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Abstract

In this paper, the problem of determining heat transfer from convecting-radiating fin of rectangular
shape is investigated. We consider one-dimensional, steady conduction in the fin and neglect radiative
exchange between adjacent fins and between the fin and its primary surface. It is demonstrated that
the governing fin equation, a nonlinear second-order differential equation, is exactly solvable. The
exact, closed-form analytical solutions in implicit form are convenient for physical interpretation and
optimization for maximum heat transfer. Additionally, exact analytical expressions for heat transfer
rate and the fin efficiency are provided.

Keywords : Exact analytical solution; Unique solution; Temperature distribution; Fin efficiency; Heat
transfer rate.
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1 Preliminaries and problem
formulation

T
he heat dissipation mechanism considered in
literature is either pure convection or pure

radiation. In applications where fins operate in a
free or natural convection environment, the con-
tribution of radiation is equally significant, and
therefore the design must allow for occurring both
convection and radiation. As an application, it
can be mentioned to stamped heat sink or ex-
truded heat sink designed for cooling a transis-
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tor. Even if forced convection is employed for
cooling, radiation is significant if the operating
temperatures are high as is the case with a finned
regenerator [15, 17]. Enhancement of heat trans-
fer employing fins is important in a multitude of
heat exchange equipment [6, 7, 16]. It is clear
from the literature review that the research has
been greatly focused on the theoretical and exper-
imental thermal analysis of both solid fins and
porous fins with different profiles and thermo-
physical properties due to wide range of appli-
cations [1, 2, 3, 5, 8, 9, 10, 11, 12, 13, 14, 19, 20,
23, 24, 25].

Assuming one-dimensional conduction, con-
stant thermal parameters, and neglecting fin-to-
base and fin-to-fin radiation interaction, the gov-
erning equation for a unit depth of the fin is as
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Table 1: Problem formulation.

Nomenclature

T temperature

Tb fin base temperature
Ts effective sink temperature

for radiation
T∞ environment temperature

for convection
L fin length
h convective heat transfer

coefficient
k thermal conductivity
Nr radiation-conduction

number
X dimensional space

coordinate
q heat transfer rate

Table 1. Continue.

Q dimensionless heat transfer
rate

x non-dimensional space
coordinate

x non-dimensional space
coordinate

wb fin thickness at the base
wt fin thickness at the tip

Greeks symbols
σ Stefan-Boltzmann constant
η fin efficiency
α ratio of length to one-half

base thickness
ε surface emissivity
θ dimensionless temperature
θs dimensionless effective sink

temperature for radiation
θ∞ dimensionless environment

temperature for convection

follows [17]:

d

dX

[
w(X)

dT

dX

]
=

2h

k
(T − T∞)

+
2εσ

k

(
T 4 − T 4

s

)
, (1.1)

where h, k, ε, σ, T∞ and Ts denote convec-
tive heat transfer coefficient, thermal conductiv-
ity of fin material, surface emissivity, Stefan-
Boltzmann constant, environment temperature
for convection and effective sink temperature for
radiation, respectively. In rectangular fin, for fin
thickness at distance X, we have w(X) = 1, also,
introducing the dimensionless variables θ = T

Tb
,

θ∞ = T∞
Tb

, θs = Ts
Tb
, x = X

L , α = 2L
wb

, Bi = hwb
2k ,

and Nr =
εσwbT

3
b

2k , Eq. (1.1) is converted to

d2θ

dx2
= α2Bi (θ − θ∞) + α2Nr

(
θ4 − θ4s

)
, (1.2)

with the boundary conditions of prescribed tem-
perature at the base and insulated tip

θ
∣∣∣
x=0

= 1,

dθ

dx

∣∣∣
x=1

= −αBi (θ(1)− θ∞) (1.3)

−αNr

(
θ(1)4 − θ4s

)
.

The problem formulated by Eqs. (1.2)-(1.3)
has been investigated numerically and semi-
analytically by many researchers, see [4, 17, 18,
21, 22] and references therein.

The purpose of this study is to demonstrate
that the problem formulated by Eqs. (1.2) and
(1.3) is exactly solvable for the entire range of the
parameters of the model, and more importantly
its solution can be determined implicitly in exact,
analytic closed-form. Furthermore, we provide
exact analytical expressions for the fin efficiency
and heat transfer rate with respect to fin base
temperature.

Figure 1: Diagram of θ1 versus θ
′
0 for α = 4,

Nr = 0.1 and θs = θ∞ = 0.2, Bi = 0.01:
Bold; Bi = 0.05: Dotted; Bi = 0.1: Dashed;
Bi = 0.5: DotDashed.

2 The exact analytical solution

With the variable transformation u = dθ
dx

, we
have

d2θ

dx2
= u

du

dθ
. (2.4)
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Figure 2: Diagram of θ1 versus θ′0 for α =
10, Nr = 0 and θs = θ∞ = 0.2, Bi = 0.01:
Bold; Bi = 0.05: Dotted; Bi = 0.1: Dashed;
Bi = 0.5: Dot Dashed.

Figure 3: Diagram of θ1 versus θ′0 for α =
Nr = 1 and θs = θ∞ = 0.2, Bi = 0.01:
Bold; Bi = 0.05: Dotted; Bi = 0.1: Dashed;
Bi = 0.5: Dot Dashed.

Correspondingly, Eq. (1.2) is reduced to first or-
der equation

udu = α2Bi (θ − θ∞)+α2Nr

(
θ4 − θ4s

)
dθ, (2.5)

Owing that Eq. (2.5) is separable, integrating it

and later replacing u by dθ
dx

, takes the form

1

2

(
dθ

dx

)2

=
1

2
α2Bi (θ − θ∞)2

+α2Nr

(
θ5

5
− θ4sθ

)
+ C. (2.6)

Here C is the integral constant, which is evaluated
with the first boundary condition in Eq. (1.3) as

C =
1

2
(θ′0)

2 − 1

2
α2Bi (1− θ∞)2

−α2Nr

(
1

5
− θ4s

)
, (2.7)

where θ′0 = θ′(0). Substituting Eq. (2.7) into Eq.
(2.6) implies(

dθ

dx

)2

= (θ′0)
2 + (2.8)

α2Bi
[
(θ − θ∞)2 − (1− θ∞)2

]
+

2α2Nr

[(
θ5

5
− θ4sθ

)
−

(
1

5
− θ4s

)]
,

or equivalently

dx = (2.9)

dθ√√√√√√√
(θ′0)

2

+α2Bi
[
(θ − θ∞)2 − (1− θ∞)2

]
+2α2Nr

[(
θ5

5 − θ4sθ
)
−

(
1
5 − θ4s

)]
.

Let us define a new non-algebraic function as

Ψ (θ; z1, z2, z3, z4, z5, z6) = (2.10)∫ 1

θ

dz√√√√√√√
z21

+z22z3

[
(z − z4)

2 − (1− z4)
2
]
+

2z22z5

[(
z5

5 − z46z
)
−

(
1
5 − z46

)]
,

therefore, integrating both sides of Eq. (2.10)
and imposing the condition θ(0) = 1 in Eq. (1.3)
leads to

x = Ψ
(
θ; θ′0, α,Bi, θ∞, Nr, θs

)
(2.11)

where the function Ψ(·) can be treated as the
same as other known functions by today’s power-
ful software’s programmes such as Mathematical
and Matlab, we have used Mathematica during
this work.

It is recognizable here that there is still an un-
known quantity in the implicit solution of Eq.
(2.11) namely θ′0 = θ′(0). This quantity and si-
multaneously θ1 = θ(1) can be easily obtained
with the second boundary condition in Eq. (1.3)
as follows: Eq. (1.3), together with Eq. (2.9),
using the boundary condition at x = 1 yields

α2
[
Bi (θ1 − θ∞) +Nr

(
θ41 − θ4s

)]2
(2.12)

= (θ′0)
2 + α2Bi

[
(θ1 − θ∞)2 − (1− θ∞)2

]
+2α2Nr

[(
θ51
5

− θ4sθ1

)
−

(
1

5
− θ4s

)]
,
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on the other hand, setting x = 1 in the solution
given by Eq. (2.11) yields

1 = Ψ
(
θ1; θ

′
0, α,Bi, θ∞, Nr, θs

)
. (2.13)

As soon as θ′0 and θ1 are obtained by solving the
coupled system of Eqs. (2.13)-(2.13) for any given
combination of α, Bi, θ∞, Nr and θs, the exact
solution is presented by Eq. (2.11).

Figure 4: Profile of temperature distribu-
tion corresponding to the values of Fig. 1.

3 Results and discussions

In the previous section, we have developed the ex-
act analytical solutions by way of Eqs. (2.11) and
(2.13)-(2.13) of the nonlinear fin problem formu-
lated by Eqs. (1.2)-(1.3). The implicit solution
in Eq. (2.11) expressed in terms of non-algebraic
functions, is obtainable with symbolic computer
software, like Mathematica and Maple.

Figs. 1-3 show θ1, fin base temperature, versus
θ′0 through Eqs. (2.13)-(2.13) for different values
of Biot number Bi = 0.01, 0.05, 0.1, 0.5 and α =
1, 4, 10 and Nr = 0, 0.1, 1 when θs = θ∞ = 0.2.
Intersection of these two curves is obtained value
for θ′0 and θ1, then their corresponding solutions
are plotted in Figs. 4-6. By inspection in these
figures, we may conclude the following remark-
able features:

1. In the case of α = 0, the original Eqs. (1.2)-
(1.3) turns to

d2θ

dx2
= 0, θ(0) = 1,

dθ

dx
(1) = 0, (3.14)

Figure 5: Profile of temperature distribu-
tion corresponding to the values of Fig. 2.

whose solution θ(x) = 1 is easily obtained
therefore, θ′0 = 0.

2. In the case of Nr = 0, the original Eqs. (1.2)-
(1.3) turns to

d2θ

dx2
= α2Bi (θ − θ∞) , (3.15)

θ(0) = 1, θ′(1) = −αBi (θ(1)− θ∞) ,

which is linear and then it can be solved eas-
ily. The solution obviously is

θ(x) = θ∞ + (3.16)(√
Bi− 1

)
(θ∞ − 1) eα

√
Bix

√
Bie2α

√
Bi + e2α

√
Bi −

√
Bi + 1

−

(√
Bi + 1

)
(θ∞ − 1) e2α

√
Bi−α

√
Bix

√
Bie2α

√
Bi + e2α

√
Bi −

√
Bi + 1

,

Therefore, we have

θ′0 = (3.17)

α
(√

Bi + 1
)√

Bie2α
√
Bi (θ∞ − 1)

√
Bie2α

√
Bi + e2α

√
Bi −

√
Bi + 1

+
α
(√

Bi− 1
)√

Bi (θ∞ − 1)
√
Bie2α

√
Bi + e2α

√
Bi −

√
Bi + 1

,
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Figure 6: Profile of temperature distribu-
tion corresponding to the values of Fig. 3.

and

θ1 = θ∞ + (3.18)(√
Bi− 1

)
eα

√
Bi (θ∞ − 1)

√
Bie2α

√
Bi + e2α

√
Bi −

√
Bi + 1

−

(√
Bi + 1

)
eα

√
Bi (θ∞ − 1)

√
Bie2α

√
Bi + e2α

√
Bi −

√
Bi + 1

.

Then, by setting α = 10 and θs = θ∞ =
0.2, some calculations through (3.18)-(3.19)
imply

Figure 7: Heat transfer rate with respect to
fin base temperature and Biot number with
Nr = 1 for any value of α.

θ′0 = −0.640496 θ1 = 0.681753

for Bi = 0.01

θ′0 = −1.76311 θ1 = 0.338749

for Bi = 0.05

θ′0 = −2.52512 θ1 = 0.251407

for Bi = 0.1

θ′0 = −5.65685 θ1 = 0.200796

for Bi = 0.5

Furthermore, it is verified that limBi→∞ θ1 =
θs = 0.2 and limBi→∞ θ′0 = −∞ which are in
full agreement with Figs. 2 and 5.

3. Fin base temperature decrease while Biot
number increase for any given combination
of α, Nr, θs and θ∞.

Figure 8: Heat transfer rate with re-
spect to fin base temperature and radiation-
conduction number with Bi = 1 for any
value of α.

The heat transfer rate q (per unit depth) is given
by

q = −kwb
dT (0)

dX
, (3.19)

which is in dimensionless form as

Q =
q

kTb
= − 1

α

dθ(0)

dx
= −θ′0

α
. (3.20)

Using Eq. (3.20) in Eq. (2.13) yields

Q2 =
[
Bi (θ1 − θ∞) +Nr

(
θ41 − θ4s

)]2 −
Bi

[
(θ1 − θ∞)2 − (1− θ∞)2

]
− (3.21)

2Nr

[(
θ51
5

− θ4sθ1

)
−

(
1

5
− θ4s

)]
.
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Figure 9: Fin efficiency with respect to
fin base temperature and Biot number with
Nr = α = 1.

Figure 10: Fin efficiency with respect to fin
base temperature and radiation-conduction
number with Bi = α = 1.

Figs. 7-8 shows the heat transfer rate with re-
spect to fin base temperature, Biot number and
radiation-conduction number when θs = θ∞ =
0.2.

Fin efficiency is the ratio of the real heat trans-
fer rate to the ideal heat transfer rate for a fin of
infinite thermal conductivity

η =
q

h (2L+ wt) (Tb − T∞)+
(2L+ wt) εσ

(
T 4
b − T 4

s

) , (3.22)

which can be rewritten in dimensionless form as

η = (3.23)

Q

2 (α+ 1) [Bi (1− θ∞) +Nr (1− θ4s)]
,

so, we conclude from Eq. (3.22)

η = (3.24)√√√√√√√
[
Bi (θ1 − θ∞) +Nr

(
θ41 − θ4s

)]2
−Bi

[
(θ1 − θ∞)2 − (1− θ∞)2

]
−

2Nr

[(
θ51
5 − θ4sθ1

)
−

(
1
5 − θ4s

)]
2 (α+ 1) [Bi (1− θ∞) +Nr (1− θ4s)]

.

We have shown the fin efficiency with respect to
fin base temperature, Biot number and radiation-
conduction number in Figs. 9-10 when θs = θ∞ =
0.2 and α = 1.

4 Conclusions

In this paper, we have studied accurately the gov-
erning equation of determining heat transfer from
convecting-radiating fin of rectangular shape. It
has been neglected radiative exchange between
adjacent fins and between the fin and its primary
surface. We have shown that governing differ-
ential equation is exactly solvable. The exact,
closed-form analytical solutions in implicit form
as well as exact analytical expressions for heat
transfer rate and the fin efficiency have been ex-
tracted.
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