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Abstract

Micromixers are an important part of microfluidics systems. In the present work, mixing was en-
hanced through the three helix types of micromixers. As a result of Dean vortices, a mixing index
of 99% obtained at a very short length of the micromixers for the Reynolds number of 10. It is also
obtained that the micromixer with rectangular cross-section showed better enhancement compared
to the circular and triangular cross-section.
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1 Introduction

I
n recent years, the microfluidic branch at-
tracted much more attention and revolution-

ized various fields of technology due to its wide
applications in biological analysis, chemical syn-
thesis, and heat transfer [1, 2, 3, 4]. Decreased
size of flow channels causes the increased surface
to volume ratio of the flow passage and subse-
quently increased rate of heat and mass trans-
fer [5, 6, 7, 8, 9]. Miniaturization also has the
benefit of controlling the reaction rate using a
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controlled mass flow rate. Microfluidics caused a
new important concept of Lab-On a Chip (LOC),
which gathers several chemical operations in a
small chip [10, 11]. Many of the processes that
occur in LOC require the mixing of two or more
species, so the proper mixing in micro dimen-
sions is a basic requirement. Mixing is mainly
based on two mechanisms of molecular diffusion
and chaotic advection[12, 13]. The small size of
microchannels results in low ranges of Reynolds
numbers, therefore the flow is generally laminar.
Compared to turbulent flow, the fluctuations in
laminar flow are absent and as a result, diffusion
is the dominant mechanism of mixing which is
a time-consuming process [14]. It is needed to
enhance the mixing through the microchannels
to obtain a completely mixed sample in a short
time and decreased the length of the channel. En-
hancement in mass and heat transfer are divided
into passive and active methods [15, 16, 17]. Ac-
tive micromixers employ external energy to make
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disturbances in fluid and increase the advection
part of mixing [18] while passive micromixers do
not require external energy and enhancement is
accomplished mainly by variation in geometry of
the channel [19]. The choice of mixer type de-
pends on the end-user needs for either ease of
fabrication, rapid mixing, high throughput, or ac-
curate dosing. The mixing enhancement investi-
gation in micromixers is carried out by both nu-
merical and experimental methods[20]. The fab-
rication of the samples in these scales is generally
complicated and sometimes impossible, however,
the numerical methods can provide detailed in-
formation at any desired point. Numerical sim-
ulations are proven to be a reliable method in a
wide range of engineering fields like biomechanics
[21], manufacturing [22, 23, 24], heat, and mass
transfer[25, 26] and multiphysics systems [27, 28].
Chen et al. [29] used serpentine micromixers to
enhance the mixing. They found that the mix-
ing index decreased when the Reynolds number
was in the range of 0.1 to 1. However, the mixing
index increased at the Reynolds numbers more
than 1. Chen and Li [30] enhanced the mixing of
species in a zigzag microchannel utilizing a topol-
ogy optimization (TPZ) method. The experi-
ments performed at Reynolds numbers of Re 0.5
or Re 5 and they achieved a mixing index of 93%.
Wang et al. [31] used triangle obstacles to investi-
gate the mixing in Reynolds number ranging from
0.1 to 500. They concluded that the apical angle
as well as more group of triangle obstacles had
an important role in mixing enhancement. They
also achieved a maximum enhancement of 91.2%
at their optimum design. Tsai et al. [32] intro-
duced a new design of micromixers to generate
multidirectional cortices. Generated Dean vor-
tices resulted in a 72% mixing efficiency at Re=81
at a length of 4.25 mm. Chen et al. [33] inves-
tigated two-dimensional Y-type and T-type mi-
cromixers based on fractal theory and generalized
Murrays law. They reported that the bifurcation
angle was a very important parameter on mixing
and found the best angle. They also compared
some variations on T-type micromixers such as
T symmetry and semicircle-T asymmetry. Liu et
al. [34] investigated the mixing enhancement in a
3D serpentine square wave and also straight mi-
crochannels. They reported that the serpentine

micromixer showed better performance than two
other shapes. Kleinstreuer et al. [35] used mi-
crofluidics set up to investigate the mixing phe-
nomenon on drug delivery. They reported that
a design with baffles and injection units resulted
in improved mixing compared to the simple T-
Shape model. Chen and Shen [36] performed a
series of numerical simulations to investigate the
mixing in stacking E-shape micromixer (SESM)
and folding E-shape micromixer (FESM). They
reported a considerable mixing enhancement as a
result of splittingrecombination and chaotic ad-
vection mechanisms. The present work aims to
improve the mixing of miscible liquids using sec-
ondary flow. In this regard, helix type micromix-
ers with different cross sections are designed and
the mixing enhancement is studied numerically
by the finite element method. The effect of chan-
nel cross section on the formation of secondary
flows is investigated. Three shapes of circular, tri-
angular, and rectangular cross sections were con-
sidered and the effect of generated dean vortices
on mixing index at the Reynolds numbers of 0.2
to 10 was investigated.

2 Governing equations and ge-
ometry design

The designed geometries of the present work
are shown in Figure 1. The channel has a swirling
passage with different cross-section shapes. De-
tailed information of geometries is given in Table
1.

(a) (b)

Figure 1: Channel geometry and design parameters
(a) side view of micromixer and (b) top view of helical
micromixer

Both entering fluids are considered to have the
same properties. The fluids are Newtonian, in-
compressible and there is no chemical reaction.
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Table 1: Micromixers design parameters [all units
are in µm]

Shape a b c

Circle 2500 500 1050

Rectangle 2560 439 975

Triangle 3500 1000 1192.5

The density and viscosity of both fluids are 998.2
kg
m3 and 0.00097 Pa.s respectively. By neglecting
the gravitational force, the governing equations
at steady state condition are as follows [37, 38]:
The continuity equation:

∇.V = 0 (2.1)

Naiver-stokes equation:

ρV∇.V = −∇P + µ∇2V (2.2)

Species convection-diffusion equation:

V∇c = D∇2 (2.3)

Where ρ( kg
m3 ) and µ( kg

m.s) are density and dynamic
viscosity of the fluids respectively, V (ms )is the

fluid velocity, P (Pa) is pressure, c(mol
m3 ) is the

mole concentration of species, and D(m
2

s ) is the
diffusion coefficient of the species.

The Reynolds number is introduced as follow:

Re =
ρV dh
µ

(2.4)

where dh(m)is the hydraulic diameter of the mi-
crochannel cross-section. Mixing Index (MI) [39]
which is used to measure and compare the ob-
tained results defined as:

MI = 1−

√∫
(c− c̄)2dA

A.c̄(1− c̄)
(2.5)

where, c, is the concentration distribution at any
desired cross section plane, (c̄) is the averaged
value of the concentration on the selected plane
and A is the cross-section area at the selected
place through the channel length. MI is 0 for a
complete segregated system and reaches a value
of 1 for the homogeneously mixed case. The ve-
locities at both inlets are considered to be uni-
form and have the same values. Reynolds num-
ber which is calculated based on inlet hydraulic

diameter, changes in the range of 0.2 to 10. The
outlet pressure is kept at the gauge pressure of 0
Pa. The walls have no-slip boundary conditions.
The concentration value, c, is 1 and 0 (mol

m3 ) at
the entries.

3 Numerical procedure

The computational domain for all types of cross
sections is meshed by unstructured tetrahedral
meshes. The meshed geometry for the circular
cross section is shown in Figure 2. A grid inde-
pendence result is depicted in Figure 3. which
shows the variation of velocity of one point in
the middle of the channel versus the number of
meshes. For the three geometries, the computa-
tions are carried out by 150000 grids. Consider-
ing the fluid flow as incompressible and laminar
the governing equations are solved in steady state
condition. The convection-diffusion equation can
easily become unstable, so these equations are
discretized by the Galerkin Least Square method
(GLS) to improve the stability of the solution.

Figure 2: Meshed geometry of circular cross section
micromixer

Figure 3: Grid dependency for the circular cross sec-
tion

In a simple micromixer which is a straight chan-
nel, the flow is inherently laminar which mixing
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is essentially based on molecular diffusion. This
mechanism is very slow and needs more lengths
of the channel, however, increasing the convection
mechanism of mixing would augment the mixing
process. Generated secondary flows,

(c)

Figure 4: Velocity vector of different cross sections
at Re = 7

0.2

3

7

10

Figure 5: Concentration distribution in rang of
Reynolds from 0.2 to 10

according to Figure 4. is an effective way of
increasing the convection part of mixing. Figure
4 shows the velocity vectors at a defined cross
section in Reynolds number of 7, which shows
the transverse flows across the channel. The cur-
vature of the channels leads to the formation of
centrifugal force and subsequent secondary flows.
The concentration distribution through the mi-
cromixer for three different cross section in five
Reynolds numbers at diffusivity of 1 × 10−11 is
shown in Figure 5. By increasing the Reynolds
number, mixing quality raises in all types of mi-

Figure 6: Section placement at Geometry

Figure 7: Concentration through the microchannel
at Reynolds 1

cromixers. In Re = 0.2 the low velocity of the
fluid flows causes a weak mixing in all three
types of cross sections.Increasing Reynolds num-
ber leads to the generation of secondary flows
through the channel cross section. The secondary
flows result in fluid motion in a transverse direc-
tion and subsequently augmenting the mixing.
As the Reynolds number increases, secondary
flows become stronger, and as a result convec-
tion part of mixing increases which enhances the
mixing of species.In Figure 6 the three locations
(sec1, sec2, and outlet) through the channel are
chosen to investigate the mixing distribution at
diffusivity of 1× 10−11 at the Reynolds numbers
1 and 10. These results are shown in Figure 7
and Figure 8, respectively for all three cross sec-
tions. In all these cross sections, increasing the
Reynolds number enhances mixing efficiency. Re-
ferring to Figure 7 and Figure 8, it is clear that
at Reynolds number of 1 the mixing efficiency is
less than Reynolds 10. Increasing the Reynolds
number results in the formation of stronger vor-
tices, and increases the mixing. To investigate the
mixing quantitatively, the mixing index (MI) for
Diffusivity of 1× 10−11 is calculated and is given
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Figure 8: Concentration through the microchannel
at Reynolds 10

in Figure 9. A value of 0 for MI equals a segre-
gated medium whereas a value of 1 corresponds
to a homogeneous mixture. It is clear that, by
increasing the Reynolds number in each cross sec-
tion, the mixing index increases. In low Reynolds
number transverse flow is negligible and the mix-
ing process occurs mostly based on molecular dif-
fusion. By increasing Reynolds number, the sec-
ondary flow becomes stronger and advection mix-
ing through the micromixers plays a dominant
role, therefore mixing efficiency enhances. Figure
9 shows that mixing efficiency in the rectangular
cross section is better than other mentioned cross
sections.

Figure 9: Meshed geometry of circular cross section
micromixer

4 Conclusion

Micromixers play an important role in medical
applications, chemical reactions, and the mixing
process. Micromixers are the significant part of
microfluidics systems which their correct design
causes reduced space and time of mixing and con-
sequently more compact microfluidics systems. In
the present work, the effect of cross section shape

on mixing is investigated in helix type micromix-
ers. The Reynolds number is considered to be in
the range of 0.2 to 10. It is demonstrated that
as Reynold number increases, the mixing index is
enhanced for all three sections (rectangular, tri-
angular, circle). The results show that among
the introduced geometries, the rectangular cross
section works better than the others. All three
types of cross sections reach to a maximum value
of 99% at Reynolds number of 10.

Nomenclature

c Concentration,mol
m3

D Diffusion coefficient,m
2

s

ρ Density of fluid, kg
m3

µ Viscosity of fluid, kg
m.s

V Velocity of fluid,ms
P Pressure,Pa
Re Reynolds number
MI Mixing Index
dh Hydraulic diameter,µm
A Area,m2
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