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Abstract 

Although many scramble methods have been introduced for the Halton sequence, not 

all of them have been widely acclaimed due to their computational complexity and 

difficult implementation. Sampling the Halton sequence is an easy and fast way to 

achieve a more uniform and, of course, more efficient sequence. 
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1. Introduction 

Quasi-Monte Carlo methods are a variant of ordinary Monte Carlo methods that employ 

highly uniform quasirandom numbers in place of Monte Carlo’s pseudorandom numbers. 

Clearly, the generation of appropriate high-quality quasirandom sequences is crucial to the 

success of using quasi-Monte Carlo methods. The Halton sequence, which is one of the 

standard low-discrepancy sequences, and one of its important advantages is that the Halton 

sequence is easy to implement due to its definition via the radical inverse function. 

However,the original Halton sequence suffers from correlations between radical inverse 

functions with different bases used for different dimensions. These correlations result in 

poorly distributed two-dimensional projections. A standard solution to this problem is to use 

a randomized (scrambled) version of the Halton sequence which have both good two-

dimensional projections and a smaller discrepancy, which is a measure of deviation from 

uniformity [1,5]. 

 

2. The Halton sequences 

Let 0p  be an integer, then any integer 0n  can be written in the form: 

0 1 (1)= + + + m

mn a a p a p  

where, 0  ja p   and log =  pm n is the maximum number of digits needed to represent 

all n-values. 

The radical inverse function   for base p is defined by 

0 1

2 1
( ) (2)

+
= + + + m

p m

a a a

p p
n

p
  

The Van der Corput sequence in base p is defined as the one-dimensional point set 

 
0

( )


=p n
n Halton (1960) extended this definition to the s-dimensional sequence as 

( )
1 2

) (3)( ), ( ) , (   =
sn p p pX n n n    

where 0,1,2,= n  and the dimensional bases
1 2, , , sp p p are pairwise coprime. In 

practice, we always use the first s primes as the bases. 

As mentioned, the Halton sequence has poor two-dimensional projections (for dimensions 

greater than 10) because of the correlation between the radical inverse functions used for 

different dimensions [1]. Examples of these poor projections can be seen in Figure.1 (b, c and 

d). 

In Figure.1 it can be seen that for small bases, the dispersion of the sequence points is 

acceptable. As the dimensions increase, the points fall into clusters of parallel lines with the 

𝑦 = 𝑥 line [1], and as these dimensions become larger, the number of clusters decreases, but 

are closer together, and the points accumulate in them, and the space becomes wider. All of 

the scrambles introduced are intended to break these lines and thus fill the space more 

uniformly. 
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The correlation between points of the Halton sequence can be broken by scrambling the digits 

of the sequence in a way that preserves the low-discrepancy properties. This was first formally 

described by Braaten and Weller[3], who defined the scrambled radical inverse function 

( )pS n  as 

0 1

2 1

( ) ( ) ( )
( ) (4)  

+
= + + +

p p p m

p m

a a a
S

p p
n

p

  
 

Here, ( )p ja  is a permutation on the digits  0,1, , 1 −p which holds the digit 0 fixed. 

There are ( 1)!−p  such permutations. The scrambled Halton sequence is then given by 

( )
1 2
( ) ( ) ( ) ), (   5,=

sn p p pn n nX S S S  

Note that since each set of permutations (one permutation for each dimension) always leads 

to the same scrambled version of the Halton sequence, the scrambling defined by 4 and 5 is a 

deterministic scrambling. If one is searching for the best possible deterministic scrambling 

under some criterium, then the search space should only contain permutations ( )p ja [3]. 

 

3. The Halton sequence Scrambles 

There are many scrambles for the Halton sequence that the interested reader can see them in 

[3,5]. In this article, we will review only the Warnock's PhiCF scramble and Chi's optimal 

scramble, and then compare the results obtained with our methods with the results of these 

two scrambles. 

 

Figure 1. Different two-dimensional projections of the Halton sequence 
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3.1. Warnock's PhiCF sequence 

Warnock combined the initial behavior of the Weyl sequence with the asymptotic behavior of 

the Halton sequence to construct what he called the PhiCF sequence. The name of this 

sequence is due to the use of continued fraction expansion in its structure. He replaces each 

ja in 1 with ( ).      jS p a mod p  to obtain a new kind of radical inverse function 

0 1

2 1

( ).       ( ).     
)

  ( ).      
( )     6   (

+
= + + + m

p m

S p a mod p S p a mod p S p a mod p
n

p p p
  

where ( )S p  is defined to be a number such that ( )S p p  is close to the fractional part of 

p . 

Since 
ip is different for each ( )iS p , then the scrambled version of a sequence generated by 

a different ( )iS p  is expected to be independent. This is due to the fact that the Weyl 

sequences, consisting of multiples of square roots of primes have good discrepancy in low 

dimension. The square roots of primes are independent [1]. 

 

3.2. Mascagni and Chi's optimal scrambling 

Mascagni and Chi [1], considered the linear scrambling .      ( ) =p j i ja w a mod p  with iw

an integer. In [6] is an example that says for a prime modulus p  , and a primitive root W

modulo p as multiplier, we have that the discrepancy,
( )2

ND  , satisfies 

( )2

1

1

) ( 1)   (2     7−

=

−  +
q

p j

j

p D a  

where ja  is the jth digit in the continued fraction expansion of 
W

p
 with 1=qa . Using this 

criterion and inspired by Warnock's PhiCF Scramble,  Mascagni and Chi tabulated the iw

coefficients up to the 50th dimension for their optimal Scramble. 

 

4. Sampling from Halton sequence 

This seems to be the simplest and best way to break the correlation between dimensions. If 

one can reorder or shuffle the digits of each point in the Halton sequence for different 

dimensions, the correlations between different dimensions can be made very small. This is 

due to the fact that there are gaps between the most significant digits of ,   10( ) p n p , which 

have good two-dimensional projections. However, when, there are no gaps for the most 

significant digits of ( )p n  and the most significant digits cycle from 1 to 9 without jumps 

[1]. Figure 2. shows the improvement of the two-dimensional projections mentioned in the 

previous sections using this method. 
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Figure 2. 2000 points of Halton sequence before(left) and after(right) sampling 

Here, HSW is the Halton sequence after sampling with replacement, HSWO is the Halton 

sequence after sampling without replacement, CHi is Chi's optimal sequence and PhiCF is the 

Warnock's PhiCF sequence. 

Another criterion by which we can compare sequences is discrepancy. It can be seen from 

Figure 3. that in 8 dimensions, for less than 1000 points, the discrepancy plot of the CHi and 

PhiCF sequences are below the other sequences. But as the number of points increases, this 

superiority belongs to the HSWO. Almost the entire path of the plot the discrepancy of HSW 

on top of the other three plot. As the dimension increases to 16, the situation changes 

dramatically. The discrepancy plot for CHi  and PhiCF are almost identical, but much higher 

than the our sequences (Figure 4. up). For better view, we have drawn another plot by 

changing the scale of the vertical axis (Figure 4. down). Although HSW looks better at low 

points (less than 400), the discrepancy for HSWO is lower than the HSW sequence as the 

number of points increases. Therefore, in general, HSWO has a higher performance based on 

discrepancy. 

 

5. Numerical results 

In the following, we use the studied sequences in estimating test integrals. The integrals 

used here are: 

1 1

1 1

10 0

  sin ))(   1     8
2

( ) (
=

= = 
s

j s

j

I x dx dxf


  
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1 1

2 1

10 0

4 2
    1     

1
( ) (9)

=

− +
= =

+
 

s
j j

s

j j

x a
I dx d

a
f x  

where the 
ja  are parameters. The integrand in 9 allows a tuning of the relative importance of 

the variables, as well as of their interactions, by appropriate choices of the parameters. The 

key-concept used for this is effective dimension. The effective dimension of the function in 9 

is tabulated [7]. There are four choices of parameters as follows: 

2

(1) 0        1 

(2) 1        1 

(3)           1 

(4)         1 

=  

=  

=  

=  

j

j

j

j

a for j s

a for j s

a j for j s

a j for j s

 

For the first choice of parameters, all variables are equally important and the truncation 

dimension is approximately the same as the nominal dimension. This is the most difficult case 

for numerical integration. For another choices of ja , the importance of the successive 

variables is decreasing. In general, when ja becomes bigger, the variables are decreasing 

quickly in importance and the effective dimension becomes smaller [3]. 

Figures 5 to 9 show the estimated values of the test integrals in dimensions 10, 20, 30 and 40. 

In all Figures, in 10 dimensions, all sequences converge to the exact value and have little 

fluctuation. As the dimensions increase, although the sequences deviate slightly from the 

exact value of the integrals, this deviation is very small for sequence HSWO and also it 

fluctuates less than other sequences. Therefore, according to these figures, it can be said that 

sequence HSWO is more stable in estimating test integrals than other sequences. The 

numerical results of the estimates are in Tables 1 to 5. 

 

Figure 3. Discrepancies for several Halton sequences in 8 dimensions 
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Figure 4. Discrepancies for several Halton sequences in 16 dimensions 

 

 

Figure 5. Estimates of the integral 𝑰𝟏(𝒇)  using various Halton sequences 

 

 

Figure 6. Estimates of the integral 𝑰𝟐(𝒇) with 𝒂𝒋 = 𝟎  using various Halton sequences 
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Figure 7. Estimates of the integral 𝑰𝟐(𝒇) with 𝒂𝒋 = 𝟏 using various Halton sequences 

 

 

Figure 8. Estimates of the integral 𝑰𝟐(𝒇) with 𝒂𝒋 = 𝒋 using various Halton sequences 

 

 

Figure 9. Estimates of the integral 𝑰𝟐(𝒇) with 𝒂𝒋 = 𝒋𝟐 using various Halton sequences 
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6. Conclusion 

In this article, we are introduced to the new Halton sequel scramble. We have seen that the 

non-replacement sampling method has both simplicity in execution and very high efficiency 

in more uniform distribution of points. Graphs of the estimated values of the test integrals 

show that the  𝐻𝑆𝑊𝑂   is not only closer to the actual value but also has less fluctuations than 

other scrambles. Combining sampling with digits permutation or with reverse radical inverse 

function will be an idea for our future research. 

Table 1. Estimates of the integral 𝑰𝟏(𝒇)  using various Halton sequences 

generator N s=5 s=10 s=20 s=30 s=40 

Chi 

PhiCF 

HSW 

HSWO 

500 

500 

500 

500 

1.0614 

0.8162 

0.8922 

1.0016 

1.1944 

0.9223 

1.1356 

0.9759 

2.9632 

0.2297 

0.4991 

0.7917 

0.8895 

0.2260 

0.3616 

0.8566 

0.8895 

0.2260 

0.3616 

1.0767 

Chi 

PhiCF 

HSW 

HSWO 

1000 

1000 

1000 

1000 

0.9844 

0.8801 

0.9377 

0.9970 

1.0810 

0.8874 

1.0145 

1.0386 

1.7651 

0.8410 

0.8264 

0.7971 

0.6137 

0.3118 

0.5440 

1.6366 

0.6137 

0.3118 

0.5440 

1.2874 

Chi 

PhiCF 

HSW 

HSWO 

5000 

5000 

5000 

5000 

1.0503 

1.0171 

0.9569 

1.0015 

1.0869 

1.0470 

0.9253 

1.0054 

1.2982 

1.0100 

0.8208 

1.0295 

0.6835 

0.5510 

0.4750 

0.9594 

0.6835 

0.5510 

0.4750 

0.7626 

Chi 

PhiCF 

HSW 

HSWO 

10000 

10000 

10000 

10000 

1.0013 

1.0062 

0.9777 

1.0350 

1.0092 

1.0132 

0.9428 

1.0350 

1.0217 

0.8859 

1.1243 

1.3198 

0.9919 

0.7635 

0.6185 

1.6734 

1.7507 

0.7635 

0.6185 

1.6734 

Chi 

PhiCF 

HSW 

HSWO 

20000 

20000 

20000 

20000 

1.0002 

1.0088 

0.9814 

1.0198 

1.0034 

1.0108 

0.9522 

1.0235 

1.0005 

0.9992 

1.4187 

1.1168 

1.0955 

0.9071 

0.9056 

1.1593 

1.3144 

0.9071 

0.9056 

1.1593 

Chi 

PhiCF 

HSW 

HSWO 

50000 

50000 

50000 

50000 

1.0004 

1.0019 

1.0020 

0.9950 

1.0003 

1.0033 

0.9816 

1.0002 

1.0322 

0.9927 

1.1283 

1.0428 

1.0949 

0.9169 

0.7463 

0.9313 

0.9828 

0.9169 

0.7463 

0.9313 

Chi 

PhiCF 

HSW 

HSWO 

70000 

70000 

70000 

70000 

1.0000 

1.0002 

0.9994 

0.9966 

1.0002 

0.9989 

0.9911 

0.9965 

1.0125 

0.9663 

1.1442 

0.9717 

1.0245 

0.8354 

0.7973 

0.9056 

0.9834 

0.8354 

0.7973 

0.9056 

Chi 

PhiCF 

HSW 

HSWO 

100000 

100000 

100000 

100000 

1.0002 

1.0005 

0.9991 

1.0065 

1.0017 

0.9982 

0.9912 

1.0056 

0.9963 

0.9330 

1.0794 

0.9860 

1.0484 

0.8755 

0.8074 

0.8269 

0.9120 

0.8755 

0.8074 

0.8269 

 

Table 2. Estimates of the integral 𝑰𝟐(𝒇) with 𝒂𝒋 = 𝟎  using various Halton sequences 

generator N s=5 s=10 s=20 s=30 s=40 

Chi 

PhiCF 

HSW 

HSWO 

500 

500 

500 

500 

1.0024 

1.0094 

0.9415 

0.9287 

1.1193 

1.0765 

1.3837 

1.4227 

0.6592 

0.881 

2.6997 

0.8019 

0.2812 

1.3761 

60.6243 

0.3357 

0.2264 

0.5476 

3.0763 

0.3357 
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Chi 

PhiCF 

HSW 

HSWO 

1000 

1000 

1000 

1000 

0.9821 

1.0001 

0.9193 

0.9316 

0.9436 

0.9826 

1.1756 

1.2205 

0.6299 

0.7139 

1.8391 

3.1918 

0.362 

0.7749 

30.8132 

2.8029 

0.1798 

0.3402 

2.1033 

2.8029 

Chi 

PhiCF 

HSW 

HSWO 

5000 

5000 

5000 

5000 

1.0011 

0.9967 

1.0128 

0.9765 

0.9499 

1.0306 

1.067 

0.8818 

0.9126 

0.7159 

1.2569 

1.2812 

0.4356 

0.5707 

7.5243 

2.0284 

0.2973 

0.3199 

1.2339 

2.0284 

Chi 

PhiCF 

HSW 

HSWO 

10000 

10000 

10000 

10000 

0.9991 

0.9984 

1.0209 

0.9688 

0.9781 

0.9906 

1.0448 

0.9186 

0.9235 

0.9057 

0.9893 

1.1214 

0.664 

0.8752 

4.0488 

1.4821 

1.6802 

0.7388 

0.8383 

1.4821 

Chi 

PhiCF 

HSW 

HSWO 

20000 

20000 

20000 

20000 

1.0001 

0.9999 

1.0034 

0.9971 

0.9777 

0.9897 

1.0271 

1.0332 

1.0233 

1.0433 

0.9487 

0.9316 

0.7919 

0.8272 

2.5576 

0.9248 

1.0352 

0.6252 

0.9713 

0.9248 

Chi 

PhiCF 

HSW 

HSWO 

50000 

50000 

50000 

50000 

0.9998 

0.9995 

0.9969 

1.0189 

0.9961 

0.9873 

0.9942 

1.033 

1.065 

1.301 

1.0171 

1.0316 

0.8885 

0.9456 

1.6338 

0.5701 

1.1911 

0.9905 

0.9654 

0.5701 

Chi 

PhiCF 

HSW 

HSWO 

70000 

70000 

70000 

70000 

0.9999 

0.9996 

0.9942 

1.0012 

0.9962 

0.9941 

1.0034 

1.0443 

1.0204 

1.2423 

0.9974 

0.9977 

0.8618 

0.9106 

1.3644 

0.5744 

1.0573 

0.8928 

0.8502 

0.5744 

Chi 

PhiCF 

HSW 

HSWO 

100000 

100000 

100000 

100000 

1.0001 

0.9998 

0.9981 

0.9982 

0.9985 

0.9978 

0.996 

1.0331 

1.0272 

1.176 

1.0272 

1.1035 

0.9289 

1.0508 

1.195 

1.1058 

1.2608 

0.8357 

0.7236 

1.1058 

 

Table 3. Estimates of the integral 𝑰𝟐(𝒇) with 𝒂𝒋 = 𝟏 using various Halton sequences 

generator N s=5 s=10 s=20 s=30 s=40 

Chi 

PhiCF 

HSW 

HSWO 

500 

500 

500 

500 

1.0000 

0.9986 

0.9791 

1.0256 

1.0079 

0.9978 

1.0708 

1.1040 

0.9815 

0.9756 

1.1042 

0.9910 

0.8962 

1.0516 

1.8841 

1.0900 

0.7541 

0.9248 

1.4721 

1.0900 

Chi 

PhiCF 

HSW 

HSWO 

1000 

1000 

1000 

1000 

0.9969 

0.9976 

0.9599 

0.9893 

0.9940 

0.9919 

1.0041 

1.0309 

0.9868 

0.9912 

0.9939 

1.1423 

0.9095 

0.9626 

1.3896 

1.3591 

0.8206 

0.8760 

1.1939 

1.3591 

Chi 

PhiCF 

HSW 

HSWO 

5000 

5000 

5000 

5000 

0.9998 

0.9995 

1.0051 

0.9847 

0.9965 

0.9996 

1.0158 

0.9876 

0.9962 

0.9791 

1.0198 

1.0148 

0.9539 

0.9719 

1.1364 

1.0776 

0.9255 

0.9201 

1.0779 

1.0776 

Chi 

PhiCF 

HSW 

HSWO 

10000 

10000 

10000 

10000 

0.9997 

0.9996 

1.0076 

0.9954 

0.9982 

0.9976 

1.0161 

1.0044 

0.9964 

0.9886 

1.0070 

1.0390 

0.9633 

0.9948 

1.0681 

1.0961 

0.9917 

0.9400 

1.0498 

1.0961 

Chi 

PhiCF 

HSW 

HSWO 

20000 

20000 

20000 

20000 

0.9999 

0.9999 

1.0022 

1.0022 

0.9985 

0.9919 

1.0116 

1.0118 

0.9944 

0.9958 

1.0070 

1.0192 

0.9761 

0.9910 

1.0529 

1.0325 

0.9801 

0.9587 

1.0558 

1.0325 
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Chi 

PhiCF 

HSW 

HSWO 

50000 

50000 

50000 

50000 

0.9999 

0.9999 

0.9989 

1.0063 

0.9996 

0.9987 

0.9998 

1.0144 

1.0012 

1.0008 

0.9962 

1.0158 

0.9887 

0.9899 

1.0116 

0.9919 

0.9941 

0.9856 

1.0238 

0.9919 

Chi 

PhiCF 

HSW 

HSWO 

70000 

70000 

70000 

70000 

0.9999 

0.9999 

0.9985 

1.0005 

0.9997 

0.9995 

1.0010 

1.0078 

0.9998 

1.0021 

0.9955 

1.0128 

0.9885 

0.9952 

1.0022 

0.9926 

0.9966 

0.9933 

1.0087 

0.9926 

Chi 

PhiCF 

HSW 

HSWO 

100000 

100000 

100000 

100000 

1.0000 

1.0000 

0.9996 

1.0016 

1.0001 

1.0001 

1.0007 

1.0051 

1.0021 

1.0045 

0.9969 

1.0085 

0.9964 

0.9985 

1.0022 

1.0058 

1.0078 

0.9943 

0.9970 

1.0058 

 

Table 4. Estimates of the integral 𝑰𝟐(𝒇) with 𝒂𝒋 = 𝒋 using various Halton sequences 

generator N s=5 s=10 s=20 s=30 s=40 

Chi 

PhiCF 

HSW 

HSWO 

500 

500 

500 

500 

0.9990 

0.9978 

1.0077 

1.0029 

0.9988 

0.9969 

1.0219 

1.0036 

0.9964 

0.9953 

1.0206 

1.0029 

0.9954 

0.9946 

1.0266 

1.0033 

0.9940 

0.9934 

1.0296 

1.0033 

Chi 

PhiCF 

HSW 

HSWO 

1000 

1000 

1000 

1000 

0.9987 

0.9988 

0.9859 

0.9988 

0.9984 

0.9979 

0.9931 

1.0019 

0.9978 

0.9978 

0.9888 

1.0047 

0.9968 

0.9968 

0.9898 

1.0064 

0.9959 

0.9960 

0.9890 

1.0064 

Chi 

PhiCF 

HSW 

HSWO 

5000 

5000 

5000 

5000 

0.9998 

0.9997 

1.0069 

0.9875 

0.9997 

0.9967 

1.0088 

0.9890 

0.9995 

0.9993 

1.0079 

0.9903 

0.9993 

0.9992 

1.0102 

0.9910 

0.9991 

0.9990 

1.0093 

0.9910 

Chi 

PhiCF 

HSW 

HSWO 

10000 

10000 

10000 

10000 

0.9999 

0.9999 

1.0053 

0.9974 

0.9999 

0.9998 

1.0066 

0.9992 

0.9998 

0.9998 

1.0067 

1.0004 

0.9997 

0.9995 

1.0084 

1.0013 

0.9996 

0.9994 

1.0083 

1.0013 

Chi 

PhiCF 

HSW 

HSWO 

20000 

20000 

20000 

20000 

1.0000 

1.0000 

1.0015 

1.0004 

0.9999 

0.9999 

1.0024 

1.0016 

0.9998 

0.9998 

1.0022 

1.0021 

0.9998 

0.9997 

1.0037 

1.0021 

0.9997 

0.9997 

1.0034 

1.0021 

Chi 

PhiCF 

HSW 

HSWO 

50000 

50000 

50000 

50000 

1.0000 

1.0000 

0.9993 

1.0051 

1.0000 

0.9999 

0.9995 

1.0062 

1.0000 

0.9999 

0.9992 

1.0064 

0.9999 

0.9999 

1.0001 

1.0062 

0.9999 

0.9998 

0.9997 

1.0062 

Chi 

PhiCF 

HSW 

HSWO 

70000 

70000 

70000 

70000 

1.0000 

1.0000 

0.9995 

1.0003 

1.0000 

1.0000 

0.9997 

1.0011 

1.0000 

0.9999 

0.9993 

1.0011 

0.9999 

0.9999 

0.9999 

1.0011 

0.9999 

0.9999 

0.9998 

1.0011 

Chi 

PhiCF 

HSW 

HSWO 

100000 

100000 

100000 

100000 

1.0000 

1.0000 

1.0002 

0.9998 

1.0000 

1.0000 

1.0004 

1.0001 

1.0001 

1.0001 

1.0000 

1.0002 

1.0001 

1.0001 

1.0006 

1.0001 

1.0001 

1.0001 

1.0005 

1.0001 
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Table 5. Estimates of the integral 𝑰𝟐(𝒇) with 𝒂𝒋 = 𝒋𝟐 using various Halton sequences 

generator N s=5 s=10 s=20 s=30 s=40 

Chi 

PhiCF 

HSW 

HSWO 

500 

500 

500 

500 

0.9991 

0.9984 

1.0192 

1.0027 

0.9990 

0.9983 

1.0210 

1.0028 

0.9989 

0.9982 

1.0207 

1.0028 

0.9989 

0.9982 

1.0209 

1.0028 

0.9988 

0.9982 

1.0210 

1.0028 

Chi 

PhiCF 

HSW 

HSWO 

1000 

1000 

1000 

1000 

0.9994 

0.9995 

0.9964 

0.9996 

0.9994 

0.9994 

0.9974 

0.9998 

0.9994 

0.9994 

0.9970 

1.0000 

0.9993 

0.9994 

0.9970 

1.0001 

0.9993 

0.9994 

0.9970 

1.0001 

Chi 

PhiCF 

HSW 

HSWO 

5000 

5000 

5000 

5000 

0.9876 

1.0068 

0.9999 

0.9999 

0.9877 

1.0071 

0.9999 

0.9999 

0.9977 

1.0070 

0.9999 

0.9999 

0.9978 

1.0071 

0.9999 

0.9999 

0.9978 

1.0070 

0.9999 

0.9999 

Chi 

PhiCF 

HSW 

HSWO 

10000 

10000 

10000 

10000 

0.9976 

1.0046 

0.9999 

1.0000 

0.9977 

1.0048 

0.9999 

1.0000 

0.9999 

1.0048 

0.9999 

1.0000 

0.9999 

1.0049 

0.9999 

1.0000 

0.9999 

1.0049 

0.9999 

1.0000 

Chi 

PhiCF 

HSW 

HSWO 

20000 

20000 

20000 

20000 

1.0000 

1.0000 

1.0011 

0.9998 

0.9999 

1.0000 

1.0012 

0.9999 

0.9999 

1.0000 

1.0012 

0.9999 

0.9999 

1.0000 

1.0013 

0.9999 

0.9999 

1.0000 

1.0013 

0.9999 

Chi 

PhiCF 

HSW 

HSWO 

50000 

50000 

50000 

50000 

1.0049 

0.9997 

1.0001 

0.9999 

1.0049 

0.9998 

1.0001 

0.9999 

1.0050 

0.9998 

1.0002 

0.9999 

1.0050 

0.9998 

1.0002 

0.9999 

1.0050 

0.9998 

1.0003 

0.9999 

Chi 

PhiCF 

HSW 

HSWO 

70000 

70000 

70000 

70000 

0.9999 

1.0000 

1.0000 

1.0002 

0.9999 

1.0000 

1.0001 

1.0002 

0.9999 

1.0000 

1.0000 

1.0002 

0.9999 

1.0000 

1.0001 

1.0002 

0.9999 

1.0000 

1.0001 

1.0002 

Chi 

PhiCF 

HSW 

HSWO 

100000 

100000 

100000 

100000 

0.9994 

1.0004 

1.0000 

1.0000 

0.9994 

1.0005 

1.0000 

1.0000 

0.9994 

1.0004 

1.0000 

1.0001 

0.9994 

1.0005 

1.0001 

1.0001 

0.9994 

1.0005 

1.0000 

1.0001 
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