̸= y, there exist open

sets U1 and U2 in A such that x ∈ U1 and y ∈ U2

but y /∈ U1 and x /∈ U2.

T2: for all x, y ∈ A and x ̸= y, there exist two dis-

tinct open sets U1 and U2 in A such that x ∈ U1,

y ∈ U2 and U1 ∩ U2 = ∅.
A topological space satisfying Ti is called Ti-

space, for each i = 0, 1, 2. A T2-space is also called

a Hausdorff space. A topological space (A, τ) is

said to be disconnected if it is the union of two dis-

joint non-empty open sets. Otherwise, A is said

to be connected. A subset of a topological space

is said to be connected if it is connected under its

subspace topology.

Definition 2.1. [11] Algebraic structure (;∧,∼
, 1) of type (2, 2, 0) is called an equality algebra, if

it satisfies the following conditions, for all , ,∈,
(E1) (,∧, 1) is a commutative idempotent inte-

gral monoid,

(E2) ∼=∼,

(E3) ∼= 1,

(E4) ∼ 1 =,

(E5) ≤≤ implies ∼≤∼ and ∼≤∼,
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(E6) ∼≤ (∧) ∼ (∧),
(E7) ∼≤ (∼) ∼ (∼).

The operation ∧ is called meet and ∼ is an equal-

ity operation. On the equality algebra, we write

≤ if and only if ∧ =. Then the relation ” ≤ ” is

a partial order on . Also, we define the operation

”↠” on as: ↠=∼ (∧).

Note: Equality algebra (;∧,∼, 1) is denoted

by unless otherwise state.

If there exists an element 0 ∈ such that 0 ≤ ,

for every ∈, then is called bounded. In a bounded

equality algebra , we define the negation opera-

tion ”− ” by: − =↠ 0 =∼ 0, for all ∈. If 1 is the

unique upper bound of the set {↠, ↠}, for ev-

ery ,∈, then is called prelinear. A lattice equality

algebra is an equality algebra which is a lattice.

Proposition 2.1. [11, 26] The following condi-

tions hold, for any , ,∈:
(i) ↠= 1 if and only if ≤,

(ii) 1 ↠=, ↠ 1 = 1,

and ↠= 1,

(iii) ≤ ↠,

(iv) ≤ (↠) ↠,

(v) ↠ (↠) =↠ (↠),

(vi) ≤ implies ↠≤↠
and ↠≤ ↠,

(vii) ↠=↠ (∧),
(viii) If is a lattice, then

= (∨).

Theorem 2.1. [26] If is prelinear, then it is a

distributive lattice.

Definition 2.2. [12] Let be a non-empty subset

of . Then is called a filter of , if for all ,∈, we
have

(i) ∈ and ≤ imply ∈,
(ii) ∈ and ∼∈ imply ∈.

Proposition 2.2. [5, 12] Let ∅ ̸= S. Then is

a filter of if and only if, for all ,∈, 1 ∈, and if ∈
and ↠∈, then ∈.

Clearly, 1 ∈, for any filter of . A filter of is

called a proper filter of if ̸=. Clearly, a filter of

bounded equality algebra is proper if and only if

it is not containing 0. The set of all filters of is

denoted by F(). In addition, is called simple if

F() = {{1}, }. Let ∈ F(). Define the relation θ

on by

(, ) ∈ θ if and only if {↠,↠}S.

Theorem 2.2. [12] Let θ, ψ ∈ Con() and ∈ F().

Then

(i) θ ∈ Con(),
(ii) [1]θ ∈ F(), where [1]θ = {| (1) ∈ θ},
(iii) if [1]θ = [1]ψ, then θ = ψ,

(iv) θ[1]θ = θ and [1]θ =.

Let = {[]| ∈} where [] = {∈ | (, ) ∈ θ}. Then

define the binary relation ≤ on by:

[] ≤ [] if and only if ↠∈,

which is an order relation on . For any ,∈, define

[] ∼ [] = [∼] and [] ∧ [] = [∧].

Then ( ,∼,∧, 1 ) is called a quotient equality al-

gebra and denoted by , where 1 = [1]θ =.

Definition 2.3. [17] Let ∅ ̸=⊆. The smallest

filter of containing is called the generated filter

by in which is denoted by ⟨⟩. Indeed, ⟨⟩ = ∩
S∈F ()

.

Proposition 2.3. [17] Let ∅ ̸=⊆. Then

⟨⟩ = {∈| 1 ↠ (2 ↠ (... ↠ (n ↠)...)) =

1, for some n ∈ N and 1, ..., n ∈}.
In particular, for any element , we have

⟨= {∈|n= 1, for some n ∈ N}, where ↠0= and

↠n=↠ (↠n−1). If ∈ F() and \, then
⟨∪{⟩ = {∈|n∈, for some n ∈ N}. If ,∈ F(), then

⟨∪⟩ = {∈| g ↠∈, for some g ∈} = {∈| f ↠∈
, for some f ∈}.

Remark 2.1. The algebraic structure

(F(),∧,∨, {1}, ) is a bounded complete lat-

tice, where, for every ,∈ F(),

∧ = ∩, ∨ = ⟨∪⟩.

Theorem 2.3. [17] Let be lattice, ,S, ∈ F()

and ∈
¯
. Then

(i) if S, then ⟨⟩S⟨⟩,
(ii) ⟨∪{⟩ ∩ ⟨∪{}

¯
⟩ = ⟨∪{}

¯
⟩.

(iii) ⟨⟩
¯
= ⟨∩⟨⟩

¯
.
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3 Results on prime and maxi-
mal filters

In some logical algebras such as BL-algebras and

MV-algebras, prime filter defined as ∨-irreducible
filter and easily proved that it is an ∩-irreducible
filter, too. In addition, maximal spectrum is al-

ways a subset of prime spectrum. But in some

others, such as residuated lattices, prime, ∨-
irreducible and ∩-irreducible filters are different

(and are equivalent under certain conditions),

and it is only with ”De Morgan,s condition” that

a maximal filter becomes a prime filter.

In this section, we want to examine these three

types of prime filters and maximal filters on and

then find the relationship between them so that

we can make the right decision about which type

of filter to consider as the spectrum of an equality

algebra.

Definition 3.1. [1, 17] Suppose that ∈ F() is a

proper filter. Then

(i) is a maximal filter of , if it is not included in

any other proper filter of . The set of all maximal

filters of is denoted by Max().

(ii) is a prime filter of , if ↠∈ or ↠∈, for all

,∈. The set of all prime filters of is denoted by

Prime().
(iii) Suppose is a lattice equality algebra. Then

we say is a ∨−irreducible filter of , if ∨ ∈ implies

∈ or ∈, for all ,∈.

Proposition 3.1. For any proper filter of ,

there exists a maximal filter of that contains .

Proof. Zorn,s Lemma states that a partially or-

dered set containing upper bounds for every chain

(that is, every totally ordered subset) necessarily

contains at least one maximal element. Consider

Σ = {∈ F()| ̸=, S}.

Since ∈ Σ, then Σ ̸= ∅. Let {i}i∈I be a chain in

partially ordered set (Σ,S), where iSi+1 for any

i ∈ I. Put = ∪
i∈Ii

. Then it is easy to see that

∈ F() and S ∪
i∈Ii

=. If =, then 1 ∈ ∪
i∈Ii

and so

there exists i0 ∈ I such that 1 ∈i0 . Thus i0 =

which is a contradiction. Hence, ̸= and so ∈ Σ.

By the simple way, we can see that is a maximal

element of Σ. Hence, using Zorn,s Lemma, there

exists a maximal element ∈ Σ which is a maximal

filter of and S.

Remark 3.1. Suppose is a proper filter of .

Then each filter of quotient equality algebra has

the form , where ∈ F() and S. Indeed,

F( ) = { | S ∈ F()}.

Theorem 3.1. Let ∈ F() be proper and ∈ \.
Then the following statements are equivalent:

(i) ∈ Max(),

(ii) ⟨∪{}⟩ =,

(iii) is a simple equality algebra.

Proof. (i) ⇒ (ii) Let ∈ Max() and ∈ \. Then by

Proposition 2.3, ⊊ ⟨∪{}⟩S. Since ∈ Max(), we

have ⟨∪{}⟩ =.

(ii) ⇒ (i) Let SS and ̸=. Then there is ∈
such that /∈ and so by (ii), ⟨∪{}⟩ =. Moreover,

since ∪{}S, we have = ⟨∪{}⟩S. Hence, = and

∈ Max().

(i) ⇒ (iii) Let ∈ Max() and be a proper filter

of . Then by Remark 3.1, we get SS where, ̸= ,

we get ̸=. Hence, since ∈ Max(), we have = and

so = = 1 =. Therefore, F( ) = {, } and is a

simple equality algebra.

(iii) ⇒ (i) Consider is simple and SS. If ̸=, then

1 ≠= ∈ F( ). Thus = and so =. Therefore,

∈ Max().

Proposition 3.2. Let be bounded. Then ∈
Max() if and only if for all ∈ \, there is n ∈ N
such that ↠n 0 ∈.

Proof. Suppose ∈ Max() and ∈ \. Then by The-

orem 3.1, ⟨∪{}⟩ =. Thus 0 ∈ ⟨∪{}⟩. Hence,

by Proposition 2.3, there exists n ∈ N such that

↠n 0 ∈.
Conversely, let for each ∈ \, as a consequence

↠n 0 ∈, for some n ∈ N. Then by Proposition

2.3, 0 ∈ ⟨∪{}⟩ and so ⟨∪{}⟩ =. Therefore, by

Theorem 3.1, ∈ Max().

Theorem 3.2. Suppose ∈ F(). Then ∈
Prime() if and only if is a chain.
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Proof. Let ∈ Prime() and [], [] ∈ /. Since is

prime, we have ↠∈ or ↠∈. So [] ≤ [] or [] ≤ [].

Therefore, is a chain. Conversely, let be a chain

and ,∈. Since [] ≤ [] or [] ≤ [], we get ↠∈ or ↠∈
and so ∈ Prime().

Corollary 3.1. Each maximal filter of is a

prime filter of . Indeed, Max()SPrime().

Proof. Let ∈ Max(). Then by Theorem 3.1, is

simple. Hence is a chain and by Theorem 3.2,

we get ∈ Prime().

Theorem 3.3. If ∈ Prime() and A = {∈
F()| S and is proper}, then (A,S) is linearly

ordered.

Proof. Let ,∈ A such that ⊈ and ⊈. Thus there

are a ∈ \ and b ∈ \. Since is prime, we have a↠
b ∈ or b↠ a ∈. If a↠ b ∈ S, then since a ∈ and

∈ F(), we obtain b ∈, which is a contradiction.

Similarly, if b ↠ a ∈ S, then a ∈, which is a

contradiction, too. Thus S or S. Therefore, A is

a chain.

Corollary 3.2. For any ∈ Prime(), there is a

unique maximal filter of that contains .

Proof. By Proposition 3.1, there exists at least

one maximal filter of that contains . By the con-

trary, let 1,2 ∈ Max() such that S1 and S2. Then

by Theorem 3.3, 1,2 ∈ A and they are compara-

ble. Hence, 1S2 or 2S1 which are contradictions

with 1,2 are maximal filters of . Therefore, maxi-

mal filter of that contains is unique.

Theorem 3.4. Let ,∈ F() and S. Then

(i) if ∈ Prime(), then ∈ Prime(), too.
(ii) If {1} ∈ Prime(), then ∈ Prime(), for any

∈ F().

(iii) If {1} ∈ Prime(), then is chain.

Proof. (i) It is straightforward.

(ii) Since any filter of contains {1}, by (i) the

proof is easy.

(iii) Suppose {1} ∈ Prime() and ,∈. Then we

have ↠= 1 or ↠= 1. Hence ≤ or ≤. Therefore,

is chain.

Theorem 3.5. Let be a lattice. If ∈ Prime(),
then is a ∨-irreducible filter of .

Proof. Suppose ∈ Prime() and ∈
¯
. By definition

of prime filter, we get ∈
¯

or ↠̄. Let ∈
¯
. Also,

by Proposition 2.1(viii), =
¯
()
¯̄
.Since ,

¯
∈
¯
and ∈ F(),

then ∈
¯
. Similarly, if

¯
, then . Hence, is a ∨-

irreducible filter of .

Theorem 3.6. Let be prelinear. If is a ∨-
irreducible filter of , then ∈ Prime().

Proof. Consider is prelinear. Then by Theorem

2.1, is a lattice and for every ,∈, () ∨ () = 1 ∈.
Thus by definition of ∨-irreducible, we get ∈ or

∈. Hence, ∈ Prime() is a prime filter of .

Next, we get that under which conditions {1}
is a ∨-irreducible filter of . For this, we define

subdirectly irreducible equality algebra.

Remark 3.2. There is a one-one corresponding

between Con() and F(). It is enough to define the

map ϕ : Con() −→ F() as θ 7 −→ [1]θ. Then by

Theorem 2.2(iii), we get ϕ is well-defined and one-

one. If ∈ F(), then θ ∈ Con() and by Theorem

2.2(iv), we have ϕ(θ) = [1]θ =. So ϕ is onto.

Definition 3.2. [3] An algebraic structure A is

called subdirectly irreducible if and only if A

is trivial or there is a minimum congruence in

Con(A) \ {∆}, where ∆ = {(, ) ∈ ×| ∈}.

Lemma 3.1. Let ,∈ F() and θ, ψ ∈ Con().
Then

(i) if S, then θSθ,
(ii) if θSψ, then [1]θS[1]ψ,
(iii) θ = ∆ if and only if [1]θ = {1},
(iv) = {1} if and only if θ = ∆.

Proof. Proofs of (i) and (ii) are straightforward.

(iii) If θ = ∆, then [1]θ = [1]∆ = {x ∈ | (x, 1) ∈
∆} = {1}. Conversely, if [1]θ = {1}, then by The-

orem 2.2(iv), we obtain θ = θ[1]θ = θ{1}, where

θ{1} = {(x, y) ∈ ×| xy = 1 = yx}
= {(x, y) ∈ ×| x = y} = ∆.

(iv) Let = {1}. Then θ = θ{1} = ∆. Conversely,

if θ = ∆, then by Theorem 2.2(iv), we get =

[1]θ = [1]∆ = {1}.

Lemma 3.2. Let θ ∈ Con(). Then θ is a mini-

mum element of Con() \ {∆} if and only if [1]θ is

a minimum element of (F() \ {1};S).
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Proof. Let θ be a minimum element of Con()\{∆}
and ∈ F() \ {1} be arbitrary. Then by Lemma

3.1(iv), we have θ ∈ Con() \ {∆} and so θSθ.
Hence, by Lemma 3.1(ii) and Theorem 2.2(iv),

we get [1]θS[1]θ =. Therefore, [1]θ is minimum

in F() \ {1}.

Conversely, let [1]θ be minimum in F()\{1} and
ψ ∈ Con() \ {∆} be arbitrary. Then by Lemma

3.1(iii), [1]ψ ∈ F() \ {1} and so [1]θS[1]ψ. Hence,
by Lemma 3.1(i) and Theorem 2.2 (iv) we get

θ = θ[1]θSθ[1]ψ = ψ.

Therefore, θ is a minimum element of Con()\{∆}.

Theorem 3.7. Equality algebra is subdirectly

irreducible if and only if there exists ∈ F() \ {1}
such that for any 1 ̸=∈ such that S⟨⟩.

Proof. Consider is subdirectly irreducible. Then

there is a minimum congruence as θ ∈ Con() \∆.

Suppose := [1]θ. From Lemma 3.2, we get [1]θ =

is a minimum element of F() \ {1}. Thus for any
1 ̸=∈, we have S⟨⟩.
Conversely, let ̸= {1} be a filter of such that

S⟨⟩, for all 1 ̸=∈. It is easy to see that is a

minimum element of F() \ {1}. Now, take θ :=

θ. By Theorem 2.2(iv), we have [1]θ = and by

Lemma 3.2 we get θ = θ is a minimum congruence

relation in Con() \∆. Therefore, is a subdirectly

irreducible equality algebra.

Theorem 3.8. If lattice equality algebra is sub-

directly irreducible, then {1} is a ∨-irreducible fil-

ter of .

Proof. Suppose is subdirectly irreducible with

θ as the minimum element of Con() \ ∆ and

{1} is not a ∨-irreducible filter of . Thus there

exist ∈
¯

such that =
¯
1 and 1 ̸=

¯
.ByLemma3.2,

[1]˙θ is the minimum filter of F() \ {1} and since

⟨̸= {1} ̸= ⟨⟩
¯
, we get [1]θS⟨∩⟨⟩

¯
. So by Theorem

2.3(iii), [1]θS⟨⟩
¯
= ⟨1⟩ = {1}. Hence [1]θ = {1},

which is a contradiction. Therefore, {1} is a ∨-
irreducible filter of .

Corollary 3.3. If is a simple lattice equality

algebra, then {1} is ∨-irreducible filter of .

Proof. Let be a simple lattice equality algebra.

Then F() = {{1}, }. If {1} is not a ∨-irreducible
filter of , then there are ∈

¯
such that =

¯
1 and 1 ̸=

¯
.Since ⟨̸= {1} ̸= ⟨⟩

¯
, we get ⟨== ⟨⟩

¯
. Thus by

Theorem 2.3(iii), we have {1} = ⟨⟩
¯
= ⟨∩⟨⟩

¯
=,

which is a contradiction. Therefore, {1} is a ∨-
irreducible filter of .

In the following, we introduce new type of filter

on equality algebras which is called ∩-irreducible.
Then we give some properties and investigate

relations between maximal, prime, ∨-irreducible
and ∩-irreducible filters of an equality algebra.

Definition 3.3. Suppose ∈ F() is proper. Then

is called an ∩-irreducible filter of if for every

proper filters ,∈ F(), = ∩ implies = or =.

Example 3.1. Let E = {0, ,
¯
1} be a set by fol-

lowing Hasse diagram. Define the operation ∼ on

as follows:

Then (E,∧,→, 1) is an equality algebra.

Clearly, = {1} ∈ F(). Since there are not two

proper filters 1, 2 of such that = 1 ∩ 2, we get

is an ∩-irreducible filter. Also, = {1} is not ∩-
irreducible. Since =1 ∩2, where 1 = {1} and

2 = {,
¯
1} but 1 ̸= ̸=2.

Theorem 3.9. (i) Any prime filter of is an ∩-
irreducible filter of .

(ii) If is a lattice, then ∩-irreducible and ∨-
irreducible filters of are coincide.
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Proof. (i) Let LF ∈ Prime(LE), LF = LF1 ∩
LF2 and LF2 ̸= LF ̸=1. Thus there exist

∈ LF1 \ LF and ∈ LF2 \ LF . From LF is prime,

we obtain ∈ LF or ∈ LF . If ∈ LFS1, then since

∈ LF1 and LF1 ∈ F(LE), we get ∈ LF1. Thus

∈ LF1∩LF2 = LF , which is a contradiction. Sim-

ilarly, whereas ∈ LF , we get ∈ LF1 ∩LF2 = LF ,
which is a contradiction. Afterwards, LF = LF1

or LF = LF2. Hence, LF is an ∩-irreducible fil-

ter of .

(ii) Suppose LF is an ∩-irreducible filter of LE
and ,∈ LE. If ∨ ∈ LF , then by Theorem 2.3(ii)

LF = ⟨LF ∪ {}⟩ ∩ ⟨LF ∪ {}⟩. Since is ∩-
irreducible, we get = ⟨∪{}⟩ or = ⟨∪{}⟩ and so

∈ LF or ∈ LF . Hence LF is a ∨-irreducible fil-

ter of LE .
Conversely, let LF be a ∨-irreducible filter of LE
and LF = LG∩. If ̸= and ̸=, then there exist

∈ \ and ∈ LH \ LF . Since ,≤ ∨ and ,∈ F(), we

obtain ∨ ∈ ∩ =. From is a ∨-irreducible filter of

LE , we conclude ∈ LF or ∈ LF , which is a con-

tradiction. Therefore, LF = LG or LF = LH
and so LF is an ∩-irreducible filter of LE .

The following example shows that the converse

of Theorem 3.9(i) is not true in general.

Example 3.2. Consider = {0, ,
¯
,̧,.1} with the fol-

lowing Hasse diagram. Define the operation ∼ on

as follows:

Then (LE,∧,∼, 1) is an equality algebra

and F(LE) = {{1}, LE}. Clearly, = {1}

is an ∩-irreducible filter of LE . But LF is

not a prime filter of LE , because =
¯
/∈.LF and

¯
¯ . /∈ LF .

Theorem 3.10. Suppose LE is prelinear and

LF ∈ F(LE). If LF is an ∩-irreducible filter

of LE, then it is a prime filter, too.

Proof. Since LE is prelinear, by Theorem 2.1, we

obtain LE is a lattice. Hence by Theorems 3.9(ii)

and 3.6, the proof is clear .

Theorem 3.11. (i) Any maximal filter of LE is

an ∩-irreducible filter of LE.
(ii) Any maximal filter of a lattice equality algebra

is a ∨-irreducible.

Proof. (i) By Corollary 3.1, we have

Max(LE)SPrime(LE). Thus by Theorem

3.9(i), the proof is clear.

(ii) By (i) and Theorem 3.9(ii), the proof is

complete.

Remark 3.3. When LE is a lattice, ∩-
irreducible and ∨-irreducible filters are identical

and any prime filter is a ∨-irreducible filter of

LE . Whenever, is prelinear, then ∨-irreducible
and ∩-irreducible filters are coincide.

4 Zariski topology on equality
algebras

Although Zariski (spectrum) topology has al-

ready been defined on algebras such as BL-

algebras and MV-algebras, here we want to ex-

amine this topology on equality algebras, which

is more comprehensive than the previous ones.

In the previous section, we examined the types

of prime filters so that we can make the right

choice for the spectrum set and introduce the

spectrum topology on equal algebra. According

to Remark 3.3, it seems that it is better to equate

the spectrum with the set of all ∩-irreducible fil-

ters. But because we need a lattice structure to

prove the topological properties in Propositions

4.1(vii), 4.3(vii) and so Theorem 4.2, we have to

equate the lattice condition to equality algebra

and consider the set of all ∨-irreducible filters as

its spectrum.
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In this section, we introduce Zariski topology on

equality algebra and show that spectrum of an

equality algebra (the set of all ∨-irreducible fil-

ters of LE , which is denoted by Spec(LE)) with

Zariski topology is a compact T0-space. More-

over, maximal spectrum of an equality algebra

as a subspace of spectrum is a compact T1-space.

Also, we prove that under which conditions (max-

imal) spectrum will be a Hausdorff space.

Note: From now on, let LE be a lattice equal-

ity algebra unless otherwise state.

Theorem 4.1. [17] Let ∈ F(). Then for each ,

there is ∈ Spec() such that S and .

Definition 4.1. Let LASLE. Then the set of

all ∨-irreducible filters of LE containing LA is

denoted by V (LA) = {LP ∈ Spec(LE)| SLP}.
For any LE, we denote V ({) by V ( for short and

V (= {LP ∈ Spec(LE)| LP}.

Example 4.1. Let LE =

{0, n, a, b, c, d, e, f,m, 1} with the following

Hasse diagram.

Define the operation as fig ??.

Then (LE,∼,∧, 1) is an equality algebra and

Spec(LE) = {{1}︸︷︷︸
LP1

, {f,m, 1}︸ ︷︷ ︸
LP2

, {a, c, e,m, 1}︸ ︷︷ ︸
LP3

}. If

LA = {e,m}, then V (LA) = {LP3}. Also,

V (b) = ∅ and V (m) = {LP2,LP3}.

Proposition 4.1. Let LA,LBSE and

LF,LG ∈ F(LE). Then

(i) V (LA) = Spec(LE) if and only if LA = ∅ or

LA = {1};

Figure 1

(ii) if LASLB, then V (LB)SV (LA);
(iii) if LE is bounded, then V (0) = ∅;
(iv) V (LA) = ∅ if and only if ⟨LA⟩ = E.

Particularly, V (LE) = ∅.
(v) V (LA) = V (⟨LA⟩);
(vi) V (

∪
i∈∆ LAi) =

∩
i∈∆ V (LAi);

(vii) V (⟨LA⟩ ∩ ⟨LB⟩) = V (LA) ∪ V (LB);

(viii) V (LA) = V (LB) if and only if

⟨LA⟩ = ⟨LB⟩;
(ix) V (LF ) = V () if and only if LF = LG.
(x) if LA, then V (LA)SV (.

Proof. (i) Let V (LA) = Spec(LE), LA ̸= ∅
and LA ̸= {1}. Then there exists 1 ̸= LA.
By Theorem 4.1(i), there is LP ∈ Spec(LE)
such that LP . Afterwards, LA ⊈ LP and so

LP /∈ V (LA) = Spec(LE) which is a contra-

diction. Hence LA = ∅ or LA = {1}. Con-

versely, V ({1}) = {LP ∈ Spec(LE)| {1}SLP} =

Spec(LE) and it is clear that V (∅) = Spec(LE).
(ii) The proof is straightforward;

(iii) Let LE be bounded. We know LF ∈ F(LE)
is proper if and only if 0 /∈ LF . So
V ({0}) = {LP ∈ Spec(LE)| {0}SLP} = ∅.
(iv) Let V (LA) = ∅ and ⟨LA⟩ ̸= LE. From

Proposition 3.1, Corollary 3.1 and Theorem 3.5,

respectively, we get there is LP ∈ Spec(LE) such
that LAS⟨LA⟩SLP . So LP ∈ V (LA) = ∅, which
is a contradiction. Hence, ⟨LA⟩ is not proper and
⟨LA⟩ = E. Conversely, if ⟨LA⟩ = E, then there

is no proper filter of LE containing E = ⟨LA⟩. So
by (ii) we obtain that V (LA) = V (⟨LA⟩) = ∅.
(v) Let LP ∈ V (LA). Then LASLP and since

⟨LA⟩ is the smallest filter of LE containing LA,
we have ⟨LA⟩SLP . Thus LP ∈ V (⟨LA⟩) and so
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V (LA)SV (⟨LA⟩). Since LAS⟨LA⟩, by (ii), the

converse holds. Therefore, V (LA) = V (⟨LA⟩).
(vi) Since for each i ∈ ∆, LAiS ∪

i∈∆

LAi,

by (ii) we get V ( ∪
i∈∆

LAi)SV (LAi). Hence,

V ( ∪
i∈∆

LAi)S ∩
i∈∆

V (LAi). Conversely, if LP ∈

∩
i∈∆

V (LAi), then for any i ∈ ∆, LP ∈ V (LAi)

and so LAiSLP . Thus ∪
i∈∆

LAiSLP and so LP ∈

V ( ∪
i∈∆

LAi).

(vii) We know ⟨LA⟩ ∩ ⟨LB⟩S⟨LA⟩, ⟨LB⟩. From

(ii) and (v) we obtain V (LA)∪V (LB)SV (⟨LA⟩∩
⟨LB⟩). Conversely, let LP ∈ V (⟨LA⟩ ∩ ⟨LB⟩),
LP /∈ V (LA) and LP /∈ V (LB). Then ⟨LA⟩ ∩
⟨LB⟩SLP , LA ⊈ LP and LB ⊈ LP . Thus there
are ∈ LA and ∈ LB such that , /∈ LP . Since ,≤ ∨
and ⟨LA⟩, ⟨⟩ are filters of , we get ∨ ∈ ⟨LA⟩∩⟨⟩S.
Thus ∨ ∈ and , /∈ LP , which is a contradiction

with ∈ Spec(). Hence ∈ V (LA) or ∈ V () and

so V (⟨⟩ ∩ ⟨LB⟩)SV (LA) ∪ V (LB). Therefore,

V (⟨LA⟩ ∩ ⟨LB⟩) = V (LA) ∪ V (LB).

(viii) By (v), we have

V (LA) = V (⟨LA⟩) = {LP ∈ Spec(LE)| ⟨LA⟩SLP}
= {LP ∈ Spec(LE)| ⟨LB⟩SLP}
= V (⟨LB⟩) = V (LB).

(ix) By (viii), the proof is clear.

(x) For any LA, by (vi), we get

V (LA) = V (∪
LA

{) = ∩
LA

V (SV (.

Proposition 4.2. Suppose ∈
¯
LE. Then

(i) V (= Spec(LE) if and only if 1̄;

(ii) V (= ∅ if and only if ⟨= LE;

(iii) V (= V ()
¯
if and only if ⟨= ⟨⟩

¯
;

(iv) if
¯
then V(SV()

¯
;

(v) V()
¯
=V(∩V ()

¯
;

(vi) V ()
¯
= V (∪V ()

¯
.

Proof. By Proposition 4.1(i), (iv) and (viii),

respectively, it is easy to see that (i), (ii) and

(iii) hold.

(iv) Let
¯
and LP∈ V (. Then and since

LP ∈ F(LE), we get ∈
¯
LP . So LP ∈ V ()

¯
.

Therefore, V (SV ()
¯
.

(v) Let LP ∈ V ()
¯
. Then ∈

¯
LP and since ≤

¯̄
weget

∈
¯
LP .Thus LP∈ V (∩V ()

¯
and so V ()

¯
SV (∩V ()

¯
.

Conversely, let LP ∈ V (∩V ()
¯
.

Then ∈
¯
LP . Hence by Proposition

2.1(iii) and (vii), respectively, we get

¯
¯

¯
()
¯
.

Since ∈
¯
LP and LP ∈ F(LE), we get ∈

¯
LP and

so LP ∈ V ()
¯
. Hence, V (∩V ()

¯
SV ()

¯
and the proof

is complete.

(vi) LP ∈ V ()
¯
if and only if ∈

¯
LP if and only if

LP or ∈
¯
LP if and only if LP ∈ V (∪V ()

¯
.

Definition 4.2. Let LASLE. The complement

of V (LA) in Spec(LE) is denoted by U(LA). In-

deed,

U(LA) = {LP ∈ Spec(LE)| LA ⊈ LP}.

For each LE, we denote U({) by U( for short.

Indeed, U(= {LP ∈ Spec(LE)| LP}.

Proposition 4.3. Let LA,LBSLE. Then

(i) U({1}) = U(∅) = ∅. If LE is bounded, then

U({0}) = Spec(LE);
(ii) if LASLB, then U(LA)SU(LB);

(iii) U(LA) = U(⟨LA⟩);
(iv) U(LA) = Spec(LE) if and only if ⟨LA⟩ =

LE. Particularly, U(LE) = Spec(LE);
(v) U(LA) = ∅ if and only if LA = ∅ or LA =

{1};
(vi) U(

∪
i∈∆ LAi) =

∪
i∈∆ U(LAi);

(vii) U(⟨LA⟩ ∩ ⟨LB⟩) = U(LA) ∩ U(LB);

(viii) U(LA) = U(LB) if and only if ⟨LA⟩ =

⟨LB⟩;
(ix) U(LF ) = U(LG) if and only if LF = LG;
(x) if LA, then U(SU(LA).

Proof. Proofs of (iii), (iv), (v), (viii), (ix) and

(x) are straightforward.

(i) By Proposition 4.1(i) and (iii), V ({1}) =

V (∅) = Spec(LE) and V ({0}) = ∅. So by com-

plement of them the proof is clear.

(ii) Suppose LASLB. From Proposition 4.1(ii),

V (LB)SV (LA). So by complement Spec(E) \
V (LA)SSpec(E)\V (LB). Thus U(LA)SU(LB).
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(vi) By Proposition 4.1(vi), we have

U(
∪
i∈∆

LAi) = Spec(LE) \ V (
∪
i∈∆

LAi)

= Spec(LE) \
∩
i∈∆

V (LAi)

=
∪
i∈∆

[Spec(LE) \ V (LAi)]

=
∪
i∈∆

U(LAi).

(vii) From Proposition 4.1(vii)

U(⟨⟩ ∩ ⟨⟩) = Spec() \ [V (⟨⟩ ∩ ⟨⟩)]
= Spec() \ [V () ∪ V ()]

= [Spec() \ V ()] ∩ [Spec() \ V ()]

= U() ∩ U().

Proposition 4.4. Let ∈
¯
LE. Then

(i) U(= Spec(LE) if and only if ⟨= LE.

(ii) U(= ∅ if and only if 1̄.

(iii) U(= U()
¯
if and only if ⟨= ⟨⟩

¯
.

(iv) if
¯
, then U()

¯
SU( .

(v) U()
¯
=U(∪U()

¯
.

(vi) U()
¯
= U(∩U()

¯
.

(vii) if LE is bounded, then V (SU(−̂).

Proof. The proofs of (i)− (vi) are directly results

of Proposition 4.2 (i)− (vi).

(vii) Let LE be bounded and LP ∈ V (. Then

LP . If −̂ ∈ LP , then −̂ = 0 ∈ LP . Since LP ∈
F(LE) we get 0 ∈ LP . Thus LP = E, which

is a contradiction and so −̂ /∈ LP which implies

LP ∈ U(−̂). Therefore, V (SU(−̂).

The following example shows that the converse

of Proposition 4.4(vii) is not true in general.

Example 4.2. Suppose LE is the lattice equal-

ity algebra as in Example 4.1. Then

V (m) = {LP2,LP3}, U(m−) = U(n) =

Spec(LE) and so U(m−) ⊈ V (m).

Proposition 4.5. Let LE be bounded and LE.

If −̂ = 1, then U(−̂) = V (.

Proof. By Proposition 4.4(vii), V (SU(−̂). For

the converse, let LP ∈ U(−̂). Then −̂ /∈ LP .

Since −̂ = 1 ∈ LP and LP is a ∨-irreducible fil-

ter of LE, we get LP . Hence, LP ∈ V ( and so

U(−̂)SV (. Therefore, U(−̂) = V (.

Theorem 4.2. Let τ = {U(LA)| LASLE}.
Then τ is a topology on Spec(LE).

Proof. By Proposition 4.3(i) and (iv),

∅, Spec(LE) ∈ τ . Also, by Proposition

4.3(vii),

∩
1≤i≤n

U(LAi) = U( ∩
1≤i≤n

⟨LAi⟩) ∈ τ.

Finally, by Proposition 4.3(vi), an arbitrary

union of elements of τ is an element of τ . Hence

τ is a topology on Spec().

Definition 4.3. The topology induced by τ =

{U(LA)| LASLE} on Spec(LE) is called the

Zariski topology and U(LA) is the open subsets

of Spec(LE) for any LASLE.

Proposition 4.6. Let β = {U(}LE. Then β is

a basis for Zariski topology (Spec(LE), τ).

Proof. Let U(LA) ∈ τ . From Proposition 4.3(vi),

U(LA) = U(∪
LA

{) = ∪
LA

U( which is the union of

some elements of β.

Example 4.3. Suppose LE is the lattice

equality algebra as in Example 4.1. Then

U(0) = Spec(LE) = U(n) = U(b) = U(d),

U(a) = {LP1,LP2} = U(c) = U(e),

U(f) = {LP1,LP3}, U(m) = {LP1}, U(1) = ∅.

Hence, τ =

{∅, {LP1}, {LP1,LP2}, {LP1,LP3},Spec(LE)} = β

.

Proposition 4.7. Let LP,LQ ∈ Spec(LE).
Then

(i) {LP} is closed if and only if ∈ Max(LE).
(ii) Cl(LP ) = V (LP ).
(iii) LQ ∈ Cl(LP ) if and only if LPSLQ.
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Proof. (i) Consider {LP} is closed in Spec(LE).
By definition of closed subset, there is a proper

subset LASLE such that {LP} = V (LA).
By Proposition 3.1, there exists a maximal fil-

ter LM of LE containing LP . Since LP ∈
V (LA), we have LASLPSLM and so by The-

orem 3.11(ii), LM ∈ V (LA) = {LP}. Hence

LP = LM ∈ Max(LE). Conversely, let LP be

a maximal filter of LE . Then V (LP ) = {LQ ∈
Spec(LE)| LPSLQ ⊊ LE} = {LP}. Therefore,

{LP} is closed in Spec(LE).
(ii) By definition of Cl(LP ) and from V (LP )
is a closed subset containing LP , we obtain

Cl(LP )SV (LP ). Conversely, consider LQ ∈
V (LP ) and LQ ̸= LP . We claim that LQ is

in all closed subsets containing LP . For this, let

V be an arbitrary closed subset containing LP
such that V = V (LA) for some non-empty subset

LASLE. Since LP ∈ V (LA) and LQ ∈ V (LP )
we get LASLP and LPSLQ. Thus LASLQ and

so LQ ∈ V (LA) = V . From LQ ∈ ∩
LP∈V

V =

Cl(LP ) we have V (LP )SCl(LP ). Therefore,

Cl(LP ) = V (LP ).
(iii) This is the result of (ii).

Theorem 4.3. Let XSSpec(LE). Then

Cl(X) = V (X0), where X0 = ∩
LP∈X

LP .

Proof. In Zariski topology, V (X0) is a closed

subset of Spec(LE). Since for any LP ∈ X,

X0 = ∩
LP∈X

LPSLP , then LP ∈ V (X0) and so

XSV (X0). Now, we prove V (X0) is the smallest

closed subset of Spec(LE) contains X. Suppose

V (A) is an arbitrary closed subset that contains

X. Then for any LP ∈ X, LP ∈ V (A) and

so ASLP . Hence AS ∩
LP∈X

LP = X0. Thus by

Proposition 4.1(v), we get V (X0)SV (A). There-

fore, Cl(X) = V (X0).

Theorem 4.4. Let . Then

(i) U( is compact in (Spec(), τ);
(ii) if is bounded, then (Spec(), τ) is a compact

topological space.

Proof. (i) From Proposition 4.6, we can suppose

that any cover of U( is a union of basic open sets

of Spec(LE). Let U(= ∪
i∈∆

U(i). Then by Propo-

sition 4.3(vi), U(= U( ∪
i∈∆

{i}). Thus by Proposi-

tion 4.3(viii), we get ⟨= ⟨ ∪
i∈∆

{i}⟩ and so ⟨ ∪
i∈∆

{i}⟩.

Hence, there are i1, ..., in ∈ ∆ such that

i1(...(in...) = 1 and ij ∈ ∪
i∈∆

{i}, where 1 ≤

j ≤ n.

Without loss of generality, we conclude that there

exist 1, ..., n such that ⟨ ∪
1≤i≤n

{i}⟩. Hence, by

Proposition 4.3(x), (iii) and (vi) respectively, we

have

U( S U(⟨ ∪
1≤i≤n

i⟩) = U( ∪
1≤i≤n

i)

= ∪
1≤i≤n

U(i)S ∪
i∈∆

U(i) = U(,

which implies U(= ∪
1≤i≤n

U(i). Therefore, U( is

compact.

(ii) From Proposition 4.3(i), we have U(0) =

Spec(LE). Then by (i), Spec(LE) is compact.

Theorem 4.5. (Spec(LE), τ) is a T0-topological
space.

Proof. Consider LP and are two distinct ele-

ments of Spec(LE). From LP ̸= LQ, we get

LP ̸S LQ or LQ ̸S LP . If LP ̸S LQ, then there

is ∈ LP such that /∈ LQ. Thus LQ ∈ U() and

LP /∈ U(). By the similar way, another case can

be proved.

Example 4.4. Suppose LE is the lattice equal-

ity algebra as in Example 4.1 and LP1,LP3 ∈
Spec(LE). Since there is no open subset U ∈
τ such that LP3 ∈ U and LP1 /∈ U , then

(Spec(LE), τ) is not a T1-space. Also it is not

a Hausdorff space.

Definition 4.4. Suppose LE is bounded. Then

B(LE) is the set of all ∈ LE such that ∨− = 1

and ∧− = 0.
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Example 4.5. Suppose (E = {0, ,
¯
,̧,.1},≤) is a

lattice with the following Hasse diagram and the

operation ”∼” is defined on as follows:

Then (LE,∼,∧, 1) is a bounded equality alge-

bra and B(LE) = {0, ,
¯
,̧1}.

Lemma 4.1. Suppose LE is bounded, B(LE) =
LE, ∈ LE and LP ∈ Spec(LE). Then ∈ if and

only if − /∈ LP .

Proof. Let ∈ LP and − ∈ LP . Since LP ∈
F(LE), 0 ∈ LP , which is a contradiction. There-

fore, − /∈ LP . For the converse, let − /∈ LP .
Since ∨− = 1 ∈ LP and LP ∈ Spec(LE), then
∈ LP .

Theorem 4.6. Suppose LE is bounded. Then

(i) B(LE) = LE implies (Spec(LE), τ) is a Haus-

dorff space.

(iii) If (Spec(LE), τ) is connected, then B(LE) =
{0, 1}.

Proof. (i) Let LP1,LP2 ∈ Spec(LE) and LP1 ̸=
LP2. Then LP1 ⊈ LP2 or LP2 ⊈ LP1. Sup-

pose LP1 ⊈ LP2. Then there is LP1 \ LP2.

Since LP2, we get LP2 ∈ U(. By Lemma 4.1,

LP1 if and only if −̂ /∈ LP1. Thus −̂ /∈ LP1

and so LP1 ∈ U(−̂). Moreover, by Proposition

4.4(vi), (ii) and since LE is complemented, we

obtain U(∩U(−̂) = U(−̂) = U(1) = ∅. There-

fore, (Spec(LE), τ) is a Hausdorff space.

(ii) Consider (Spec(LE), τ) is connected and

there is ∈ B(LE) such that ̸= 0, 1. Hence ∨− = 1

and ∧− = 0. By Proposition 4.4(ii), U() = ∅ if

and only if = 1 if and only if − = 0. Since ̸= 0, 1,

we conclude U() ̸= ∅ ̸= U(−). In addition, by

Proposition 4.4(v) and (vi),

U() ∩ U(−) = U(∨−) = U(1) = ∅,

U() ∪ U(−) = U(∧−) = U(0) = Spec(LE).

Since LE is connected, we get U() = ∅ or U(−) =

∅, which is a contradiction. Therefore, B(LE) =
{0, 1}.

Remark 4.1. By Theorem 3.11(ii),

Max(LE)SSpec(LE). Thus we can con-

sider the topology induced by Zariski topology

on Max(LE) that is called maximal spectrum of

LE . For LASLE and ∈ LE, define

VM (LA) = V (LA) ∩Max(LE),
VM () = V () ∩Max(LE),

UM (LA) = U(LA) ∩Max(LE),
UM () = U() ∩Max(LE).

Then {UM (LA)| LASLE} and {UM ()| ∈ LE} are
the family of open sets and basis for the topology

onMax(LE). Also, all the results of Propositions

4.1, 4.2 and 4.3 hold. Therefore, Max(LE) is a

compact T0-space.

Theorem 4.7. The topological space

(Max(LE), τ) is a T1-space.

Proof. Let LM1,LM2 be two distinct elements

of Max(LE). Since any maximal filter is not

included in any other proper filter of LE and

LM1,LM2 ∈ Max(LE), we have LM1 ⊈ LM2

and LM2 ⊈ LM1. Hence, there are LM1 \ LM2

and ∈
¯
LM2 \ LM1. Since, LM1 and LM2, we get

LM1 /∈ U( and LM2 ∈ U(. Similarly, LM1 ∈ U()
¯and LM2 /∈ U()

¯
. Thus U( ̸= U()

¯
are two open sets

that contains one and not containing another one.

Therefore, (Max(LE), τ) is a T1-space.

Theorem 4.8. The topological space

(Spec(LE), τ) is a T1-space if and only if

Spec(LE) = Max(LE).

Proof. Let (Spec(LE), τ) be T1-space. Since

Max(LE)SSpec(LE), it is enough to show that

Spec(LE)SMax(LE). For this, let LP ∈
Spec(LE). Then by Proposition 3.1, there is
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LM ∈ Max(LE) such that LPSLM . If LP =

LM , then LP ∈ Max(LE). Now, let LP ̸=
LM ∈ Spec(LE). Since (Spec(LE), τ) is a T1-

space, then there exists U ∈ τ such that LM ∈ U

and LP /∈ U . Also, since LPSLM , we get LP ∈
U , which is a contradiction and so LP = LM .

Therefore, Spec(LE) = Max(LE). Conversely,

let Spec(LE) = Max(LE). By Theorem 4.7,

(Spec(LE), τ) is a T1-space.

Example 4.6. Consider LE is the equality al-

gebra as in Example 4.5. Then

Spec(LE) = {{,̧1}︸︷︷︸
LP

, {,
¯
1}︸︷︷︸

LQ

} = Max(LE),

and τ = {∅, {LP}, {LQ}, Spec(LE)}. Clearly,

(Spec(LE), τ) is a T1-space.

Theorem 4.9. If LE is prelinear, then

(Max(LE), τ) is a Hausdorff space.

Proof. Suppose LM,LN ∈ Max(LE) and LM ̸=
LN . Since maximal filters are not included in any

other proper filter of LE , then we get LM ⊈ LN
and LN ⊈ LM . Thus there exist ∈ LM \ LN
and ∈ LN \ LM . Suppose a = and b =. If a ∈
LM , then since ∈ LM and LM ∈ F(LE), we get

∈ LM , which is a contradiction. Thus a /∈ LM
and so LM ∈ U(a). Similarly, LN ∈ U(b). Also,

by Proposition 4.4(vi), (ii) and prelinearity of LE ,
we have U(a) ∩ U(b) = U(a ∨ b) = U(() ∨ ()) =

U(1) = ∅. Therefore, Max(LE) is a Hausdorff

space.

5 Conclusions and future works

In this paper, the notion of ∩-irreducible filter in

equality algebras is introduced, and some prop-

erties and relations between maximal, prime, ∨-
irreducible and ∩-irreducible filters of an equal-

ity algebra are investigated. For more general-

ity, the set of all ∨-irreducible filters of an equal-

ity algebra is considered as the spectrum of it.

Finally, a topology on spectrum (called Zariski

topology) of an equality algebra is constructed

and showed that the spectrum of an equality alge-

bra with Zariski topology is a compact T0-space.

Moreover, maximal spectrum of equality algebra

as a subspace of spectrum is compact T1-space.

Moreover, the conditions that (maximal) spec-

trum will be a Hausdorff space are studied. For

future work, we want to continue study of topol-

ogy on an equality algebra and construct topolog-

ical equality algebras and more types of topology

on equality algebras will be considered.
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