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Abstract

In this paper an improved version of the collocation method is proposed to solve ordinary differen-
tial equations with initial conditions. Our proposed algorithm is described by applying it to some
well-known IVPs. The results are compared with basic collocation algorithms to show the advan-
tages, applicability and efficiency of the proposed method. Based on numerical results, the proposed
algorithm has better accuracy and execution time.
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1 Introduction

M
any problems arising in science and engi-

neering are defined as IVPs; thus, many

researcher in the field of mathematics, numeri-

cal analysis and computer science have tried to

solve such issues by different methods and al-

gorithms, for example: Adomian decomposition

method [8, 27, 30], Homotopy analysis method

[1, 9, 25], VIM [3, 14], Tau [12, 6, 7], Pseudo-

spectral [5], Hybrid functions [2, 16], etc. The

collocation method is one of the high accuracy

numerical tools in computational mathematics

while it is popular in engineering. [18, 10, 17, 13].
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There are some drawbacks such as enough accu-

racy and computational time in applying the con-

ventional collocation algorithm to some specific

problems.

The origin of these issues is the condition num-

ber of obtained system of equations from New-

ton’s method, because the condition number of

obtained system of equations via spectral meth-

ods grows exponentially by increasing the colloca-

tion points or number of basis functions. As a re-

sult, sometimes, the mathematic software (Mat-

lab, Maple etc.) can not find the solution (Spec-

tral coefficients) of obtained linear system (or ob-

tained linear system derived from nonlinear sys-

tem of Newton’s method).

In order to address these concerns, this paper

aims to propose an algorithm through improv-

ing the collocation method to solve initial value

problems. Guo and Yan [11, 29] introduced same

method for Legender-Gauss and performed the
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error analysis. But they did not apply the method

to difficult nonlinear IVPs. In this paper we im-

prove the collocation algorithm utilizing the first

kind of Bessel functions [19, 18, 20]. Then, the

proposed method is applied to some well-known

IVPs in order to discuss its advantages and ap-

plicability.

This paper is organized as follows: the basic

definition and properties of Bessel function and

are presented in Section 1.1. In Section 2, we

have described the spectral collocation methods.

Section 3 proposes a new algorithm based on im-

provement of collocation method to solve IVPs.

In Section 4, the applicability, accuracy and reli-

ability of proposed method is investigated by ap-

plying it to solve IVPs. the results are compared

with common collocation algorithm. The paper

concludes in Section 5.

1.1 Introduction of Bessel functions

In this section, the first kind of Bessel function

and its properties which will be used to construct

the Bessel functions collocation (BFC) method

will be described.

The Sturm - Liouville equation of order n of

Bessel function, is [26, 4]:

x2y′′(x) + xy′(x) + (x2 − n2)y(x) = 0,

for x ∈ (−∞,∞), (n ∈ R). (1.1)

This is also called the Bessel equation. An ob-

tained solution of this equation is [4]:

∞∑
r=0

a0
(−1)rΓ(n+ 1)

22rr! Γ(n+ r + 1)
(
x

2
)2r+n,

for each value of a0; where Γ(λ) is the gamma

function which is defined as follows:

Γ(λ) =

∫ ∞

0
e−ttλ−1dt.

if we choose a0 = 1
2nΓ(n+1) , the solution of eq.

(1.1) be as follows, which we shall denote it by

Jn(x) and call it the Bessel function of the first

kind of order n:

Jn(x) =
∞∑
r=0

(−1)r

r! Γ(n+ r + 1)
(
x

2
)2r+n, (1.2)

the series (1.2) is convergent for all−∞ < x <∞.

Some relationships between Jn(x) and its deriva-

tive are as follows [4]:

d

dx
(xnJn(x)) = xnJn−1(x),

J ′
n(x) = Jn−1(x)−

n

x
Jn(x),

J ′
n(x) =

n

x
Jn(x)− Jn+1(x).

2 Spectral methods and WRMs

Spectral methods, in the of numerical and indus-

trial mathematics to solve differential equations,

generally belong to the big family of weighted

residual methods (WRMs) [24]. WRMs present

the particular classes of approximation tech-

niques, that in all of them, the aim is the resid-

ual functions (or errors) be minimized in a cer-

tain method and thereby leading to specific meth-

ods like collocation, Galerkin, Petrov-Galerkin

and tau etc. WRMs are considered as the base

and cornerstone of many famous methods such

as spectral methods, finite element, boundary el-

ement, finite volume etc. In this section, WRMs,

spectral methods and one of the best and sim-

plest sub-methods of it that named collocation

method are described [5, 24]. Before everything,

first, we introduce the WRM, briefly. Consider

the following problem:

Lu(x) +Nu(x) = f(x) , x ∈ Ω, (2.3)

where L is the integral or/and differential oper-

ators, N is a lower-order linear and/or nonlin-

ear operators involving u and/or its derivatives

(if exist) and f(x) is a linear or nonlinear func-

tion. There are also enough initial conditions.

The first step of the WRM is approximating the

unknown solution u by following finite sum:

u(x) ≈ uN (x) =
N∑
i=0

aiϕi(x) , x ∈ Ω, (2.4)

where ϕi(x) is the basis functions, and the

unknown expansion coefficients must be deter-

mined. This finding the unknown coefficients is

main duty of WRMs. Substituting u with uN in

(2.3) the residual function is obtained as follows:

RN (x) = LuN (x) +NuN (x)− f(x). (2.5)
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The notion of the WRM is to force the residual

to zero by requiring:

< RN , ψ >ω= 0 ⇒∫
Ω
RN (x)ψj(x)ω(x)dx = 0 , (2.6)

0 ≤ j ≤ N,

where {ψj(x)} are test functions, and ω is posi-

tive weight function. The choice of test functions

results to a kind of the spectral methods, for ex-

ample:

• Collocation method: the test functions in

(2.6) are Lagrange basis polynomials, such

that ψj(xk) = δjk, where {xk} are preas-

signed collocation points. Hence the residual

is forced to zero at xj ,i.e., RN (xj) = 0, [24].

2.1 Function approximation

We now explain how to approximate the unknown

solution of a problem based on a finite expansion

of known functions. Based on features of Bessel

function, {Jn(x)}∞n=0, is a basis for Hilbert space

H = L2(Γ), where Γ = (−∞,+∞). This means

{J0(x), J1(x), ..., Jn(x)} ⊂ H. Now, we define the
generated space by these functions as follows

J = span{J0(x), J1(x), ..., Jn(x)}, (2.7)

J is the finite-dimensional subspace of H =

L2(Γ), dim J = n+1, so J is a closed subspace of

H, therefore, J is a complete subspace of H. For
each arbitrary element f in H, we have an unique

best approximation ĵ ∈ J, that:

∃ ĵ ∈ J; ∀ j ∈ J, ∥f − ĵ∥≤ ∥f − j∥ , (2.8)

where ∥f∥=< f, f >1/2 and < f, g >=∫∞
−∞ f(t)g(t) dt.

Definition 2.1. (Direct sum (⊕)): suppose that

Y and Z are two subspaces of H, we can write

H = Y ⊕ Z , if for each x ∈ H there exist a

unique representation x = y + z that y ∈ Y and

z ∈ Z. Then, Z is called complement of Y in H
and viceversa.

Definition 2.2. Let H be an Hilbert space and

Y be any closed subspace of H. Y ⊥ is defined the

orthogonal complement, as:

Y ⊥ = {z ∈ H| z ⊥ Y } . (2.9)

Now, by using (2.7) and (2.8), we can say H =

J⊕ Z ,

where Z = J⊥, so that for each x ∈ H , x = j+z .

where z = x− j ⊥ j, hence, < x− j, j >= 0. We

have j ∈ J, therefore,

j =

n∑
k=0

ak Jk(x) , (2.10)

and x− j ⊥ j gives the n conditions

< Jm(x), x−j >=< Jm(x), x−
n∑

k=0

ak Jk(x) >= 0,

(2.11)

that is

< Jm(x), x >=

n∑
k=0

āk < Jm(x), Jk(x) >,

m = 0, 1, ..., n . (2.12)

This is a nonhomogeneous system of n+ 1 linear

equations in n + 1 unknown coefficients {āk}nk=0

(spectral coefficients). The determinant of the

coefficients is

G(J0(x), J1(x), ..., Jn(x)) =

∣∣∣∣∣∣∣∣∣
< J0(x), J0(x) > . . . < J0(x), Jn(x) >
< J1(x), J0(x) > . . . < J1(x), Jn(x) >

...
. . .

...
< Jn(x), J0(x) > . . . < Jn(x), Jn(x) >

∣∣∣∣∣∣∣∣∣
Since J exists and is unique, that system has a
unique solution. Hence, G(J0(x), J1(x)
, ..., Jn(x)) must be different from 0. The de-
terminant G(J0(x), J1(x), ..., Jn(x)) is called the
Gram determinant of J0(x), J1(x), ..., Jn(x).

Theorem 2.1. Suppose that H is a Hilbert space
and Y a closed subspace of H such that dimY <
∞ and {y1, y2, ..., yn} is any basis for Y . Let x be
an arbitrary element in H and y0 be the unique
best approximation to x from Y . Then,
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∥x− y0∥2=
G(x, y1, y2, ..., yn)

G(y1, y2, ..., yn)
, (2.13)

Proof. . See [15].

2.2 Collocation algorithm

A method for forcing the residual function (2.5)
to zero, is the collocation algorithm. In this
method, by substituting the finite series (2.4)
into residual function (2.5) and collocating it
on {xk}, we have N + 1 equations and N + 1
unknown coefficients (spectral coefficients). In
all of spectral methods, the purpose is, finding
these coefficients.
In the following algorithm, we aim to solve
equation (2.3):

BEGIN

1. Set N .

2. Insert the constructed series (2.4), into equa-
tion (2.3).

3. Make the Residual function as follows:

Res(x; a0, a1, ..., an) =
LuN (x) +NuN (x)− f(x).

4. Substitute the conditions of the problem into
set of equations (or change the basis function
to satisfy the conditions). Now, we have N+
1 unknown coefficients {an}Nn=0. Therefor,
we need N + 1.

5. By choosing N + 1 points {xi}, i =
0, 1, ..., N , in the domain of the equation
(2.3) as collocation points and collocate
Res(x; a0, a1, ..., an) = LuN (x) − f(x) in
these points, we will have a nonlinear sys-
tem containing N + 1 equation.

6. By solving this obtained system of nonlinear
equations, we gain the an, n = 0, 1, ..., N .

7. By substituting the obtained values of these
coefficients in (2.4), we obtain approximated
solution uN (x) of u(x).

END.

In step 7, a computer software (Maple, Mat-
lab, etc.) can solve a linear or nonlinear system
of equations, but if the nonlinear order of the sys-
tem of equations, or, the number of equations be
large, then the computer encounters a problem
and can’t solve this system of equations in a rea-
sonable time. While, in Spectral methods, specif-
ically, collocation method, to increase the accu-
racy, we have to increase the collocation points
and degree of series (2.4) (in other words: by in-
creasing N). But, the larger value of N results
to higher order of nonlinearity. Therefore, the
Maple or Matlab can’t solve the obtained system
of equations. This problem occurs more often in
nonlinear fractional equations, nonlinear ODEs,
PDEs and IDEs.

Figure 1: The obtained graph of residuals
function for Volterra’s population by com-
mon collocation method for κ = 0.02 and
N = 48.

3 Improved collocation method
to solve IVPs

In Section 2.2, the collocation method was
discussed. In the spectral methods, in order to
increase the accuracy of the approximation, N
must be increased. Now, we want introduce a
strategy to surmount this problem of IVPs. The
following algorithm is presented accordingly: :

BEGIN
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Table 1: The obtained results of common collocation algorithm for solving Volterra’s population with κ = 0.5.

N CPU timesec Max (Res(x)) Error in umax(x)

20 1.716 4.4588500e− 5 1.0107763e− 6
30 5.975 1.1234182e− 7 7.388164e− 10
40 14.820 9.649933e− 10 8.326697e− 13
50 32.573 1.054115e− 12 2.032415e− 15

Table 2: The obtained results of presented algorithm for solving Volterra’s population with κ = 0.5, b0 = 2

N0 N1 CPU timesec Max (Res(x)) Error in umax(x)

13 11 0.749 2.794123e− 7 6.026950e− 8
20 16 2.371 3.554891e− 10 4.894438e− 12
28 24 8.736 1.851814e− 15 3.703856e− 17
35 30 14.305 7.623663e− 18 4.105005e− 20

Table 3: The obtained results of common collocation algorithm for solving Volterra’s population with κ = 0.02.

N CPU timesec Max (Res(x)) Error in umax(x)

30 24.325 1.1234182e− 1 7.388164e− 2
40 39.453 7.1536839e− 2 3.691622e− 3
45 can’t solve ———– ———–

Table 4: The obtained results of presented algorithm for solving Volterra’s population with κ = 0.02, b0 = 0.15

N0 N1 CPU timesec Max (Res(x)) Error in umax(x)

18 30 18.749 4.244761e− 6 4.736303e− 6
21 35 22.086 9.882021e− 7 1.498205e− 8
25 38 24.674 3.056482e− 8 1.8259794e− 10

Table 5: The obtained results of presented algorithm for solving Volterra’s population with κ = 0.02. and
b0 = 0.15, b1 = 1

N0 N1 N3 CPU timesec Max (Res(x)) Error in umax(x)

30 35 15 18.129 2.4687e− 11 3.0453e− 13
33 38 18 21.235 5.3654e− 13 2.3694e− 15

Table 6: The obtained results of common collocation algorithm for solving Lane-Emden standard equation
with m = 4

N CPU timesec Max (Res(x))

40 823.919 2.43409e− 3
50 can’t solve ———–

1. Set m = 0.

2. Input bm (end point of subinterval) and Nm.

3. Set the interval [a, bm). As a is an ini-

tial point of initial value problem, and the
amount of the solution is given in a (the ini-
tial condition).
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Table 7: The obtained results of presented algorithm for solving Lane-Emden standard equation with m = 4.
and b0 = 3, b1 = 9

N0 N1 N3 CPU timesec Max (Res(x))

20 20 15 46.672 1.079851e− 10

Figure 2: The graph of volterra’s popula-
tion for κ = 0.02 in two subintervals and and
N0 = 20, N1 = 30.

4. Construct the following series from (2.4):

umNm
=

Nm∑
i=0

aiJi(x), (3.14)

where the {Ji(x)}Nm
i=0 are the Bessel functions

of the first kind.

5. By multiplying and adding adequate terms
to (3.14), satisfy the initial conditions in
point a.

6. Insert the constructed series of step 4, into
equation (2.3).

7. Construct the Residual function as follows:

Resm(x; a0, a1, ..., an) =

LumNm
(x) +NumNm

(x)− f(x).

Now, we have Nm+1 unknowns {an}Nm
n=0. To

obtain these unknown coefficients, we need
Nm + 1 equations, thus:

8. By choosing Nm + 1 points {xi}, i =
0, 1, ..., Nm, in the subinterval [a, bm), as
collocation points and substituting them in

Figure 3: The graph of residual functions
via present algorithm of volterra’s popula-
tion for κ = 0.02 in two subintervals and and
N0 = 18, N1 = 30.

Resm(x; a0, a1, ..., aNm) = LumNm
+NumNm

−
f(x), we construct a system containing Nm+
1 equations.

9. By solving the obtained system of equations
we gain the an, n = 0, 1, ..., Nm.

10. Substitute the obtained values of these coef-
ficients in (3.14), we shall approach u(x) by
umNm

(x) in subinterval [a, bm).

11. Obtain the required value as conditions of
problem in point bm by umNm

(x).

12. a← a+ bm.

13. Now, if bm or m is large enough or termina-
tion condition is met, go to next step; Else,
m = m+ 1 and Go to step 2.

14. uN (x) =



u0N0
a ≤ x < b0

u1N1
b0 ≤ x < b1

u2N2
b1 ≤ x < b2

...
...

umNm
bm−1 ≤ x < bm
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Figure 4: The graph of piecewise solution of
volterra’s population for κ = 0.02 in 3 subin-
tervals and N0 = 30, N1 = 35, N2 = 15

Figure 5: The graph of obtained residu-
als for volterra’s population for κ = 0.02 in
three subintervals and and N0 = 30, N1 =
35, N2 = 15.

End.

It is clear that in the last interval [bm,∞) the
problem can be solved by collocation algorithm
or other spectral methods.
The description of the mentioned algorithm:

In step 1 and 2, we input the Nm (number of
basis functions and collocation points in subinter-
val m) and bm (is greater than a and endpoint of
subinterval). In step 3, we want to solve problem
(2.3), in the subinterval [a, bm]; in step 4, we con-
struct series (3.14), and, in step 5, by multiplying
and adding operations, we aim to satisfy the ini-
tial conditions. In step 6 and 7, the Residual

Figure 6: The graph of obtained residuals
for standard Lane-Emden by common collo-
cation method for m = 4 and N = 40.

Figure 7: The graph of standard Lane-
Emden for m = 4 in three subintervals and
and N0 = 18, N1 = 17, N2 = 14.

function is constructed and, in step 8, by choos-
ing Nm + 1 collocation points in the subinterval
[a, bm], we construct a set of Nm+1 equations and
Nm+1 unknowns. In step 9 and 10, we solve the
constructed system of equations, and obtain the
unknown coefficients and substitute these coeffi-
cients in series of step 4. In step 11, we have an
approximate solution umNm

of equation (2.3) in the
subinterval [a, bm] for any m. Therefore, by us-
ing this solution, we obtain the required values in
point bm, as initial conditions of equation (2.3) for
subinterval [bm, bm+1]. Now we repeat previous
tasks for next subinterval [bm, bm+1], so that, in
step 12, by substituting bm to a, the initial point
of problem becomes bm. Step 13 contains a con-
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Figure 8: The graph of obtained residu-
als for standard Lane-Emden for m = 4 in
three subintervals and and N0 = 18, N1 =
17, N2 = 14.

dition for ending or continuing the loop for next
subintervals. In step 14, we construct a piece-
wise function by bringing together the obtained
approximate solutions of all subintervals.

3.1 The advantages of this algorithm

As mentioned before, one of the drawbacks of col-
location method is the need to increase N for im-
proving the accuracy. Increasing the N , results
in a large computational time. But, by utilizing
the proposed algorithm in Sec. 3 we can solve
the problem in separated subintervals. Since any
interval m have a separate Nm, by increasing
Nm, arbitrary level of accuracy can be achieved.
The key point is that by using proposed algo-
rithm, m systems of equations with lower order
are solved, instead of solving a system of equa-
tions with large order. Therefore, the required
computational time is reduced.

4 Solving some examples in or-
der to compare these two al-
gorithms

Now, in this section we shall solve some initial
value equations in order to show the advantages
of the proposed algorithm in terms of accuracy
and execution time compared to conventional col-
location methods.

Figure 9: Code of maple for solving exam-
ple 4.1 for κ = 0.02.

Example 4.1. Volterra’s Population Model is

κu′(x) = u(x)− u(x)2 − u(x)
∫ x

0
u(t)dt,

u(0) = 0.1 .

Let,

y(x) =

∫ x

0
u(t)dt,

then:

y′(x) = u(x) ,

y′′(x) = u′(x) .

The ODE model of population growth becomes
[20, 21, 22]:

κy′′(x) = y′(x)− (y′(x))2 − y(x)y′(x), (4.15)
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with initial conditions:

y(0) = 0 , y′(0) = 0.1. (4.16)

The umax is presented in [20, 21, 22]:

umax = 1 + κ ln(
κ

1 + κ+ 0.1
) (4.17)

We solve equation (4.15) by applying the com-
mon collocation method and proposed algorithm
in [0, 5] for κ = 0.5 and 0.02; then, we compare
their results. Table. 1 shows the results of the
common collocation method for solving equation
(4.15) with κ = 0.02 and Table 2 shows the re-
sults of the proposed algorithm for solving this
equation, in two sub intervals with b0 = 2. In
Tables ??, 4 and 5, we have shown the obtained
results of the common collocation algorithm and
the proposed algorithm for two and three sub in-
tervals, respectively, and we have shown the CPU
timessec, maximum residual in all intervals and
the error in umax. Also, in Fig. 1 the Resid-
ual function of common collocation method for
κ = 0.02 and N = 48 is shown, in Fig. 2 and
4, we have shown the solutions of this example
in two and three subintervals, respectively. In
Fig. 3 and 5, the residual functions of proposed
method are shown, in two and three subintervals,
respectively.

Example 4.2. Lane-Emden standard
equation[17, 28]

y′′ +
2

x
y′ + ym = 0, (4.18)

with initial conditions:

y(0) = 1,

y′(0) = 0.

Now, we apply the common collocation algo-
rithm, and the proposed algorithm for solving this
example in three subintervals, and compare their
results. Table 6 and 7 show the results of solv-
ing this example by using collocation algorithm
and the proposed algorithm, respectively. Fig.
6 shows obtained residual function of common
collocation method. Also, in Fig. 7 and 8, we
have shown the solutions and residual functions
obtained from the proposed algorithm for three
subintervals.

5 Conclusions

To increase the accuracy in the collocation
method (in general: Spectral methods), the N
must be increased. But this causes to increase
the CPU time, rapidly. To resolve these chal-
lenge, a novel algorithm was proposed. In our
algorithm, we fragmented the interval of a prob-
lem, and, in each interval, we forced an equation
with new initial conditions. This strategy showed
several advantages. Firstly, in each interval, we
have a distinct N (number of collocation points
and the degree of basis functions). Each interval
has a variable length that gives the advantage to
utilize the different basis functions and colloca-
tion points in each interval. Therefore, we have
some degrees of freedom to solve the problems
easily, without being concerned about solving set
of equations. Rate of accuracy in tables 2, 4, 5
and 7 show the rate of convergency of proposed
method. The open problems of this algorithm
are selection of optimum m and b, and knowledge
about type of basis functions. In order to eval-
uate the proposed algorithm, some well-known
IVPs were discussed. Finally, we propose four
questions to be answered in future studies: 1) is
this algorithm capable to solve the equation with
boundary conditions? 2) Is this algorithm able
to solve the equation with boundary conditions
in the infinite? 3) Can this algorithm solve the
partial differential equations? And 4) is this algo-
rithm capable to solve the fractional equations?
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