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Abstract

In this paper we introduce the concept of multiplication-like modules and we obtain some related
results. We show that an R-module M is multiplication-like if and only if for each ideal I of R,
I = (IM :R M). We prove that any multiplication-like module is faithful and r-multiplication. So we
get that any flat and multiplication-like module is faithfully flat.
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1 Introduction

T
hroughout this paper, all rings are com-
mutative with identity and all modules

are unitary. Let M be an R-module. For a
submodule N of M , let (N :R M) denote the
set of all elements r in R such that rM ⊆ N .
The annihilator of M , denoted by AnnR(M),
is (0 :R M). A proper submodule N of M is
called prime (primary) if rx ∈ N , for r ∈ R
and x ∈ M , implies that either x ∈ N or
r ∈ (N :R M) (rn ∈ (N :R M), for some
n ∈ N). We denote the set of prime submodules
of M by Spec(M). For a submodule N of M ,
V (N) denotes {P ∈ Spec(M)|N ⊆ P}, and
rad(N) =

∩
V (N), is called the radical of N and

was introduced in [9], [10] and [11]. A proper
submodule N of M is said to be primary-like if
rm ∈ N , for r ∈ R and m ∈ M , implies that
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either m ∈ rad(N) or r ∈ (N :R M) (see [7]).
It is said that M is a multiplication module, if
for each submodule N of M , there is an ideal
I of R, such that N = IM . Equivalently, M is
a multiplication module if and only if for each
submodule N of M , we have N = (N :R M)M
[5] and [6].
In [3] the notion of a comultiplication module
was introduced as a dual of the concept of a
multiplication module. An R-module M is
called comultiplication, if for every submodule
N of M , there exists an ideal I of R such that
N = (0 :M I). For example, the Z-module Zp∞ is
a comultiplication module since all of its proper
submodules are of the form (0 :M P iZ) for
i = 0, 1, .... It is clear that M is comultiplication
if and only if for every submodule N of M , we
have N = (0 :M (0 :R N)). An R-module M is
said to be strong comultiplication, if for every
submodule N of M there is exactly one ideal I
of R with N = (0 :M I) (see[4]).
M is said to be an r-multiplication module, when
IM ̸=M for every proper ideal I of R (see [12]).
A non-zero submodule N of M is said to be
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second, if for each a ∈ R, the homomorphism
N−→a N is either surjective or zero [15]. An
R-module M is said to be distributive, if the
lattice of its submodule is distributive, i.e.
(X + Y ) ∩ Z = (X ∩ Z) + (Y ∩ Z), for any of
its submodules X,Y and Z. A non-zero module
M over a ring R is said to be prime, if the
annihilator ofM is the same as the annihilator of
N for every non-zero submodule N ofM (see [2]).

In this article, we introduce multiplication-
like module and obtain some basic results and
characterizations.

2 Multiplication-Like Modules

Definition 2.1. An R-module M is said
multiplication-like, if for any ideal I of R, there
exists a submodule N of M such that I = (N :R
M).

Example 2.1. (i) Every vector space is
multiplication-like.
(ii) R[X] is a multiplication-like R-module.
(iii) Q, Zn and Zp∞ as Z-module are not
multiplication-like.

It is clear that every free module is
multiplication-like; but M = Z ⊕ Z2 is a
multiplication-like Z-module, which is not free.

Lemma 2.1. An R-module M is multiplication-
like if and only if for each ideal I of R, I =
(IM :R M).

Proof. The sufficiency is clear. Conversely, sup-
pose that M is a multiplication-like. Then there
exists a submodule N of M such that I =
(N :R M). So we have IM ⊆ N . Hence
I ⊆ (IM :R M) ⊆ (N :R M) = I. This implies
that I = (IM :R M) as desired.

Proposition 2.1. Let M be an R-module. Then
M is multiplication-like if and only if for every
ideal I of R, there exist submodules Ni of M (i ∈
J), such that I =

∑
i∈J(Ni :R M) = (

∑
i∈J Ni :R

M).

Proof. Let M be multiplication-like and let I be
an ideal of R. Then I = (IM :R M). On the
other hand, I =

∑
ri∈I Rri and for each ri ∈ I,

Rri = (riM :R M). So we have
I =

∑
ri∈I Rri =

∑
ri∈I(riM :R M) =

(
∑

ri∈I riM :R M).

Hence the proof is completed.

Theorem 2.1. Let M be an R-module. Then
the following statements are equivalent.

(i) M is multiplication-like.

(ii) For every ideal I of R and each sub-
module N of M with I ⊂ (N :R M), there
exists a submodule L of M such that L ⊂ N and
I = (L :R M).

(iii) For every ideal I of R and each sub-
module N of M with I ⊂ (N :R M), there
exists a submodule L of M such that L ⊂ N and
I ⊆ (L :R M).

Proof. (i)=⇒ (ii) Let I ⊂ (N :R M). Since
M is multiplication-like, I = (IM :R M). Put
L = IM ∩N . Since I = (IM :R M) ⊂ (N :R M),
hence L ⊂ N and we have
(L :R M) = (IM ∩ N :R M) = (IM :R
M) ∩ (N :R M) = I.

(ii) =⇒ (iii) It is obvious.

(iii) =⇒ (i) Let I be an ideal of R and
put
H = {L : L is a submodule of M and I ⊆ (L :R
M)}.

Clearly H is a non-empty set, so by Zorn,s
Lemma, H has a minimal member like K and
so I ⊆ (K :R M). Assume that I ̸= (K :R M).
Then by part
(iii), there exists a submodule U of M with
U ⊂ K and I ⊆ (U :R M). But this is a
contradiction by the choice of K. Thus we
have I = (K :R M). This shows that M is
multiplication-like.

Example 2.2. Let M = Z6 and R = Z6. Then
M is multiplication-like but, 2̄Z6 and 3̄Z6 are not
multiplication-like modules.

Let M be a torsion-free R-module. Clearly,
every non-zero cyclic submodule of M is a
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multiplication-like R-module. But, if every non-
zero cyclic submodule of an R-module M is
multiplication-like, then M is not necessarily
multiplication-like. As the following example
Shows:

Example 2.3. LetM = Q and R = Z. Then ev-
ery non-zero cyclic submodule of M is free and so
multiplication-like; but Q is not a multiplication-
like R-module.

Theorem 2.2. Let R be a comultiplication ring
and M be a faithful R-module. Then M is a
multiplication-like R-module.

Proof. Assume that I is a proper ideal of R and
rM ⊆ IM , for r ∈ R. Then rAnnR(I)M = 0.
Since M is faithful and R is a comultiplication
ring, we have r ∈ I. Thus M is a multiplication-
like module.

It is straightforward to prove that R is a co-
multiplication ring if and only if (I :R J) =
(AnnR(J) :R AnnR(I)), for each ideals I and J
of R. So by Theorem 2.2, we have:

Corollary 2.1. Let R be a ring such that for ev-
ery ideal I and J of R, (I :R J) = (AnnR(J) :R
AnnR(I)). Then every faithful R-module is
multiplication-like module.

By Example 3.8 [3] and Theorem 2.2, we obtain
the following corollary.

Corollary 2.2. Let R be a semi-simple ring.
Then every faithful R-module is multiplication-
like.

Corollary 2.3. Let M be a strong comultiplica-
tion module which has a maximal submodule over
a reduced ring R (recall that a reduced ring is one
with no nilpotents). Then M is a multiplication-
like R-module.

Proof. As M is strong comultiplicatin, then
AnnR(M) = 0. Now it follows easily from Corol-
lary 4.5 [12] and Corollary 2.2.

By Proposition 4.3 [12] and Theorem 2.2, we
get the following corollary.

Corollary 2.4. Let M be a non-zero multiplica-
tion and strong comultiplication R-module. Then
M is a multiplication-like R-module.

Clearly, ifM
′
is a multiplication-like R-module

and ρ :M −→M
′
is an R-epimorphism, then M

is a multiplication-like module.

Also, let M be an R-module and N be a
submodule of M . If M

N is a multiplication-like
R-module, then we can conclude that M is a
multiplication-like R-module. But, the converse
is not true in general, as the following example
shows:

Example 2.4. Z as Z-module is a
multiplication-like R-module, but for submodule
nZ, Z

nZ is not a multiplication-like Z-module.

Lemma 2.2. Let M be a multiplication-like
R-module.

(i) If for submodule N of M , N ⊆ IM for
each non-zero ideal I of R and M

N is faithful,
then M

N is a multiplication-like R-module.

(ii) If M
′
is a faithful R-module, ρ :M −→M

′
is

an epimorphism and for any non-zero ideal I of
R, ker(ρ) ⊆ IM , then M

′
is a multiplication-like

R-module.

Proof. We have I(MN ) = IM
N . Hence M

N is a
multiplication-like R-module.

(ii) This is clear by part (i).

Corollary 2.5. Let N be a faithful second sub-
module of a multiplication-like R-module M .
Then for every non-zero ideal I of R, there is
a submodule L of M

N such that I = (L :R
M
N ).

Proof. Since N is second and faithful, we have
that IN = N , for each non-zero ideal I of R.
So N ⊆ IM . By Lemma 2.2 (i), the proof is
complete.

Proposition 2.2. Let M be a multiplication-like
R-module and I be an ideal of R. Then M

IM is a
multiplication-like R

I -module.

Proof. It is enough to prove that for each ideal J
of R containing I, (JI (

M
IM ) :R

I

M
IM ) ⊆ J

I . Since M

is multiplication-like, we have J = (JM :R M).
If (r + I) ∈ (JI (

M
IM ) :R

I

M
IM ), then for every

x ∈M , (r + I)(x+ IM) ∈ J
I (

M
IM ) = JM

IM .
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This implies that rx ∈ JM . So we have
that r ∈ J . It follows r + I ∈ J

I .

Corollary 2.6. LetM be a multiplication-like R-
module. Then for any ideal I of R such that I ⊆
AnnR(M), M is a multiplication-like R

I -module.

Remark 2.1. The converse of previous corol-
lary is not true in general. For example, Zn is
a multiplication-like Zn-module, while Zn as Z-
module is not multiplication-like.

The following proposition shows the behavior
of modules that are multiplication-like module
over localizations.

Proposition 2.3. Let M be an R-module and S
be a multiplicative closed subset of R.

(i) If M is a finitely generated multiplication-like
R-module, then MS is a multiplication-like
RS-module.

(ii) If MS is a multiplication-like RS-module
and for any ideal I of R and any r /∈ I,
S ∩ (I :R r) = ∅, then M is a multiplication-like
R-module.

Proof. (i) Since M is a multiplication-like mod-
ule, I = (IM :R M) for any ideal I of R. So
we have IS = (ISMS :RS

MS), as M is finitely
generated.

(ii) Let I be an ideal of R and r ∈ (IM :R M). So
r
1MS ⊆ ISMS . Since MS is a multiplication-like
RS-module, r

1 ∈ IS . So there exists u ∈ S such
that ur ∈ I. If r /∈ I, then u ∈ S ∩ (I :R r) which
is a contradiction. Hence r ∈ I.

We now give an example to show that in Propo-
sition 2.3 (ii), the condition is necessary.

Example 2.5. Let M = Q, R = Z and S = Z−
{0}. Then MS is a vector space on field RS = Q.
So MS is a multiplication-like RS-module; but M
is not a multiplication-like R-module.

Corollary 2.7. Let (R,m) be a local ring and
M be a finitely generated R-module. Then M is
a multiplication-like R-module if and only if Mm

is a multiplication-like Rm-module.

Proposition 2.4. Let M and N be R-modules
and M ⊗R N be a multiplication-like mod-
ule. Then M and N are multiplication-like R-
modules.

Proof. Let I be an ideal of R and r ∈ (IM :R M).
Then rM ⊗R N ⊆ IM ⊗R N . This implies that
r(M ⊗R N) ⊆ I(M ⊗R N), so that r ∈ (I(M ⊗R

N) :R M ⊗R N) = I. Hence M and similarly N
are multiplication-like R-modules.

It is clear that, if M is a multiplication-like
R-module and N is a free R-module, then the
converse of above proposition is true.

Proposition 2.5. Let M1 and M2 be two R-
modules which M1 or M2 is multiplication-like
R-module. Then M1⊕M2 is a multiplication-like
R-module.

Proof. Let I be an ideal of R such that r(M1 ⊕
M2) ⊆ I(M1 ⊕M2) and M1 be a multiplication-
like R-module. Then I = (IM1 :R M1) which
implies that r ∈ I. Therefore, M1 ⊕ M2 is a
multiplication-like R-module.

The converse of above lemma is not true in gen-
eral.

Example 2.6. Consider M = Z6 = (2̄) ⊕ (3̄)
and R = Z6. Then M is a multiplication-like R-
module. But it is easy to see that N = 2̄Z6 and
L = 3̄Z6 are not multiplication-like module.

Corollary 2.8. Let Mi (i ∈ I) be R-modules
such that for some i, Mi is a multiplication-like
R-module. Then ⊕i∈IMi is a multiplication-like
R-module.

Lemma 2.3. Let R be a ring and M be an R-
module such that I ̸= (IM :R M), for some ideal
I. Then there exists an ideal K and r /∈ K such
that I ⊆ K and (K :R r) is maximal ideal of ring
R.

Proof. By hypothesis there exists an element r in
R such that r ∈ (IM :R M) but r /∈ I. Let S
denote the collection of ideals L of R such that
I ⊆ L but r /∈ L. Clearly S is non-empty and so
by Zorn,s Lemma, S contains a maximal member
like K.
Thus I ⊆ K and r /∈ K. Let s be an element of
R such that s /∈ (K :R r). It follows that K is a
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proper subset of K+Rsr and hence K+Rsr /∈ S.
Thus r ∈ K +Rsr. Therefore, there exists b ∈ R
and u ∈ K such that r = u+bsr and so (1−bs)r ∈
K. It follows that (K :R r) is a maximal ideal of
R.

Theorem 2.3. Let R be a ring.Then the follow-
ing statements are equivalent for R-module M .

(i) M is a multiplication-like R-module.

(ii) I = (IM :R M), for every ideal I of
R.

(iii) Given ideals I, J of R, IM ⊆ JM im-
plies that I ⊆ J .

(iv) Given any ideal I of R and r ∈ R,
rM ⊆ IM implies that r ∈ I.

(v) Given any ideal I of R and r ∈ R,
rM ⊆ IM implies that (I :R r) is not a maximal
ideal.

Proof. (i) ⇐⇒ (ii) By Lemma 2.1.

(ii) =⇒ (iii) Let IM ⊆ JM . Then
(IM :R M) ⊆ (JM :R M). By (ii), I ⊆ J .

(iii) =⇒ (ii) We know that always
IM = (IM :R M)M . By (iii), I = (IM :R M).

(iii) ⇐⇒ (iv) It is obvious.

(iv) =⇒ (v) Let rM ⊆ IM . By (iv), r ∈ I, and
hence (I :R r) = R. Therefore, (I :R r) is not a
maximal.

(v) =⇒ (iv) Let rM ⊆ IM such that r /∈ I. By
Lemma 2.3, there exists an ideal K of R such
that I ⊆ K, r /∈ K and (K :R r) is maximal
ideal. But this is a contradiction.

3 Properties of Multiplication-
Like Modules

In this section we shall show that multiplication-
like modules have some interesting properties.

Theorem 3.1. Let M be a multiplication-like
R-module. Then

(i) M is a faithful module.

(ii) M is an r-multiplication module.

(iii) The set of all prime submodules of an
R-module M is non-empty (SpecR(M) ̸= ∅).

(iv) For every ideal I of R, AnnR(I) =
AnnR(IM).
(v)
Z(R) = {a ∈ R : ∃ non −
zero submodule N s.t (N :R M) ̸= 0, a(N :R
M) = 0}
(here Z(R) denotes the set of zero divisor of R).

Proof. (i) By Lemma 2.1, 0 = (0M :R M) =
AnnR(M).

(ii) If there exists a proper ideal I of R such that
IM = M , then I = (IM :R M) = R. This is a
contradiction and the proof is completed.

(iii) Let m ∈ Max(R). By part (ii),
m = (mM :R M). This shows that mM is
a prime submodule of M .

(iv) It is enough to prove that AnnR(IM) ⊆
AnnR(I). Now let r ∈ AnnR(IM), then
rIM = 0. Now by using part (i), we have Ir = 0.

(v) Let a ∈ Z(R). Then there exists
0 ̸= b ∈ R such that ab = 0. It implies that
a(bM :R M) = 0, because M ia multiplication-
like module. The converse is clear.

The following examples show that Converse
parts of the previous theorem do not hold in gen-
eral.

Example 3.1. Let R = Z and M = Q. It is
clear that M satisfies in parts (i), (iii), (iv) and
(v), but M is not a multiplication-like R-module.

Example 3.2. Let R = Z and M =⊕
p∈max(R) Zp. Clearly M is an r-multiplication

and 4Z ̸= (4ZM :R M) = 2Z. Therefore M is
not a multiplication-like module.
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Lemma 3.1. LetM be an R-module. ThenM is
multiplication-like and second module if and only
if M is a vector space.

Proof. It is sufficient to show that R is a field.
For each non-unit such as r ∈ R, rM ̸=M , as M
is multiplication-like module. So r = 0, beacause
M is second and faithful. The set of non-units
is zero ideal. Therefore R is a field and M is a
vector space.

Lemma 3.2. Let M be an r-multiplication
module which every proper submodule of it is
multiplication-like R-module. Then M is a
multiplication-like R-module.

Proof. Let I be an ideal of R. By Lemma 2.1,
I = (I2M :R IM). Let rM ⊆ IM . It follows
that IrM ⊆ I2M . So we have r ∈ I. Therefore,
M is a multiplication-like R-module.

Corollary 3.1. Let M be a finitely gener-
ated R-module that every submodule of it is
multiplication-like R-module. Then M is a
multiplication-like module.

Example 2.2, show that if R-module M
is multiplication-like module, then every non-
zero submodule of M need not necessarily be
multiplication-like. By Theorem 3.1 (ii) and
Proposition 2.11.24 [13], we get the following
lemma.

Lemma 3.3. LetM be a flat and multiplication-
like R-module. Then M is a faithfully flat.

If M is a multiplication (comultiplication)
module, then it is not concluded that M is a
multiplication-like and conversely.

Example 3.3.
(i) Zn as Z-module is a multiplication module,
but it is not multiplication-like.

(ii) Z ⊕ Z as Z-module is multiplication-
like, but is not multiplication.

(iii) Zp∞ as Z-module is a comultiplication,
but is not multiplication-like.

(iv) Z as a Z-module is multiplication-like
module, but is not a comultiplicatiom module, by
Example 3.9 [3].

Remark 3.1. By Example 2.2, we can see that
if R-module M is multiplication-like, then every
submodule of M is not r-multiplication.

Proposition 3.1. Let R be a Noetherian domain
which is not a field and M be a multiplication-like
R-module. Then every non-zero maximal sub-
module of M , is r-multiplication.

Proof. Suppose that N is a non-zero maximal
submodule of M . If N is not an r-multiplication,
then there exists a proper ideal I of R such that
IN = N .
Since N is a maximal submodule and M is
multiplication-like, we must have N = IM and
I = I2 = (N :R M). Hence there exists a ∈ I
such that (1 − a)I = 0. Since R is domain, we
have I = R or I = 0, which is a contradiction.

Proposition 3.2. Let R be a local Noetherian
ring that is not a field and M be a multiplication-
like R-module. Then every non-zero maximal
submodule of M is r-multiplication.

Proof. Suppose that N is a non-zero maximal
submodule of M . If N is not an r-multiplication,
then there exists a proper ideal I of R such that
IN = N . Since N is a maximal submodule and
M is multiplication-like, we have N = IM and
I = I2 = (N :R M). By Nakayama lemma,
I = 0, which is a contradiction. Hence N is an
r-multiplication.

Lemma 3.4. Let M be a multiplication R-
module. Then M is a multiplication-like if and
only if M is finitely generated and faithful.

Proof. Let M be a multiplication-like R-module.
By Theorem 3.1,M is faithful and for each proper
ideal I of R, IM ̸= M . It follows that M is
finitely generated. Conversely, let I be a proper
ideal of R. Note that IM = (IM :R M)M .
Since M is multiplication, faithful and finitely
generated, I = (IM :R M). Therefore, M is
multiplication-like.

Lemma 3.5. Let M be a faithful multiplication
R-module. Then M is an r-multiplication if and
only if M is a multiplication-like.

Proof. Let M be a multiplication-like R-module.
By Theorem 3.1, M is r-multiplication. Con-
versely, let I be an ideal of R. Note that IM =
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(IM :R M)M . Since M is faithful multiplication
and r-multiplication, so M is finitely generated.
Now by Lemma 3.4, M is multiplication-like.

Corollary 3.2. If M is a multiplication and
multiplication-like R-module, then |SpecR(M)|=
|Spec(R)|.

Corollary 3.3. Let M be a multiplication and
multiplication-like R-module. Then for every I
ideal of R, there exists an unique R-submodule K
of M such that I = (K :R M).

Corollary 3.4. LetM be a multiplication-like R-
module. Then M is multiplication if and only if
for every I of R, there exists an unique submodule
N of M such that I = (N :R M).

Lemma 3.6. Assume that M is a comultiplica-
tion and multiplication-like R-module. Then M
is a strong comultiplication.

Proof. Suppose N be a submodule ofM . If there
exist ideals I and J such that N = (0 :M I) and
N = (0 :M J), then IM = JM , by Proposition
4.1 [12]. Now by Theorem 2.3, I = J .

Proposition 3.3. If M is a comultiplication and
multiplication-like R-module, then for every sub-
module N of M , there exists an ideal I of R such
that (N :R M) = AnnR(I).

Proof. Let N be a submodule ofM . SinceM is a
comultiplication R-module, there exists an ideal
I of R such that N = (0 :M I) and hence
(N :R M) = ((0 :M I) :R M) = AnnR(IM) =
AnnR(I).

Lemma 3.7. Let M be a multiplication-like
R-module. Then for every ideal I and J of R

(i) (IJM :R M) = (IM :R M)(JM :R M).

(ii) (IM + JM :R M) = (IM :R M) + (JM :R
M).

(iii) ((I∩J)M :R M) = (IM :R M)∩(JM :R M).

Proof. This follows from Lemma 2.1.

Remark 3.2. Lemma 3.7 shows properties
which hold for multiplication-like modules (for
ideals of ring), but part (ii) is not valid in general

for submodules of module.

ConsiderM = Z[X]⊕Z[X] as R = Z[X]-module.
Then ((X)⊕Z[X] :R M)+ (Z[X]⊕ (X) :R M) ⊂
((X)⊕ Z[X] + Z[X]⊕ (X) :R M) = R.

Proposition 3.4. Let M be a Noetherian
multiplication-like R-module. Then R is Noethe-
rian.

Proof. Let I1 ⊆ I2 ⊆ I3 ⊆ ... be an ascending
chain of ideals of R. It follows that I1M ⊆ I2M ⊆
I3M ⊆ ... is an ascending chain of submodules of
M . So there exists a positive integer k such that
IkM = Ik+1M = ..., and hence Ik = Ik+1 = ...,
as M is multiplication-like.

Proposition 3.5. Let M be an Artinian
multiplication-like R-module. Then R is Ar-
tinian.

The following example shows that if M is
multiplication-like over a Noetherian (Artinian)
ring, then it is not necessarily to be a Noetherin
(Artinian) module.

Example 3.4. Let V be a vector space over a
field F . It follows that V is multiplication-like
and F is Artinian and Noetherian. But if V has
an infinite dimension, then V is not Artinian and
Noetherian.

Proposition 3.6. Let M be a faithful module
over a Noetherian ring R such that for every pri-
mary ideal q of R, q = (qM :R M). Then M is
multiplication-like.

Proof. Let I be an ideal of R and let I =
∩n

i=1 qi
be a reduced primary decomposition of I in R,
where qi are primary. It follows that
I ⊆ (IM :R M) = ((

∩n
i=1 qi)M :R M) ⊆∩n

i=1(qiM :R M) =
∩n

i=1 qi = I.

Lemma 3.8. If R-moduleM is a multiplication-
like R-module and each submodule of M has a
reduced primary decomposition, then every ideal
of R has a reduced primary decomposition.

Proof. Let I be an ideal of R. Since M is
multiplication-like it follows that I = (IM :R M).
By hypothesis, IM =

∩n
i=1 qi, when qi are Pi-

primary. Hence
I = (IM :R M) = (

∩n
i=1 qi :R M) =

∩n
i=1(qi :R
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M).
It follows that I has reduced primary decomposi-
tion in R.

Recall that an integral domain R is a valution
ring if and only if the ideals of R are totally or-
dered by inclusion.

Lemma 3.9. Let M be a multiplication-like R-
module and R be an integral domain.
Then for any submodules N,L ofM , (N :R M) ⊆
(L :R M) or (L :R M) ⊆ (N :R M) if and only if
R is valuation ring.

Proof. Obvious

Proposition 3.7. If for some P ∈ Max(R),
PM is a multiplication-like R-module, then M
is a multiplication-like R-module.

Proof. If PM = M , then the proof is complete.
Now assume that PM ̸=M and let I be any ideal
of R and r ∈ (IM :R M).
It implies that rPM ⊆ PIM . Hence r ∈ I.

Remark 3.3. Example 2.6 shows that the con-
verse of Proposition 3.7 is not true, in general.

Anderson and Fuller [1] called the submodule
N a pure submodule, if IN = N ∩ IM for every
ideal I of R.

Proposition 3.8. Let N be a pure submodule of
an R-module M . If N is multiplication-like, then
M is a multiplication-like module.

Proof. Let I be an ideal of R. Then I = (IN :R
N). Assume that rM ⊆ IM . Since N is pure,
we have rN ⊆ IN , and hence r ∈ I. Therefore,
M is multiplication-like.

Recall that a ring R is discrete valuation ring
(DVR) if and only if it is valuation and Noethe-
rian ring. If R is a DVR, then every non-zero
ideal I of R is uniquely of the type I = mn (for
some n ∈ N), where m is the unique maximal
ideal R.

Lemma 3.10. LetM be a faithful finitely gener-
ated module over discrete valuation ring R. Then
M is a multiplication-like.

Proof. Let I be an ideal of R andm be the unique
maximal ideal. Then there exists n ∈ N such that
I = mn. We have mn ⊆ (mnM :R M) ⊆ mn−1.
Hence mn = (mnM :R M) or (mnM :R M) =
mn−1. If (mnM :R M) = mn−1, then mnM =
mn−1M . Hence by Nakayama lemma, m = 0
which is a contradiction. So (mnM :R M) =
mn.

A Dedekind domain (D.d) is a Noetherian in-
tegrally closed domain in which every non-zero
primes ideal is maximal.

Corollary 3.5. Let M be a faithful finitely gen-
erated module over D.d R. Then for every non-
zero prime ideal P of R, MP is multiplication-like
RP -module.

Proposition 3.9. Let M be a faithful finitely
generated R-module. Then for every radical ideal
like I, I = (IM :R M).

Proof. Let I be a radical ideal of R. Then
I =

√
I =

∩
P∈V (I) P . For each P ∈ V (I),

(PM :R M) = P , as M is a faithful finitely
generated module. Thus

I ⊆ (IM :R M) = ((
∩

P∈V (I) P )M :R M) ⊆∩
P∈V (I)(PM :R M) =

∩
P∈V (I) P = I.

Lemma 3.11. Let N be an R-submodule of M .
If N is a multiplication-like such that for every
ideal I of R, IN is primary-like submodule and
rad(IN) ⊂ N , then M is a multiplication-like
module.

Proof. Let I be an ideal of R. Since N is a
multiplication-like, I = (IN :R N). We show
that IM ⊆ IN . It follows to show that I ⊆
(IN :R M). Let r ∈ I. Since radR(IN) ⊂ N ,
we can find an element n ∈ N − radR(IN).
Then rn ∈ IN . Hence r ∈ (IN :R M), as IN
is primary-like. Therefore, M is multiplication-
like.

Lemma 3.12. Let M be a distribu-
tive multiplication-like R-module and for
any two submodule N and L of M ,
(N :R M) + (L :R M) = (N + L :R M).
Then R is a distributive ring.
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Proof. Let A,B and C be ideals of R.
Since M is multiplication-like, there ex-
ist submodules N,K and L of M such
that A = (N :R M), B = (K :R M) and
C = (L :R M). Then

(A + B) ∩ C = ((N :R M) + (K :R M)) ∩ (L :R
M) = (N +K :R M) ∩ (L :R M)
= ((N +K) ∩ L :R M) = ((N ∩ L) + (K ∩ L) :R
M) = (N ∩ L :R M) + (K ∩ L :R M) = (N :R
M ∩ (L :R M) + (K :R M) ∩ (L :R M) =
A ∩ C +B ∩ C.

The following example shows that in above
theorem, the conditions, M is distributive and
for any two submodule N and L of M , (N :R
M) + (L :R M) = (N + L :R M) can not be
omitted.

Example 3.5. Let M = Z[X] ⊕ Z[X], R =
Z[X], N = (X) ⊕ Z[X] and L = Z[X] ⊕ (X). It
is clear that ((X)⊕Z[X] :R M)+ (Z[X]⊕ (X) :R
M) ⊂ ((X)⊕Z[X]+Z[X]⊕(X) :R M) = R. Also
R is not distributive, by Theorem 6.6 [8] and M
is not distributive module, by [14].

Proposition 3.10. Let M be a multiplication-
like R-module. If I is an ideal of R such that IM
is a second submodule of M , then I is a second
ideal of R.

Proof. Let ψa : I −→ I be the non-zero homo-
morphism defined by r 7 −→ ar. Thus aIM ̸= 0,
because M is faithful module. It follows that
aIM = IM , since IM is a second submodule.
Since M is multiplication-like

aI = (aIM :R M) = (IM :R M) = I.

Corollary 3.6. LetM be a multiplication-like R-
module. If I is an ideal of R such that IM is a
second submodule of M , then for each non-zero
r ∈ R, r ∈ Z(R) or I = Ir.

Lemma 3.13. Let M be a multiplication-like
and prime R-module. Then for any non-zero
ideal I of R, AnnR(I) = 0.

Proof. Let I be any ideal of R. By Theorem 3.1
(i) and (iv), AnnR(I) = 0.

Corollary 3.7. Let M be a multiplication-like
and prime R-module. Then Z(R) = 0.
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