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Abstract

The hub location problems are highly crucial due to their applications in the transportation and dis-
tribution area. Today, the complexities of solving the real world problems using the single-objective
techniques are challenging. For a more real model, the present study considers a bi-objective capac-
itated single-allocation hub location problem assuming the reliability of paths. In addition to the
capacity, the fixed costs for the hubs are considered, as well. Furthermore, while minimizing the cost,
the reliability of the weakest path is making maximized. Three mathematical models are proposed
for this problem. The performance of single-objective models is evaluated and then, the proposed
bi-objective model is solved using the -constraint method. In the present study, the fixed cost is
calculated using two different methods: one is based on the distance from the center of mass and
another one depends on the hub capacity. The results reveal that the third model with the fixed cost
based on the distance from the center of mass has the best performance.

Keywords : Hub location problem; Capacitated hub; Reliability of path; Bi-objective optimization.

—————————————————————————————————–

1 Introduction

T
he hubs are the special facilities being used as

communication mediators among customers

in order to economize the cost of transfer flow

(or goods) in a network. In these problems, the

hub centers are used instead of direct connections

between the nodes. The flow is gathered from

different origins and sent to various destinations
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after classification. The hubs can connect a large

number of nodes together by a few communica-

tion lines. The hub location problems are widely

used in the fields of transportation, telecommu-

nication, emergency care and supply chain man-

agement [7].

Various types of hub location problems have

been presented. These problems are different in

their assumptions including the methods of the

hubs selection, the customer allocation, the ca-

pacity constraint for the hubs, the cost calcula-

tion and their objects. The main hub location

problems include p-hub median, p-hub center, the

hub covering and hub location with fixed cost.

The p-hub median location problem (pHMLP)
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aims to determine the location of p hubs and al-

locate customers to them in order to minimize

the total cost of the flow transfer in the network.

A p-hub center location problem (pHCLP) aims

to minimize the maximum total cost of the flow

transfer in a network. A hub covering problem in-

tends to locate the hubs and allocate customers to

them in order to minimize the total cost of estab-

lishing the hubs by allocating each customer to

at least one hub (hub set covering location prob-

lem, HSCLP), or to transfer the highest possible

flow in a network by assuming the establishment

of a specified number of hubs (hub maximal cov-

ering location problem, HMCLP). The objective

of a hub location problem with the fixed cost is

to minimize the total cost including the costs of

establishing the hub centers and transportation.

The hub location problems based on the struc-

ture of inter hub network are classified into com-

plete and incomplete hub networks. A hub net-

work is called complete if there is a direct con-

nection between each two hubs and otherwise, it

is called incomplete. In addition, the hub loca-

tion problems, based on allocating the non-hub

nodes to the hub ones, are categorized into sin-

gle and multi-allocation ones. In single-allocation

problems, each non-hub node is allocated to one

hub, while the problem is called multi-allocation

if a non-hub node can be connected with more

than one hub center. In reality, the hub centers

are limited in terms of the service level; therefore,

a capacity constraint is considered for the hubs.

The problems with some capacity constraints on

hubs are called capacitated problems, versus the

uncapacitated ones.

In the real world, the transportation systems

can be disrupted by natural disasters or human

mistakes. Such disruptions may weaken the sys-

tem’s performance (for instance, by presenting

weak services and consequently increasing the

costs). Therefore, designing a strong network is

prioritized.

In the present study, a hub location problem

(HLP) is considered with the fixed cost and facili-

ties reliability. For the model being more real, the

reliability of the transfer paths is maximized as

much as possible. Therefore, in addition to mini-

mizing the total cost, the reliability of the weak-

est path is maximized. Thus, in the present work,

a bi-objective problem is studied which aims to

minimize the total cost (including the costs of

establishment and transportation) and maximize

the reliability of the weakest path in a network.

The reliability in this paper is based on its defini-

tion by Ebrahimi-Zadeh et al. [22]. The problem

is considered to be capacitated, single-allocation,

and have a complete hub network. The assumed

model has many applications including the net-

work programming for distribution of military

equipments in a war, air and sea freights, and

communication systems. These systems are so

affected by the weather and regional conditions

governing the inter-network connections.

The present paper includes a literature review

of the previous studies on the hub location prob-

lems especially with the assumption of reliability

(section 2), presentation of three mathematical

models for the problem (section 3), analysis of the

results of these models (section 4), and finally the

conclusion.

2 Literature review

The various types of hub location problems have

been introduced. Here, the literatures on the ca-

pacitated hub location problems (CHLPs) with

the fixed cost are firstly reviewed, and then the

disruption effects on the hub location problems

are presented.

2.1 CHLPs with fixed cost

Most of the existing models are related to the

uncapacitated HLPs. In these models, the capac-

ity of hub centers is assumed to be unlimited in

terms of amount of the input and output flows.

O’Kelly [44] presented the first quadratic mathe-

matical formulation for an uncapacitated HLP. In

addition, he introduced the first HLP in which the

fixed cost of establishment was considered in its

objective function [45]. Campbell [11] suggested

linearization for these models and formulated the

other types of HLPs such as p-hub median, p-hub

center and hub covering. Alumur and Kara [1]as
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well as Zanjirani-Farahani et al. [56] reviewed

different types of HLPs.

In order to investigate the more real models,

one should consider the limitations of hub centers

for servicing. Campbell [11] presented the first

mathematical model for a single-allocation ca-

pacitated hub location problem (SA-CHLP) with

fixed cost. The location in the post centers is re-

garded as one of the applications of this problem.

In each shift work, each servicer can categorize

and arrange a limited number of parcel posts [24].

Aykin [3] examined a SA-CHLP with the prob-

ability of direct connections between the demand

points. He also investigated the same problem

with the assumption of establishing an assigned

number of hub centers [4]. Ernst and Krish-

namoorthy [24] presented a new formulation with

smaller size for the SA-CHLP and found proper

bounds for the problem by using two innovative

methods and solved it by Branch Bound algo-

rithm. Labbe et al. [34] used Branch Cut al-

gorithm to solve the problem by presenting the

valid inequalities. Costa et al. [19] evaluated two

bi-objective SA-CHLPs; they aimed to minimize

the total cost of transferring and establishing the

hubs. The total and maximum servicing times in

the hubs were minimized in the first and second

problems, respectively. Contreras et al. [15] used

the Lagrangean relaxation to find the appropriate

upper and lower bounds of SA-CHLP and then,

solved it. This method could solve the problems

based on the samples of 200 points with appro-

priate accuracy. Correia et al. [17] assessed a

development of the SA-CHLP with different ca-

pacity levels for the hubs. They offered different

mixed-integer programming models for the prob-

lem and compared them in terms of size, perfor-

mance of relaxed problems, valid inequalities and

special preprocessing procedures. Correia et al.

[17] demonstrated that some classic models of SA-

CHLP are incomplete and do not provide appro-

priate answers for some examples. They modified

these models by adding some constraints. Krat-

ica et al. [33] presented a modified mixed-integer

programming model for the SA-CHLP and used

evolutionary methods for solving it. The pre-

sented model had a smaller size than the previous

ones. Camargo and Miranda [9] examined the

SA-CHLP assuming the existence of swarm in a

network. In this nonlinear optimization model, in

addition to minimizing the cost of establishment

and transfer, the adverse effects of swarm in the

hub centers are minimized, as well.

In addition to the above-mentioned investiga-

tions, some studies focused on the solving meth-

ods. Rodriguez and Salazar [49] used two Branch

Cut algorithms for solving the SA-CHLP; one is

based on Benders decomposition and another re-

lies on LP relaxation. They assumed that the

hub centers might not be fully connected to each

other and the capacity and cost were considered

for establishing both the hubs and the arcs. Chen

[14] offered a simulated annealing algorithm with

three levels for solving the SA-CHLP. This algo-

rithm includes three phases for determining the

number and location of the hubs and deciding on

how to allocate the non-hubs to the hubs. Ran-

dall [48] used the ant colony algorithm to solve

the SA-CHLP. Lin and Lee [35] applied the La-

grangian relaxation and game theory to solve the

SA-CHLP. Camargo et al. [10] used a combina-

tion of the outer approximation and benders de-

composition to solve this problem. Contreras et

al. [16] applied a combination of the Lagrangian

relaxation and Branch Price algorithm to solve

a large-size SA-CHLP.

Campbell [11] presented the first mathemati-

cal formulation for a multi-allocation capacitated

hub location problem (MA-CHLP) with fixed

cost. Ebery et al. [21] offered a linear mathe-

matical formula for the MA-CHLP and solved it

using Branch Bound algorithm. Furthermore,

they utilized an innovative algorithm to improve

the upper bounds. Sasaki and Fukushima [53]

modeled the MA-CHLP assuming the existence of

a single hub in the flow transfer path from the ori-

gin to the destination and solved it using Branch

Bound algorithm. They applied the Lagrangian

relaxation to find the appropriate bound. Boland

et al. [8] investigated the MA-CHLP properties

and presented a simplified linear problem equal to

the primary one without increasing the variables

by new limitations. This linear problem improved

the CPU time increasingly. Marin [38] focused on
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a linear integer programming formula for the MA-

CHLP. He assumed that the flow between all the

origin-destination pairs could be divided in differ-

ent paths from origin to destination. In addition,

the triangle inequality may not be established in

calculating the length (or cost) of arcs in a net-

work. Gelareh and Pisinger [26] evaluated the use

of MA-CHLP in designing a sea transportation

fleet. They offered 4 and 5-indices mixed-integer

linear programming models for this problem and

solved them using Benders decomposition.

2.2 HLPs with assumption of reliabil-
ity

Assuming the increase of reliability in the loca-

tion problems can improve services and enhance

customer satisfaction. In addition, disruption in

these problems causes undesirable performance

and irreversible costs for the decision makers.

Kim and O’Kelly [32] used the concept of reli-

ability in HLPs for the first time. The objective

function in their study was to maximize the total

transferred flow in the network under the safety

conditions. Zhalechian et al. [57] divided the risk

into the failure and operational ones. The net-

work disruptions in the failure and operational

risks are related to the creation of a problem for

a service center and the uncertainty of some pa-

rameters such as demands, cost of establishment

and transportation, respectively.

Parvaresh et al. [46] examined a bi-level

pHMLP assuming a disruption in the hubs per-

formance. The transportation cost and the max-

imum of demand covering cost of the disrupted

centers (in the worst state) were minimized in

the first and second levels, respectively. They

assumed that the maximum r hub centers were

disrupted.

Geramianfar et al. [27] evaluated a bi-objective

HLP aiming to decrease the swarm in a network.

In their study, the first and second objective func-

tions were used to minimize the total cost of es-

tablishment and transfer, and the total waiting

time in hub centers, respectively. They consid-

ered a hub covering radius for allocating cus-

tomers to the hub centers.

Bashiri and Rezanezhad [7] investigated a

multi-objective hub covering location problem in

which, besides the minimized transportation cost

and maximum passage time in the network, the

radius for hubs and allocating the demand points

to closer hubs were limited.

Sadeghi and Tavakkoli-Moghaddam [52] as-

sessed a reliable capacitated hub covering loca-

tion problem. In order to enhance the network

reliability, they assigned a flow transfer capacity

to each link and considered a chance-constraint

method to achieve the reliability constraint. Fur-

thermore, they considered a covering radius for

allocating the demand points to the hub centers.

Cardoso et al. [12] examined two types of un-

capacitated HLP under the conditions of demand

uncertainty and probability of hub centers failure.

They used backup hubs and paths to decide on

failure and disruption of the hubs.

Mohammadi et al. [41] designed a reliable lo-

gistic network by considering the probability of

disruption in the hubs. They focused on the

general disruption (hubs getting entirely out of

reach) and the partial one (disruption in hub per-

formance). Their model enhanced significantly

the network reliability by a slight increase in the

total cost.

Mohammadi et al. [42] evaluated a bi-objective

fuzzy HLP by considering the waiting time in hub

centers for receiving the service. They assumed

that the hub centers might be disrupted. The

first and second objective functions were used to

minimize the total transportation cost and the

maximum time of flow transfer between all the

origin-destination pairs (by considering the prob-

ability of disruption in hub centers and necessity

of customer waiting), respectively.

Azizi et al. [6] investigated an uncapacitated

HLP at risk of failure. This model could de-

termine the probability of failure and cost of re-

routing in case of failure. They assumed that once

a hub node stops normal operations, the entire

demand initially served by this hub is allocated

to a backup center.

Tran et al. [55] presented a mixed-integer non-

linear programming model for the uncapacitated

HLP with the probability of hubs failure. The

objective function aimed to minimize the total
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transportation cost and the fines caused by hub

centers failure. A Tabu search algorithm was used

to solve the sample problems.

Azizi [5] proposed an uncapacitated hub loca-

tion model where a hub center was considered

as a backup center for each demand point. The

proposed model was of mixed-integer quadratic

programming type which could solve the small

and medium size samples in an acceptable time.

The particle swarm optimization was used for the

large-size samples. In another study, Rostami et

al. [50] designed a bi-level formulation to achieve

a reliable hub network by which that function is

allocated to the backup hubs in the case of dis-

rupted performance of a hub.

Chaharsooghi et al. [13] examined an uncapac-

itated multiallocation HLP assuming the proba-

bility of hub centers failure. They aimed to mini-

mize the cost of establishing hubs, the mean cost

of flow transfer, and the fines for the service dis-

ruption caused by the hub failure. They assumed

that all the customers and flows of that hub are

allocated to another hub in the case of a hub get-

ting out of reach, and the allocation is not per-

formed and the service disruption fine is added

to the total cost if this allocation has a high cost.

They showed that when the uncertainty in the

operational status of hubs is considered, the num-

ber of hubs in optimal solution is greater than the

classical counterpart in which it is assumed that

the hubs are not subject to failure.

Ghodratnama et al. [30] proposed a bi-

objective HLP by considering the swarm. The

first and second objective functions aimed to min-

imize the total cost (including the hub establish-

ment and transportation) and the total waiting

time for processing the goods in factories and

storehouses, respectively.

In addition to hub centers, disruption may be

occurred in inter-hub links, as well. Kim and

O’Kelly [32] attempted to consider the reliability

of flow transfer paths in a network for the first

time. Eghbali et al. [23] studied a reliable hub

location problem. They examined a bi-objective

problem in which the first and second objects

were to minimize the total cost (including the hub

establishment and transportation) and the total

inter-network connections, respectively. Further-

more, they considered a constraint as the mini-

mum reliability of paths between all the origin-

destination pairs.

Ebrahimi-Zadeh et al. [22] proposed a bi-

objective nonlinear programming for the single

and multi-allocation HMCLPs. These models

aimed to locate the hubs in such a way that both

the coverage in network and the reliability of the

weakest path were maximized. They attempted

to reduce the complexity of the existing model

by decreasing the numbers of constraints and

variables. Then, they proposed a linear model

and finally, solved it using the modified NSGA-

II method. They investigated the effects of the

second objective and showed that an increase in

the importance of second objective results in se-

lection of more reliable paths although the total

covering demand may decrease. Pasandideh et

al. [47] evaluated a bi-objective HMCLP. In their

study, both the flow in the network and the to-

tal reliable flow were maximized. Furthermore, a

probability constraint was considered for the cost

of flow transfer between all the origin-destination

pairs.

Ghaffari-Nasab [29] studied a CHLP assuming

the reliability. In this study, a constraint was con-

sidered for the total cost (such as the flow transfer

and hub establishment) in order to maximize the

amount of flow with the assumption of reliability.

Nasiri et al. [43] examined a bi-objective pH-

CLP assuming the reliability. Their first ob-

ject was to minimize the total cost including the

hub establishment (in demand points or candi-

date hub centers) and the flow transfer between

the hub and non-hub nodes and the flow transfer

in the network paths. The second object was to

maximize the reliability of flow transfer paths.

Madani et al. [37] offered a reliable single-

allocation HMCLP. The first object of their

model was to maximize the expected value of

cover flow and its second one was to reduce the

swarm. In order to reduce the swarm in the

network, the total difference of average expected

flows passing through each hub and the average

expected flows passing through all the hubs was

minimized.
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Sadat-Torkestani et al. [51] designed a reliable

hub location model for the hierarchical network

of a multi-modal transportation. They assumed

that failure in the hub centers or the arcs linked

to them occurs dynamically.

Fazel-Zarandi et al. [25] used a fuzzy goal pro-

gramming to generalize the model of Kim and

O’Kelly [32] . The proposed problem was a bi-

objective one and the first and second objective

functions were used to maximize the weighted re-

liability and also the minimum reliability in the

network, respectively.

Concerning the HLPs with operational risk,

three approaches (fuzzy optimization, stochas-

tic and robust programming) were presented.

Zhalechian et al.[57] reviewed them.

3 Mathematical modeling

In this section, three mathematical models are

proposed. In order to propose the models, ideas

were extracted from [22], [11] and [24] . The first

model is a quadratic one and we show that the

GAMS software could not solve it for large-size

samples (subsection 4.3.1). The second model is

presented to linearize the first one and finally, the

third model is introduced to decrease the size of

the second one. We show in section 4 that the

third model is the best.

Introducing indices, parameters and de-
cision variables

The indices, parameters and variables are defined

as follows (all are common for three models):

Indices:

i and j are indices of origin and destination nodes,

respectively, and m and k are indices for hub cen-

ters.

Parameters

N = {1, 2, ..., n}: the set of demand points,

dij : indicates the distance between origin i to

destination j (it is assumed that dij is verified in

triangle inequality and for each i, dii = 0),

Wij : flow amount from origin i to destination

j,

Cij : transportation cost per flow from node i

to node j,

Ckm: cost of transportation between two hubs

k and m,

Oi: total export flow from node i

(Oi =
∑

j Wij),

Fk: fixed cost of establishing hub in candidate

location k,

Pij : security of arc i to j,

α: discount factor,

M : a big number.

Decision variables

Xik ∈ {0, 1}: binary variable, which is equal to

1 if node i is allocated to a hub located at node

k and equal to 0, otherwise.

Xkk ∈ {0, 1}: binary variable, which is equal to

1 if node k is hub and equal to 0,otherwise.

S ≥ 0 : security of the weakest path.

It is assumed that demand and distance between

two nodes are given and they are determinis-

tic parameters. The hubs are selected among

these demand nodes. The path between each

pair of origin node i to destination node j is as

i → k → m → j, in which k and m are the nodes

of hub allocating to i and j, respectively. The cost

of transportation for each unit of flow from origin

i to destination j is the total cost of flow path.

0 ≤ α ≤ 1 indicates the discount factor. This

parameter is one of the most effective parame-

ters in HLPs. O’Kelly [44] used discount factor α

for inter-hub paths for the first time. He multi-

plied the cost of inter-hub paths to parameter α to

show the effect of inter-hub flow transportation.

Through utilizing this parameter, customers are

encouraged to use the hub center.

The first mathematical model for prob-
lem

The first model’s idea is according to the study

of Ebrahimi-zadeh et al. [22]. Considering the

presented assumptions, the mathematical model
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is as follows:

P1 :

Min
∑
i

∑
j

∑
k

∑
m

Wij(Cik + αCkm + Cmj)XikXmj

+
∑
k

FkXkk (3.1)

Max S (3.2)

s.t S ≤ (XikXmj)(PikPkmPmj)

+M(1−XikXmj)∀i, j, k,m (3.3)

Xik ≤ Xkk ∀i, k (3.4)∑
k

Xik = 1 ∀i (3.5)∑
k

∑
m

XikXmj = 1 ∀i, j (3.6)∑
i

OiXik ≤ bkXkk ∀k (3.7)

Xik ∈ {0, 1} ∀i, k (3.8)

S ≥ 0 (3.9)

The first objective function aims to minimize the

total cost which is including two parts. The first

part is related to the cost of transportation be-

tween each pair of origin node i and destination

node j (via hub nodes located at nodes k and m),

and the second part is related to the cost of es-

tablishing hub. The second objective function at-

tempts to maximize the reliability of the weakest

path in the network. Moreover constraint (3.3)

determines an upper bound for the reliability of

the weakest path.

Reliability of the path from origin node i to

destination node j is defined as multiplication of

reliability of arcs in path i → k → m → j. If the

connection of this path is established, an upper

bound for S is provided. However, this constraint

converts to an excessive constraint when there is

not any connection in this path. S is a lower

bound for the reliability of paths and by consid-

ering the second objective function, S becomes

the safety of the most insecure path. Constraint

(3.4) means that node i could be allocated to node

k if node k is a hub. Constraint (3.5) guarantees

that each non-hub node only could be allocated to

one hub node. This constraint indicates that the

problem is a single-allocation. Constraint (3.6)

declared that there are hub nodes at k and m for

two nodes i and j, which flow is transferred from

node i to node j via them. Constraint (3.7) is

the capacity limitation of hubs. The flow amount

which entered to hub node k should be less than

or equal to hub capacity. Constraints (3.8) and

(3.9) indicate the domain of variables Xik and S.

Constraint (3.10) is a linear equivalent to non-

linear constraint (3.3) [22]. Therefore, the mod-

ified model is obtained by replacing constraint

(3.3) with (3.10).

S ≤ (
Xik +Xmj

2
)(PikPkmPmj) (3.10)

+M(1− (
Xik +Xmj

2
)) ∀i, j, k,m

Model P1 is a mixed-integer nonlinear program-

ming type and also it has n2 + n variables and

n4 + 2n2 + 2n constraints. The first objective

function and constraint (3.6) of this model are

quadratic. To linearize P1, the second model (P2)

is presented.

The second mathematical model for the
problem

The idea of the second model is extracted from

[11]. The parameters and variables are considered

the same as previous part. In addition, variable

Xijkm is defined as follows:

Xijkm ∈ {0, 1}: it is a binary variable, which

is equal to 1 if the flow from origin node i to

destination node j transfer from hub nodes at k

and m, and it is equal to 0, otherwise.

Given the noted assumptions, the second model



66 F. Moeen Moghadas et al., /IJIM Vol. 14, No. 1 (2022) 59-80

could be proposed as follows:

P2 :

Min
∑
i

∑
j

∑
k

∑
m

Wij(Cik + αCkm

+ Cmj)Xijkm +
∑
k

FkXkk (3.11)

Max S

s.t (3.4), (3.5), (3.7)− (3.10)∑
k

∑
m

Xijkm = 1 ∀i, j (3.12)∑
k

Xijkm = Xjm ∀i, j,m

(3.13)∑
m

Xijkm = Xik ∀i, j, k (3.14)

Xijkm ∈ {0, 1} ∀i, j, k,m
(3.15)

The objective function (3.11 ) includes two parts

as the first model. The first and second parts min-

imize the cost of transporting from node i to node

j (in a way that flow transfers from hub nodes at k

and m) and establishing hubs, respectively. Con-

straint (3.12) indicates that only when flow could

transfer from node i to node j, which it passes

from hub nodes at k and m. Constraint (3.13)

declares that if node j is allocated to hub node m

then there is one node k which i is allocated to

it. Constraint (3.14) presents an interpretation

like (3.13). Constraint (3.15) indicates the defi-

nition domain of decision variable Xijkm. The

objective function (3.2) and other constraints are

defined as previous.

The second model is mixed-integer linear pro-

gramming and has n4 + n2 + n variables and

n4+2n3+2n2+2n constraints. The third model

P3 is introduced to decrease the size of model P2.

The third mathematical model for the
problem

The idea of the third model is taken from [24].

Variable Xijkm is eliminated from the second

model and replaced with three indices variable

Y i
km which is defined as follows:

Y i
km: it refers to the flow amount originated from

node i, in which it passes from hub nodes k and

m in order to reach the destination.

With regard to the problem assumptions and de-

fined variables, the third mathematical model is

as follows:

P3 :

Min
∑
i

∑
k

Cik(Oi +Di)Xik

+
∑
i

∑
k

∑
m

αCkmY i
km +

∑
k

FkXkk (3.16)

Max S

s.t (3.4), (3.5), (3.7)− (3.10)∑
m

Y i
km −

∑
m

Y i
mk = OiXik

−
∑
j

WijXjk ∀i, k (3.17)

Y i
km ≥ 0 (3.18)

The objective function (3.16) of this model in-

cludes three parts: the cost of flow transfer be-

tween hub and non-hub nodes, the cost between

hubs and the fixed constant of establishing hubs.

The objective function (3.2) and constraints (3.4

), (3.5) and (3.7)-(3.10) are defined like before.

Constraint (3.17) is flow balance equation, which

indicates the balance between supply and demand

at each node i if it is allocated to hub node k.

Constraint (3.18) displays the domain of Y i
km.

Correia et al. [18] demonstrated that this model

does not work for some samples accurately. Par-

ticularly, the amount of Y i
kk in formula which is

introduced by Ernst and Krishnamoorthy [24] is

always 0. Therefore, to modify the model, the

following constraint is added to this model:∑
m: m̸=k

Y i
km ≤ OiXik ∀i, k (3.19)

Constraint (3.19) guarantees that Y i
km = 0 if node

i is not allocated to the hub node at k. This

constraint avoids creating the answers and paths,

which do not exist in the hub network. Thus,

the third model is completed by adding constraint

(3.19). P3 is linear programming and has n3 +

n2 + n variables and n4 + 3n2 + 2n constraints.

The size of the third model is smaller than that

of the second model.
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4 Solving the models and ana-
lyzing the results

Multi-objective optimization (MOO) is a simulta-

neous process of two or more objective functions

(usually opposite) with some constraints. For in-

stance:

Min F (x) = {f1(x), f2(x), ..., fN (x)}
s.t g(x) ≤ 0

h(x) = 0

x ∈ R

MOO could not achieve an answer simultaneously

while all objective functions are optimized. In

such problems, despite single-objective problems,

a set of answers is obtained, which is called Pareto

solutions. Pareto solutions in multi-objective are

a set of non-dominated points which dominate

all the other solutions. Assume that x1 and x2
are two solutions for a multi-objective problem.

Solution x1 dominates x2 if x1 is not worse than

x2 in none of the functions and x1 is strongly

better than x2 at least in one of the objects [20].

It means:

fi(x1) ≤ fi(x2) ∀i = 1, 2, ..., N (4.20)

fj(x1) < fj(x2) ∃j ∈ {1, 2, ..., N} (4.21)

CHLP is a special case of the proposed bi-

objective problem and because CHLP is NP-hard,

the discussed bi-objective problem is also NP-

hard. Therefore, achieving reliable solutions may

not be easy by using optimization software. In

the present study, ε-constraint method is used to

solve the problem. This method was introduced

by Haimes et al. [31] for the first time. This

method is probably one of the well-known meth-

ods for achieving Pareto solutions of small-size

multi-objective discrete optimization problems

[40]. Tavakoli-Moghadam et al. [54] , Bashiri and

Rezanezhad [7] , and Ghezavati and Hossseinifar

[28] used ε-constraint method to solve their multi-

objective facility location problems.

4.1 ε-constraint method

ε-constraint method is one of the known meth-

ods for solving multi-objective problems. In this

method, one of the objective functions is consid-

ered as the main objective and the other objec-

tive are considered as the constraints. The defi-

nition of right values (ei) of constraints is an im-

portant task. In order to obtain the right values

of these constraints, Payoff table is created. After

obtaining values ei, the single-objective problem

is solved and Pareto solutions are obtained.

Consider the following bi-objective problem. The

bi-objective problem could be converted to the

single-objective problem as follows. Here, objec-

tive function f1 is considered as the main objec-

tive function [39]:

Max f1(x)

Max f2(x)

s.t x ∈ Ω

⇒
Max f1(x)

s.t x ∈ Ω

f2(x) ≥ e2

In minimizing the problem, the sign ” ≥ ” is con-

verted to ” ≤ ”. Payoff table is needed to ob-

tain the values of e′is. This table includes four

components for the bi-objective problem. Their

components are as follows:

Payoff Table =

[
a11 a12
a21 a22

]
a11 and a22 are obtained from single-objective

function P4 and P5, respectively:

P4) a11 =Max f1(x)

s.t x ∈ Ω

P5) a22 =Max f2(x)

s.t x ∈ Ω

a12 and a21 are obtained from single-objective

function P6 and P7, respectively:

P6) a12 =Max f1(x)

s.t x ∈ Ω

f2(x) = a22

P7) a21 =Max f2(x)

s.t x ∈ Ω

f1(x) = a11

In order to achieve the different values of e2, the

distance between a12 and a22 is divided into equal

parts. To obtain Pareto solutions set for the bi-

objective problem, the single-objective problem

should be solved with one of e′is each time. In ε-

constraint method, the number of these distances

is equal to ε. Due to the highly effect of ε value

on Pareto solutions, this method is known as ε-

constraint.
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4.2 Providing the data

In the present study, data set of CAB was used for

investigating the function of models and compar-

ing their computational results. These data be-

long to American Airline [44]. The necessary data

should be provided due to unavailability of some

parameters. Ebery et al. [21] presented some for-

mulations for calculating the capacity and fixed

cost of CHLP which were used here to provide

the required parameters. For a problem with n

demand points and p hub nodes, the capacity of

node i is calculated as follows:

bi = (
n

p
+

3dioi
5dmom

)Oi (4.22)

Where di, Oi, dm and Om are the distance of node

i from the center of mass, export flow from node

i, maximum value of di and the maximum value

of Oi, respectively. p is an integer, which controls

the number of hubs. In addition, the following re-

lationships are used for calculating the fixed cost

of establishing hubs.

The fixed cost of establishing hubs based on the

capacity of each node:

F c
i = f0(5(

bi + oi
bm + om

) +
1

2
) (4.23)

The fixed cost of establishing hubs based on dis-

tance from the center of mass:

F d
i = f0(1−

3di
dm

) (4.24)

in which bm is the maximum capacity of nodes

and f0 is defined as follows:

f0 = (
∑
i

∑
j

(Cih + Chj)Wij

−
∑
i

∑
j

αCijWij)/p (4.25)

Here, f0 represents the scaled difference in objec-

tive value between two following scenarios:

1. Central node h is a hub.

2. All nodes are hub.

h is the closest node to the center of mass. In the

first part of the equation (4.25), collecting and

distributing the flow are performed only by one

hub node and in the second part, all the flows are

transferred from origin to destination directly.

It should be noted that geographical coordinates

of the center of mass (Xh, Yh) are calculated as

follows [36]:

Xh =

∑n
j=1 ojXj∑n
j=1 oj

(4.26)

Yh =

∑n
j=1 ojYj∑n
j=1 oj

(4.27)

In the above equations,(Xj , Yj) are the geo-

graphical coordinates of j, which are taken from

www.latlong.net. After finding the coordinates of

the center of mass, the distance of each node from

it is calculated and the closest node is considered

as the center of mass. For CAB data, the closest

node to the center of mass is node 21.

On the other hand, CAB dataset does not include

the data related to the reliability of the paths.

Here the elements of safety matrix are provided

between [0.7, 1] randomly. In addition, the proba-

bility of safe arrival of cargo from one node to the

same node is imminent. Therefore, the elements

of the main diagonal of this matrix are always

equal to 1. In the present study, the matrix of

reliability is assumed to be symmetric.

4.3 Computational results

The three presented models are analyzed in two

steps:

1. Firstly, the models are investigated without

considering the reliability. It means that the

second objective function and the constraint

for determining upper bound are eliminated.

Therefore, there are three single-objective

models. This elimination is performed to an-

alyze the models, declare the importance of

capacity parameters and determine the fixed

cost of establishing hubs, as well as to deter-

mine an appropriate method for calculating

the parameters.

2. After solving the single-objective models, the

most appropriate one is selected and then,

the bi-objective problem with assumed pa-

rameters is analyzed.
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4.3.1 Results based on single-objective
models

Since two different methods were proposed for

calculating fixed cost, computational results of

each one are presented separately. In this section,

the effect of hub capacity, discount factor, num-

ber of hub centers, and fixed cost on the problem

are analyzed.

The three single-objective models were coded by

GAMS 24.1.2 in a system of Intel core i5 and

RAM4G. Baron and CPLEX solvers were used

for solving the first nonlinear model and the two

other ones, respectively. ncp sign means a sam-

ple with n nodes, p hubs and fixed cost based on

capacity (c sign). Similarly, ndp sign means a

sample with n nodes, p hubs and fixed cost based

on distance from the center of mass.

4.3.1.1. Analyzing single-objective
models considering relation (4.23)

In this part, solving the three single-objective ca-

pacitated models is examined in which their fixed

cost is calculated based on the capacity (relation

(4.23)). The results are given in Table 1. As seen,

the software could not solve nonlinear model of P1

(the software output for this model was no solu-

tion found). In addition, the objective function

value and allocating nodes and hub locations are

identical for the second and third models and the

time required for solving the third model is less

than that of the second model. Therefore, the

third model is better than the second one in terms

of time. Figure 1 represents the objective func-

tion changes compared with those of discount fac-

tor and hub number. As shown in 1 and Figure 1,

the cost is reduced by increasing the hub number.

Unexpectedly, the minimum and maximum costs

are related to the least and most discounts, i.e.

α = 0.8 and α = 0.2, respectively. This is due to

the domination of fixed cost of establishing hubs

and transporting between the hub and non-hub

nodes over the cost of transporting between the

hub nodes. Figure 2 displays the determined lo-

cations of hubs and how the nodes were allocated

for the sample of 25c7 and α = 0.8. The hub and

non-hub nodes are shown as squares and circles,
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Figure 1: Comparing objective functions in terms of
changes of hub number and discount factor (fixed cost
was calculated based on relation (4.23)

Figure 2: Hub location and allocations for sample
25c7 and discount factor of 0.8 (fixed cost was calcu-
lated based on relation (4.23)

respectively. There is a connection between hubs

4 and 17 which is not shown for the allocations

to be well observed. Additionally, in solving this

model, some nodes close to hub 4 (for instance,

node 9) were allocated to hub 17 due to the high

capacity of hub 17. It means that the hub node

may not respond to the demands of nodes close

to itself since its capacity is limited.

4.3.1.2 Analyzing single-objective mod-
els considering relation (4.24)

Now, we examine the single-objective models of

P1, P2 and P3 in which fixed cost is calculated

based on distance from center of mass (relation

(4.24)). Like calculating fixed cost based on ca-

pacity, GAMS software could not calculate P1

model. The results of P2 and P3 are given in Ta-

ble 2. Their comparison demonstrates that objec-

tive function value and allocating nodes and hub

locations are identical for the second and third

models. Nodes 12 and 17 are hub in all the sam-

ples. Since the objective function values, hubs

and allocation are identical for the two models

and CPU time for solving the models are highly

different, the third model is more appropriate for

the considered problem.

Figure 3 displays the objective function changes

compared with those of discount factor and se-

lected hub number. As shown in Table 2 and

Figure 3, cost is reduced by increasing the num-

ber of hubs. However, unlike before, the least and

most optimized values are related to the most

and least discounts, α = 0.2 and α = 0.8, re-

spectively. However, the discount factor plays an

important role in calculating fixed cost based on

the distance from center of mass and fixed cost of

establishing hubs and transporting between the

hub and non-hub nodes does not dominate over

cost of transporting between the hub nodes.

Figure 3: Comparing objective functions in terms of
changes of hub number and discount factor (fixed cost
was calculated based on relation (4.24)

Figure 4 shows the hub locations and alloca-

tions for sample 25d8 and α = 0.2. Again, inter-

hub paths were not depicted for the images be-

ing clearer. As seen, the locations of hub centers

and allocating nodes to them are more reasonable

than those of state in which cost was calculated

based on capacity.

Comparing the results in Tables 1 and 2 and ob-
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Figure 4: Hub location and allocating non-hub to
hub nodes for sample 25d8 and α = 0.2 (fixed cost
was calculated based on relation (4.24)

jective function values reveals a decrease in the

total cost as fixed cost is calculated based on the

distance from the center of mass. In addition,

the single-objective model P3 has the best perfor-

mance in terms of the running time. Therefore,

the bi-objective model P3 in which fixed cost is

calculated based on the distance from center of

mass is examined.

4.3.2 Numerical calculation based on bi-
objective model

In this section, we investigate the results of solv-

ing the bi-objective model of P3 in which fixed

cost is calculated based on the distance from cen-

ter of mass. Since the problem is bi-objective,

Pareto solution set is obtained instead of one an-

swer. In order to determine the most appropriate

answer among the answer set, two weighting in-

dexes, namely the weighted sum method (WSM)

and analytic hierarchy process (AHP), are used.

The WSM and AHP are among the most com-

mon methods for selecting the most appropriate

Pareto answer [2]. The score is calculated for

each Pareto solution by summation of the nor-

malized values of each objective multiplied by its

relative weight. Given +1 and −1 coefficients for

minimizing and maximizing the objective func-

tions, respectively, the least values forWSM i and

AHP i suggest more priority of Pareto answer for

being selected.

In the weighted sum method for Pareto answer i,
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WSM i is obtained via the following formula [20]:

WSMi =

N∑
n=1

(+/−)wn(
zin

zmax
n

) (4.28)

In the rating method based on the AHP for

Pareto answer i, AHP i is obtained via the fol-

lowing formula [20]:

AHPi =

N∑
n=1

(+/−)wn(
zin

ztotaln

) (4.29)

Where N and wn are the number of existing ob-

jective functions and weight of nth objective func-

tion, respectively. Zi
n, Z

max
n and Ztotal

n are nth

objective function value in Pareto answer i, the

maximum and total of Zi
n values, respectively.

Values of Zmax
n and Ztotal

n are calculated as fol-

lows:

Zmax
n = MaxiZ

i
n

Ztotal
n =

∑
i

Zi
n

The total weight for the two methods should be

equal to 1. In the present study, it is supposed

that for decision makers, the safe arrival of cargo

is more important than total cost. Therefore,

weights of 1
3 and 2

3 are assumed for the first and

second objects, respectively.

Tables (3)-(6) present the results of solving bi-

objective model P3, in which fixed cost was cal-

culated based on the distance from center of mass,

for different values of discount factor. The first,

second, third and fourth columns (from left to

right) display the sample name, the number of

Pareto answers and the optimized value of the

first and second functions, respectively. The fifth,

sixth and seventh columns are related to the val-

ues of WSMi and AHPi, the time required for

solving the model (in second) and the selected

hubs, respectively. The best Pareto among exist-

ing Pareto set is the one indicated by an asterisk

(*).

As seen in Table 3, the time required for solv-

ing the samples decreases and the number of se-

lected hubs increases with possibility of increas-

ing the hub centers. On the other hand, the re-

liability has a direct relationship with cost. Fig-

ure 5 displays allocating the non-hub nodes to
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(a) a)25d16

(b) b)25d17

(c) c)25d18

Figure 5: Hubs and allocating non-hub nodes to
hub centers for bi-objective problem with α = 0.2,
a)25d16, b)25d17 and c)25d18

the hub nodes and the hubs location for sam-

ples of 25d16, 25d17 and 25d18, with α = 0.2.

Figure 6 shows Pareto borders for the samples

with α = 0.2. As seen, the total cost increases by

increasing the reliability. Table 4 presents Pareto

answers of bi-objective model P3, in which the

total cost was calculated based on the distance

from center of mass, with α = 0.4. Figure 7 dis-

plays allocating the non-hub nodes to the hub

ones and the hubs location for the bi-objective

problem of 25d16 with α = 0.4. Allocating the

non-hub nodes to the hub ones and the hubs lo-

cation for the problems of 25d17 and 25d18 with

the discount factor of 0.4 and 0.2 are similar, as

shown in Figure 5. Pareto answers of bi-objective

problem P3 model with α = 0.6 are given in Ta-

ble 5. Allocating the non-hub nodes to the hub

ones and the hubs location for the bi-objective

(a) a)25d16

(b) b)25d17

(c) c)25d18

Figure 6: Values of Pareto answers for bi-objective
problem with α = 0.2, a)25d16, b)25d17 and c)25d18

Figure 7: Hubs and allocating non-hub nodes for
bi-objective problem, sample of 25d16 with α = 0.4
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problems of 25d16, 25d17 and25d18 with α = 0.6

are presented in Figure 8.

(a) a)25d16

(b) b)25d17

(c) c)25d18

Figure 8: Hubs and allocating non-hub nodes for
bi-objective problem with α = 0.6

Table 6 presents Pareto answers of P3 bi-

objective problem with the discount factor of 0.8.

Allocating the non-hub nodes to the hub ones and

the hubs location for the samples of 25d16, 25d17

and 25d18 withα = 0.8are similar to those of

25d16 with α = 0.4,25d17 with α = 0.4and25d18

with α = 0.6, respectively.

Analyzing the results of solving the bi-
objective model of P3

Comparison of the results presented in Tables (3)-

(6) brings about the following results:

1- The minimum cost is related to the maxi-

mum discount of α = 0.2. Therefore, the

cost increases by increasing the discount. In
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addition, a decrease occurs in the numbers

of Pareto solutions.

2- In all cases, the best Pareto solutions deter-

mined by WSM and AHP indexes are iden-

tical. That Pareto has the most path reli-

ability, regarding the more importance con-

sidered for the safety in the samples.

3- More reliability requires more cost. For the

data used in the present study, the most

path reliability is equal to 0.710 and the

least value of objective function of cost cor-

responding to the reliability of 0.710 was ob-

tained with the discount factor of 0.2.

4- For the samples of the most discount (α =

0.2), the selected hub number and total cost

are the least and the reliability decreases.

However, for the problems with the least dis-

count (α = 0.8), cost and reliability increase

due to an increase in the hub number.

5- By increasing p value in calculations of ca-

pacity (relation (4.22) and fixed cost of es-

tablishing hubs (relations 4.23 and 4.24), the

number of established hubs increases and the

time required for solving problem decreases

in most cases.

5 Conclusion

In this study, a bi-objective capacitated single-

allocation hub location problem was examined

assuming the reliability of paths. The first and

second objects of this problem were to minimize

the total cost of establishing hubs and transport-

ing, and to maximize the reliability of the weakest

path, respectively. To this aim, three mathemat-

ical models were introduced and their functions

were investigated. Two methods based on capac-

ity and the distance from center of mass were

used for determining fixed cost of establishing

hubs. The single-objective models aiming to min-

imize cost were studied and the bi-objective mod-

els were evaluated after determining the model

and parameter of selected cost. The results show

that among the single-objective models, the third

model is the best for solving CAB sample. In

fact, the results of solving these models demon-

strate that calculating fixed cost based on dis-

tance from center of mass causes more decrease in

objective function value. Therefore, the third bi-

objective model with fixed cost calculated based

on distance from center of mass was used for solv-

ing the bi-objective problem. The bi-objective

problem was solved by ε-constraint method. Two

evaluation indexes, WSM and AHP were used

for determining more appropriate answer among

the generated Pareto answer set. Using these two

indexes can enhance flexibility of answers regard-

ing the priorities of decision makers.
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