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Abstract

The present study is focused on the development of an approximate solution for multi-dimensional
Fredholm integral equations of the second type. To this end, the expansion method was utilized
which reduced the multi-dimensional integral equation to a partial differential one. By constructing
boundary conditions, this partial differential equation was further reduced to an algebraic equation
that could be easily solved with diverse approaches. Furthermore, some theorems were proved for
convergence analysis. At last, the efficiency of the method was illustrated through several numerical
examples.
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1 Introduction

T
he past fifty years have witnessed significant

advancement in the analytical and numerical

solutions for various types of linear and nonlinear

integral equations. Numerous problems could be

modeled in different fields of science as a Fred-

holm integral equation. Various numerical meth-

ods have been developed to solve one and multi-

dimensional integral equations (2.6)-(4.14). Fur-

ther details on analytical solution methods can

be found elsewhere [3, 8].

Here, the second type of multi-dimensional lin-

ear and nonlinear Fredholm integral equations
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was considered:

f(t) = g(t) + λ

∫
I
k(t, s)f(s)ds , t ∈ I, (1.1)

f(t) = g(t) + λ

∫
I
k(t, s)V (f(s))ds , t ∈ I, (1.2)

where λ is a constant, I = [a, b]× . . .× [a, b]︸ ︷︷ ︸
n times

⊆

Rn, and f(s) denotes the unidentified function,

f, g, k ∈ Cn(I) ·V (f(s)) is a nonlinear continuous

function of f(t).

The existence and uniqueness of the solution for a

two-dimensional (NIE) were explored by the de-

generate kernel approach [1], [2].

Existence and uniqueness of Eqs. (1.1) - (1.2) can

be found in Refs. [6, 9, 10, 12, 17].

The development of a high-order numerical
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scheme is of crucial importance as the essential

characteristics of the model can be extensively

applied to the real world.

In this research, a numerical scheme is proposed

based on a simple and fast approach to cope with

the difficulties of solving multi-dimensional inte-

gral equations.

The rest of the paper is organized as follows: Sec-

tion 2 addresses the solution of the linear multi-

dimensional integral equation; while the solution

of the nonlinear multi-dimensional integral equa-

tion is presented in Section 3.

The solution of f(s) in Eqs. (1.1) - (1.2) can be

expanded as follows:

f(s) = f(t) +

m∑
k=1

1

k!
Dkf(t) ·

h · h, · · · , h︸ ︷︷ ︸
k times


+Rm(t, c), (1.3)

or

f(s) = f(t) +
m∑
k=1

1

k!

(
∂

∂t1
+ · · ·+ ∂

∂tn

)k

f(t)

· (h · h, · · · , h)︸ ︷︷ ︸
ktimes

+Rm(t, c),

The above equation is the Taylor expansion of

f(s) function around the t point. In this equa-

tion, the variable of s-t is changed with h. Note-

worthy, n shows the dimensional of the integral

equation, while k represents the terms of Taylor

expansion varying from 0 to m. Dk also denotes

the k-times derivative of f(s) at t point. More

over, k ≤ m.

Rm is the truncation error of Taylor expansion

and c stands for a point on line segment of s-t.

2 Solution for linear multi-
dimensional integral equation

By substituting the first m terms of Eq. (1.3)

by f(s) in Eq. (1.1) and ignoring the term

∫
I k(t, s)Rm(t, c)ds, one can find:

f(t)− λ

∫
I
k(t, s)

(
f(t)

+
m∑
k=1

1

k!

(
∂

∂t1
+ · · ·+ ∂

∂tn

)k

f(t)

· (h · h, · · · , h)︸ ︷︷ ︸
k times

)
ds ≃ g(t). (2.4)

Therefore, Eq. (2.4) can be developed into a par-

tial differential equation. Nonetheless, this par-

tial differential equation requires suitable bound-

ary conditions.

To construct the boundary conditions, both sides

of Eq. (1.1) were first differentiated to reach the

following differential equations:

∂f
∂t1

= ∂g
∂t1

+ λ
∫
I
∂k(t,s)
∂t1

f(s)ds,

...

∂if(t)

∂tij
= ∂ig

∂tij
+ λ

∫
I
∂ik(t,s)

∂tij
f(s)ds.

(2.5)

Where i = 1, . . . ,m, j = 1, . . . , n. Next, f(t) is

the first term of Eq. (1.3) which replaced f(s).

∂i

∂tij
f(t) ≃ ∂i

∂tij
g(t)

+ λ

∫
I

∂i

∂tij
k(t, s)f(s)ds. (2.6)

Now, a combination of Eqs. (2.4) and (2.6) will

leads to a linear equation.

3 Solution for nonlinear multi-
dimensional integral equation

By substituting the first m terms of Eq. (1.3)

with f(s) in Eq. (1.1) and ignoring the term∫
I k(t, s)Rm(t, c)ds, we will have:

f(t)− λ

∫
I
k(t, s)V (f(t)

+

m∑
k=1

1

k!

(
∂

∂t1
+ · · ·+ ∂

∂tn

)k

f(t)

· (h · h, · · · , h)︸ ︷︷ ︸
k times

)ds ≃ g(s). (3.7)
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Thus, Eq. (3.7) is a partial differential equation

that requires proper boundary conditions.

To this end, both sides of Eq. (1.2) were differ-

entiated to reach the following differential equa-

tions:



∂f
∂t1

= ∂g
∂t1

+ λ
∫
I
∂k(t,s)
∂t1

V (f(s))ds,

...

∂if(t)

∂tij
= ∂ig

∂tij
+ λ

∫
I
∂ik(t,s)

∂tij
V (f(s))ds.

(3.8)

Where i = 1, . . . ,m, j = 1, . . . , n. Next, f(s) is

substituted by f(t) to obtain,

∂i

∂tij
f(t) ≃ ∂i

∂tij
g(t) + λ

∫
I

∂i

k
(t, s)V (f(t))ds.

(3.9)

Now a combination of Eqs. (3.7) and (3.9) will

be a nonlinear equation.

To further illustrate the method, it was utilized

for n = 2:

f(x, y)− λ

∫ b

a

∫ b

a
k(x, y, s, t)

V

(
m∑
i=0

m∑
j=0

1

i! j!

∂i∂j

∂xi∂yj
f(x, y)(s− x)i

(t− y)j
)
ds dt ≃ g(x, y). (3.10)

The above partial differential equations are of m-

order and require appropriate boundary condi-

tions. which can be established by differentiating

both sides of Eq. (1.1) for n = 2 to obtain the

following differential equations:

∂f(x,y)
∂x = ∂g(x,y)

∂x

+λ
∫ b
a

∫ b
a

∂k(x,y,s,t)
∂x V (f(s, t))ds dt,

∂f(x,y)
∂y = ∂g(x,y)

∂y

+λ
∫ b
a

∫ b
a

∂k(x,y,s,t)
∂y V (f(s, t))ds dt,

...

∂i∂j

∂xi∂yj
f(x, y) = ∂i∂j

∂xi∂yj
g(x, y)

+λ
∫ b
a

∫ b
a

∂i∂j

∂xi∂yj
k(x, y, s, t)V (f(s, t))ds dt.

(3.11)

The first term of Taylor’s expansion of f(s, t) is

introduced in Eq. (1.3) for n = 2. f(s, t) is then

replaced by f(x, y) in the above system for each

j = 1, . . . ,m. In other words,

∂i∂j

∂xi∂yj
f(x, y) ≃ ∂i∂j

∂xi∂yj
g(x, y)

+ λ

∫ b

a

∫ b

a

∂i∂j

∂xi∂yj
k(x, y, s, t)

V (f(x, y))ds dt. (3.12)

Now using a combination of Eqs. (3.10) and

(3.12), one can deduce that

f(x, y)− λ

∫ b

a

∫ b

a
k(x, y, s, t)

V (Aij +Bij)ds dt

≃ g(x, y). (3.13)

Where

Aij =

m∑
i=0

m∑
j=0

1

i! j!

∂i∂j

∂xi∂yj
g(x, y),

And

Bij = λV (f(x, y))

[
m∑
i=0

m∑
j=0

1

i! j!∫ b

a

∫ b

a

∂i∂j

∂xi∂yj
k(x, y, s, t)ds dt

]
× (s− x)i(t− y)j .
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Note that Eq. (3.13) is a nonlinear equation that

can offer the desired approximation fn(x, y).

This equation can be solved by iterations of a

nonlinear solver; here, Newtons method was uti-

lized.

4 Convergence analysis

This section shows the convergence properties

of the presented scheme. Let (C[I], ∥.∥) Be the

space of all continuous functions on interval I

with the following norm

∥g(t)∥= max |g(t)|∀t∈I .

For the error associated with the proposed Taylor

series expansion method, Eq. (3.7) is considered

as:

f(t) = g(t) + λ

∫
I
k(t, s)

V

(
m∑
k=0

1

k!
Dkf(t) (h, h, . . . , h)︸ ︷︷ ︸

k times

+Rm(t, C)ds

)
. (4.14)

By differentiating both sides of Eq. (1.2), we will

arrive at:

f (i)(t) = g(i)(t)+λ

∫
I
k(i)(t, s)V (f(s))ds. (4.15)

For i = 1, . . . ,m. f(s) (Eq. (1.3)) can be applied

in Eq. (4.15). In other words, Eq. (4.15) can be

rewritten as:

f (i)(t) = g(i)(t) + λ

∫
I
k(i)(t, s)

V

(
m∑
k=0

1

k!
Dkf(t) · (h, h, . . . , h)

+Rm(t, C)ds

)
ds. (4.16)

f̄ (i)(t) is the approximate solution of the above-

mentioned numerical method thus it can be used

in Eq. (4.14)

f̄ (i)(t) = g(i)(t) + λ

∫
I
k(i)(t, s)

V

(
m∑
k=0

1

k!
Dkf(t)(h, h, . . . , h)

)
ds. (4.17)

The following equation is achieved based on Eqs.

(4.16) and (4.17) and using the Lipshitz condition

and the mean value theorem(
f (i)(t)− f̄ (i)(t)

)
− λ

∫
I
k(i)(t, s)

∂V

∂f
(θi)

m∑
k=0

1

k!
Dk
(
f(t)− f(t)

)
· (h, h, . . . , h)ds

= λ

∫
I
k(i)(t, s)

∂V

∂f
(θi)Rm(t, c)ds. (4.18)

For some θi, s, t ∈ I and i = 1, . . . ,m. let

εi ≡ f (i)(t)− f̄ (i)(t),

aij ≡ δij − λ

∫
I
k(i)(t, s)

∂V

∂f
(θi)(h, h, . . . , h)ds,

fi ≡ λ

∫
I
k(i)(t, s)

∂V

∂f
(θi)Rm(t, c)ds.

For i = 1, . . . ,m, j = 1, . . . , n. Then, for each

s, t ∈ I the error εi(s) of Taylor series, the ex-

pansion method must satisfy the following matrix

equation

Anε̃n = Fn.

Where An = [aij ], ε̃n = [εi] and Fn = [fi] for

i = 1, . . . ,m, j = 1, . . . , n. Let ∥.∥ denote a vector
norm as well as its corresponding matrix norm,

then

∥ε̃n∥ ≤ ∥A−1
n ∥∥Fn∥.

5 Numerical examples

The accuracy and effectiveness of the method are

explored in this section. The computations were

carried out using Mathematica 7 software on a

personal computer.

Example 5.1. Consider a two-dimensional lin-

ear Fredholm integral equation [13]

f(x, y) = 1− 1

xy

(
e−4(x+y) − e−4y − e−4x

+ 1
)
+

∫ 4

0

∫ 4

0
e−xs−ytf(s, t)ds dt.

Where (x, y) ∈ [0, 4) × [0, 4). The exact solution

is f(x, y) = 1.
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This problem was considered in Ref. [13]. In

2010, Liang and Lin introduced a fast numerical

scheme based on piecewise polynomial interpola-

tion and quadrature rules. Their result involved

4 iterations and N = 512 (N2 denotes the num-

ber of quadrature points) which showed the error

of 2.00e - 10. The results of the current study are

listed in Table 1.

Table 1: Numerical solution of Example 5.1 for m =
1

(x, y) Absolute error

(.5, .5) 1.99× 10−15

(.1, .1) 4.55× 10−15

(1.5, 1.5) 1.33× 10−15

(2, 2) 0.

(2.5, 2.5) 0.

(3, 3) 1.11× 10−16

(3.5, 3.5) 3.33× 10−16

(4, 4) 1.11× 10−16

E∞ 4.55× 10−15

Example 5.2. Consider a three-dimensional

linear Fredholm integral equation

f(x, y, z) =
1

10
(10

√
x− xyz)

+

∫ 1

0

∫ 1

0

∫ 1

0
xyzrstf(r, s, t)drdsdt.

Where (x, y, z) ∈ [0, 1)× [0, 1)× [0, 1).

The exact solution is f(x, y, z) =
√
x. The solu-

tion for f(x, y, z) can be determined by expansion

as described in Section 2 whose results are pre-

sented in Table 2 for m = 8, 10, and 20.

Example 5.3. Consider a three-dimensional

linear Fredholm integral equation

5f(x, y, z) =
5xyz − sinx sin y sin z

xyz

+

∫ 1

0

∫ 1

0

∫ 1

0
cosxr cos sy cos zt

f(r, s, t)drdsdt.

Where (x, y, z) ∈ [0, 1)× [0, 1)× [0, 1).

While f(x, y, z) = 1 is an exact solution, the so-

lution of f(x, y, z) can be obtained by expansion

Table 2: Numerical solution of Example 5.2

(x, y, z) Exact Error
f(x, y, z) m = 8

(.2, 0, .2) 0.447214 5.55112× 10−17

(.4, 0, .4) 0.632456 1.11022× 10−16

(.6, 0, .6) 0.774597 2.22045× 10−16

(.7, .1, .3) 0.836660 4.26189× 10−6

(.8, 0, .8) 0.894427 1.11022× 10−16

(.8, .4, 0) 0.894427 1.022× 10−16

(1, 0, 1) 1 9.1587× 10−6

(x, y, z) Error Error
m = 10 m = 20

(.2, 0, .2) 0. 0.1

(.4, 0, .4) 1.11022 1.11022
×10−16 ×10−16

(.6, 0, .6) 0. 0.

(.7, .1, .3) 3.89667 5.45793
×10−6 ×10−6

(.8, 0, .8) 0. 0.

(.8, .4, 0) 0. 0.

(1, 0, 1) 0. 0.

as described in Section 2. The results are listed

in Table 3 for m = 1.

Table 3: Numerical solution of Example 5.3 for m =
1

(x, y, z) Exact Error
f(x, y, z)

(.1, .1, .1) 1 1.64093× 10−10

(.1, .3, .1) 1 3.3884× 10−13

(.3, .3, .3) 1 5.08482× 10−14

(.5, .5, .5) 1 1.33227× 10−15

(.7, .7, .7) 1 2.24045× 10−16

(.9, .9, .9) 1 2.24045× 10−16

(1, .4, .6) 1 4.44089× 10−16

Example 5.4. Consider the following three-

dimensional nonlinear Fredholm integral equation

f(x, y, z) =
1

72
(−7− cos 2 + 72xz cos y

− 5 sin 2) +

∫ 1

0

∫ 1

0

∫ 1

0
(s+ t+ r)

f2(r, s, t)drdsdt.
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Where (x, y, z) ∈ [0, 1)× [0, 1)× [0, 1).

f(x, y, z) = xz cos y is the exact solution. The

solution for f(x, y, z) can be attained by Taylor-

series presented in Section 2 whose results are

listed in Table 4 for m = 8.

Table 4: Numerical solution of Example 5.4 for m =
8

(x, y, z) Exact Error
f(x, y, z)

(0, 0, 0) 0. 3.25834× 10−8

(.2, .2, .2) 0.0392027 1.03091× 10−8

(.2, .4, 0) 0 9.19683× 10−10

(.4, .4, .4) 0.14737 9.19683× 10−10

(.6, .6, .6) 0.297121 1.17736× 10−9

(.8, .8, .8) 0.445892 2.75135× 10−8

(.9, .3, .1) 0.0859803 1.37462× 10−11

(1, 1, 1) 0.540302 3.06287× 10−7

Example 5.5. Consider a three-dimensional

nonlinear Fredholm integral equation

f(z, x, y) =
1

144
(−11 + 3 cos3 1

+ 144xz cos y − 4 sin 2)

+

∫ 1

0

∫ 1

0

∫ 1

0
(sr sin t+ 1)

f2(r, s, t)drdsdt.

Where (x, y, z) ∈ [0, 1)× [0, 1)× [0, 1).

The exact solution is f(x, y, z) = xz cos y. The

solution for f(x, y, z) can be abtained by expan-

sion. The results are presented in Table 5 for

m = 10.

Table 5: Numerical solution of Example 5.5 for m =
10

(x, y, z) Exact Error
f(x, y, z)

(0, 0, 0) 0. 0.00156026

(.2, .2, .2) 0.0392027 0.00156026

(.4, .4, .4) 0.14737 0.00156026

(.6, .6, .6) 0.297121 0.00156026

(.8, .8, .8) 0.445892 0.00156026

(1, 1, 1) 0.540302 0.00156026

Example 5.6. Consider the following two-

dimensional nonlinear Fredholm integral equation

[4]

f(x, y) = x cos y − 1

8

− 7

24
(sin 1)(cos 1)− 1

12
(cos 1)2

+

∫ 1

0

∫ 1

0
(s+ t)f2(s, t)dsdt.

Where (x, y) ∈ [0, 1)× [0, 1).

The exact solution is f(x, y) = x cos y.

The present approach gives the absolute error of

the order of 10−9 for m = 10. The Mathematica

software was utilized to implement the developed

approach using the routine command of Findroot.

In this routine command, the default iteration

setting is at most 100 until the approach con-

verges to the desired solution and the solution

time is 00 : 02.45.93. Recently, this example

has been solved by the Chebyshev collocation

method in [4] with the best absolute error of

E∞ = 2.3e− 8.

Table 6: Numerical solution of Example 5.6 for m =
10

(x, y) Absolute error

(0, 0) 1.86084× 10−9

(.2, .2) 4.2823× 10−10

(.4, .4) 2.23158× 10−11

(.6, .6) 2.18681× 10−11

(.8, .8) 9.08× 10−10

(1, 1) 1.58983× 10−9

E∞ 3.51× 10−9

6 Conclusion

The current article proposed an expansion ap-

proach for solving multi-dimensional Fredholm

integral equations. This technique is highly

simple with low computational costs. Analyt-

ical solution of multi-dimensionalFredholm in-
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tegral equations is a challenging task, requir-

ing an approximate solution in many cases.

Therefore, the developed technique can be ex-

tended for other classes of integral equations such

as multi-dimensional Volterra integral equations

and multi-dimensional mixed Volterra- Fredholm

integral equations
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