
Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol. 15, No. 1, 2023 Article ID IJIM-1489, 8 pages

DOI: http://dx.doi.org/10.30495/ijim.2022.58876.1489

Research Article

Observers and Relative Entropy Functional

A. Gorouhi ∗, U. Mohammadi †‡, M. Ebrahimi §

Received Date: 2022-02-06 Revised Date: 2022-05-11 Accepted Date: 2022-07-09

————————————————————————————————–

Abstract

In this paper, we will use the mathematical modeling of one-dimensional observers to present the
notion of the relative entropy functional for relative dynamical systems. Also, the invariance of the
entropy of a system under topological conjugacy is generalized to the relative entropy functional.
Moreover, from observer viewpoint, a new version of the Jacobs Theorem is obtained. It has been
proved that relative entropy functional is equivalent to the Kolmogorov entropy for dynamical systems,
from the viewpoint of observer χX , where χX is the characteristic function on compact metric space
X.
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1 Introduction

T
he concept of entropy is originated from the

physical and engineering sciences, but now

it plays a ubiquitous role in all areas of science.

The term entropy was first used by the German

physicist Rudolf Clausius in 1865 to denote a

thermodynamic function. The term entropy was

first used by the German physicist Rudolf Clau-

sius in 1865. Since then, it has been continually

extended and applied by researchers in numer-

ous areas of science, such as physics, information

theory, chaos theory, ergodic theory, data min-
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ing, and dynamical systems. Measure-theoretic

entropy of dynamical systems was first appeared

in the paper [1] by Kolmogorov in 1958. Kol-

mogorovs entropy was improved by Sinai in 1959

[10].

The importance of entropy as a persistent ob-

ject under the conjugacy of dynamic systems has

been studied by several researchers [2, 9]. There-

fore, systems with different entropies cannot be

conjugate. Moreover, any physical variation on a

dynamical system should be identified by an “ob-

server”. Also, a method is required to compare

the perspective of different observers.

This paper is an attempt to present a new

approach to the entropy of a relative dynami-

cal system [5], using the concept of an observer

[2, 4]. So first, we should mathematically iden-

tify the observer. A modeling for an observer of

a set X is defined as a fuzzy set Θ : X → [0, 1]

[2, 6, 7, 12]. These kinds of fuzzy sets are called
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“one-dimensional observers”. After this identifi-

cation, a method is required to compare different

observers and evaluate their perspectives. So, the

notion of the one-dimensional observer is used to

define relative entropy functional for topologi-

cal dynamical systems. This definition will be

expected to have the fundamental properties of

the entropy and also, as a special case, coincides

with the Kolmogorov entropy from the viewpoint

of the observer χX (characteristic function on X,

where X denotes the base space of the system).

In this article, the set of all probability mea-

sures on X preserving T is denoted by M(X,T ).

We also write E(X,T ) for the set of all ergodic

measures of T .

2 Preliminaries

In what follows, we provide the preliminaries that

are necessary for the rest of this paper.

Definition 2.1 ([2, 6, 7, 12]). Let X be a compact

metric space and Θ be a one-dimensional observer

of X, i.e., Θ : X → [0, 1] is a fuzzy set. Moreover,

let T : X → X be a continuous map. In this

case, (X,T,Θ) is referred as a relative dynamical

system.

Definition 2.2 ([4]). Let X be a compact metric

space and E ⊆ X. Then the relative probability

measure of E with respect to the one-dimensional

observer Θ, is the fuzzy set mT
Θ(E) : X → [0, 1],

which is defined by

mT
Θ(E)(x) =

lim sup
n→∞

1

n

n−1∑
i=0

χE(T
i(x))Θ(T i(x)),

where χE is the characteristic function of E.

According to this definition with a fixed ob-

server Θ and a dynamical system T , we can as-

sociate to each subset E, a mapping mT
Θ(E).

Theorem 2.1 ([4]). Let (X,β,m) be a probability

space, and Θ : X → [0, 1] be the characteristic

function χX . Moreover, let T : X → X be an

ergodic map. Then for each x ∈ X, mT
Θ(E)(x) is

almost everywhere equal to m(E), where E ∈ β.

Therefore, relative probability measures are ex-

tensions of probability measures. Note that, in

physical systems, the role of Θ is critical. In fact

Θ determines our looking to the state space.

In the rest of this paper, the relative measure

with respect to an observer Θ at x ∈ X is denoted

by mx, i.e.

mx(E) = mT
Θ(E)(x), for any E ⊆ X.

In what follows some classical results are pre-

sented, that are needed in the continuation.

Theorem 2.2 (Choquet [8]). Suppose Y is a

compact convex metrizable subset of a locally con-

vex space E, and x ∈ Y . Then there exists a

probability measure τ on Y which represents x

and is supported by the extreme points of Y , i.e.,

Φ(x) =
∫
Y Φdτ for every continuous linear func-

tional Φ on E, and τ(ext(Y )) = 1.

Let f : X → R be a bounded measurable func-

tion and µ ∈ M(X,T ). It is known that E(X,T )

equals the extreme points of M(X,T ). By apply-

ing the Choquet’s Theorem for E = M(X), the

space of finite regular Borel measures on X, and

Y = M(X,T ), and using the linear functional

Φ : M(X) → R given by Φ(µ) =
∫
X fdµ, we have

the following result [9].

Corollary 2.1 ([9]). Suppose that T : X →
X is a continuous map on the compact metric

space X. Then, for each µ ∈ M(X,T ), there

is a unique measure τ on the Borel subsets of

the compact metrizable space M(X,T ), such that

τ(E(X,T )) = 1 and∫
X
f(x)dµ(x) =∫

E(X,T )

(∫
X
f(x)dm(x)

)
dτ(m),

for every bounded measurable function f : X →
R.

Under the hypothesis of 2.1,

µ =

∫
E(X,T )

mdτ(m),

which is called the ergodic decomposition of µ .
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Theorem 2.3 (Jacobs [11]). Let T : X → X be

a continuous map on a compact metrizable space.

If µ ∈ M(X,T ) and µ =
∫
E(X,T )mdτ(m) is the

ergodic decomposition of µ, then we have:

(i) If ξ is a finite Borel partition of X, then

hµ(T, ξ) =

∫
E(X,T )

hm(T, ξ)dτ(m).

(ii) hµ(T ) =
∫
E(X,T ) hm(T )dτ(m) (both sides

could be ∞).

3 Main results

In this section we introduce the notion of entropy

from the viewpoint of different observers. This

notion describes a relative perspective of com-

plexity and uncertainty in dynamical systems.

Definition 3.1 ([4]). Let T : X → X be a con-

tinuous map on the topological space X, x ∈ X

and A be a Borel subset of X. Then

mx(A) = lim sup
n→∞

1

n

n−1∑
i=0

χA(T
i(x))Θ(T i(x)).

Also, let x ∈ X, ξ = {A1, A2, . . . , An}, and η =

{B1, B2, . . . , Bm} be finite Borel partitions of X.

We define

ΨΘ(x, T, ξ) := −
n∑

i=1

mx(Ai) logmx(Ai),

and

ΨΘ(x, T, ξ|η) :=

−
∑
i,j

mx(Ai ∩Bj) log
mx(Ai ∩Bj)

mx(Bj)
.

(Assume that log 0 = −∞ and 0×∞ = 0).

Note that ΨΘ(x, T, ξ|η) is the conditional ver-

sion of ΨΘ(x, T, ξ). Also, it is clear that

ΨΘ(x, T, ξ) ≥ 0.

Definition 3.2 ([11]). Let η and ξ be two given

partitions. ξ is a refinement of η, and is denoted

by η ≺ ξ, if every element of η is a union of

elements of ξ.

Definition 3.3 ([11]). Given two partitions ξ and

η, their common refinement is defined as follows

ξ ∨ η = {Ai ∩Bj | Ai ∈ ξ,Bj ∈ η} .

Theorem 3.1. Let T : X → X be a continuous

map on the topological space X and x ∈ X. If

ξ and η are finite Borel partitions of X, then we

have

ΨΘ(x, T, ξ ∨ η) = ΨΘ(x, T, ξ) + ΨΘ(x, T, η | ξ).

Proof. Suppose ξ = {A1, A2, . . . , An} and η =

{B1, B2, . . . , Bm} are finite Borel partitions of X.

We can write

mx(Ai ∩Bj) =
mx(Ai ∩Bj)

mx(Ai)
·mx(Ai).

So we have

ΨΘ(x, T, ξ ∨ η)

= −
∑
i,j

mx(Ai ∩Bj) log
mx(Ai ∩Bj)

mx(Ai)

−
∑
i,j

mx(Ai ∩Bj) logmx(Ai)

= −
∑
i,j

mx(Ai ∩Bj) logmx(Ai)

+ ΨΘ(x, T, η | ξ)
= ΨΘ(x, T, ξ) + ΨΘ(x, T, η | ξ).

Theorem 3.2. Let T : X → X be a continuous

map on the topological space X and x ∈ X. If ξ

and η are finite Borel partitions of X, then

ΨΘ(x, T, ξ|η) ≤ ΨΘ(x, T, ξ).

Proof. Suppose ξ = {A1, A2, . . . , An} and η =

{B1, B2, . . . , Bm} are finite Borel partitions of X.

Let 1 ≤ i ≤ n be fixed, mx(X) = t and

αk =
mx(Bk)

t
, xk =

mx(Ai ∩Bk)

mx(Bk)
.

So, by using the convexity of the function φ(x) =

x log x, we have

φ

(∑
k

mx(Bk)

t
· mx(Ai ∩Bk)

mx(Bk)

)
≤

∑
k

mx(Bk)

t
· φ
(
mx(Ai ∩Bk)

mx(Bk)

)
.
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Obviously
∑

k mx(Ai∩Bk) = mx(Ai). So the left

hand side of above is equal to

φ

(
mx(Ai)

t

)
=

mx(Ai)

t
· log mx(Ai)

t
.

Now, by multiplying both sides by t and sum-

mation over i, we will obtain∑
i

mx(Ai) · log
mx(Ai)

t

≤
∑
i,k

mx(Bk) ·
mx(Ai ∩Bk)

mx(Bk)
log

mx(Ai ∩Bk)

mx(Bk)

=
∑
i,k

mx(Ai ∩Bk) log
mx(Ai ∩Bk

mx(Bk)
.

Therefore,

−ΨΘ(x, T, ξ)− t log t ≤ −ΨΘ(x, T, ξ|η).

Since, t log t ≤ 0, one deduces the result.

Theorem 3.3. Let T : X → X be a continuous

map on the topological space X and x ∈ X. If ξ

and η are finite Borel partitions of X, then

ΨΘ(x, T, ξ ∨ η) ≤ ΨΘ(x, T, ξ) + ΨΘ(x, T, ξ).

Proof. The proof is obtained using Theorems

3.1 and 3.2.

Theorem 3.4. Let r ≥ 1 be a fixed integer and

x ∈ X. For every ε > 0 there exists δ > 0 such

that if ξ = {A1, . . . , Ar} and η = {C1, . . . , Cr} are

two partitions of X, with
∑r

i=1mx(Ai∆Ci) < δ,

then

ΨΘ(x, T, ξ|η) + ΨΘ(x, T, η | ξ) < ε.

Proof. Suppose ϵ > 0 is given and mx(X) = t.

Choose δ > 0 such that δ <
t

4
, and

−r(r − 1)δ log δ − (t− δ) log(t− δ) <
ϵ

2
.

Let ζ = {Ai∩Cj : i ̸= j}∪ (∪r
i=1(Ai ∩ Ci)). Then

ξ ∨ η = η ∨ ζ. Since Ai ∩Cj ⊂ ∪r
n=1(An∆Cn), we

have

mx(Ai ∩ Cj) < δ (i ̸= j),

and

mx(∪r
i=1(Ai ∩ Ci)) > t− δ.

Hence

ΨΘ(x, T, ζ) <

− r(r − 1)δ log δ − (t− δ) log(t− δ) <
ϵ

2
.

Therefore, by applying Theorems 3.1 and 3.3 we

have

ΨΘ(x, T, η) + ΨΘ(x, T, ξ|η)
= ΨΘ(x, T, ξ ∨ η)

= ΨΘ(x, T, η ∨ ζ)

≤ ΨΘ(x, T, η) + ΨΘ(x, T, ζ)

< ΨΘ(x, T, η) +
ϵ

2
,

and so ΨΘ(x, T, ξ|η) <
ϵ

2
. Since ξ ∨ η = ξ ∨ ζ, we

easily obtain that ΨΘ(x, T, η|ξ) <
ϵ

2
.

Definition 3.4. Suppose T : X → X is a con-

tinuous map on the topological space X, x ∈ X,

and ξ is a finite Borel partition of X. We define

the map hΘ(·, T, ξ) : X → [0,∞] as follows

hΘ(x, T, ξ) = lim sup
l→∞

1

l
ΨΘ

(
x, T,∨l−1

i=0T
−iξ
)
.

Definition 3.5. Let T : X → X be a continuous

map on the topological space X, x ∈ X, and A

be a Borel subset of X. Also, let Ξ = {ξn}n∈N be

a sequence of finite Borel partitions of X, such

that diam(ξn) → 0 as n → ∞.We define the map

hΘ(·, T,Ξ) : X → [0,∞] as follows

hΘ(x, T,Ξ) = lim
n→∞

hΘ(x, T, ξn).

Remark 3.1. In the Definition 3.5, without loss

of generality, we may assume that ξn ≺ ξn+1, as

otherwise we can replace ξn with ηn = ∨n
k=1ξk.

Hence,

an(x) = lim sup
l→∞

1

l
ΨΘ

(
x, T,∨l−1

i=0T
−iξn

)
is an increasing sequence with respect to n.

Therefore, limn→∞ an(x) exists as a non-negative

extended real number.

Definition 3.6. Suppose T : X → X is a con-

tinuous map on the topological space X, x ∈ X

and ξ is a finite Borel partition of X. We define

the relative entropy of T at x as follows

hΘ(T,mx) = sup
ξ

hΘ(x, T, ξ).
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Definition 3.7. Suppose X is a compact metric

space, T : X → X is a continuous map on X, and

µ ∈ M(X,T ). Also suppose that Ξ = {ξn}n∈N is

a sequence of finite Borel partitions of X, such

that diam(ξn) → 0 as n → ∞. The relative en-

tropy functional of T , with respect to µ, is defined

as LT
Θ(·,m,Ξ) : C(X) → R, where

LT
Θ(f,m,Ξ) =

∫
X
f(x)hΘ(x, T,Ξ)dµ(x),

for all f ∈ C(X). As previous, we assume that

0×∞ := 0.

Theorem 3.5. Let X be a compact metric space,

and T : X → X be a continuous map on X. Also,

let {ξn}n∈N be a sequence of finite Borel partitions

of X, such that diam(ξn) → 0 as n → ∞. Then,

for all x ∈ X

hΘ(T,mx) = lim
n→∞

hΘ(x, T, ξn).

Proof. Let ε > 0. If hΘ(x, T, ξ) < ∞, then we

choose a finite partition ξ = {A1, . . . , Ar} of X

such that

hΘ(x, T, ξ) > hΘ(T,mx)− ε.

Otherwise, if hΘ(T,mx) = ∞, we choose the par-

tition ξ such that hΘ(T,mx, ξ) > 1
ε . So, we can

select δ correspond to ε and r as indicated in the

Theorem 3.4.

Let Pi ⊂ Ai be compact subsets with mx(Ai \
Pi) <

δ
r+1 , and δ

′
= infi ̸=j d(Pi, Pj). Let us pick

n such that diam(ξn) <
δ
′

2 . For 1 ≤ i < r, let Ei
n

be the union of all the elements of ξn that inter-

sect Pi, and let Er
n be the union of the remaining

elements of ξn. Note that, each C ∈ ξn can inter-

sect at most one Pi, since diam(ξn) <
δ
′

2 . Thus,

ξ
′
n = {E1

n, . . . , E
r
n} is so that ξ

′
n ≤ ξn and

mx(E
i
n∆Ai) = mx(E

i
n \Ai)

+mx(Ai \ Ei
n)

≤ mx(X \ ∪r
j=1Pj)

+mx(Ai \ Pi) < δ.

By using the Theorem 3.4, we obtain that

ΨΘ(x, T, ξ|ξ
′
n) < ε. Therefore, if n is such that

diam(ξn) <
δ
′

2 , then

hΘ(x, T, ξ) ≤ hΘ(x, T, ξ
′
) + ε

≤ hΘ(x, T, ξn) + ε.

So we conclude that, by assumption of

diam(ξn) <
δ
′

2
, we have

hΘ(x, T, ξ) > hΘ(T,mx)− 2ε,

if hΘ(T,mx) < ∞, and hΘ(x, T, ξ) >
1

ε
, if

hΘ(T,mx) = ∞. Therefore, limn→∞ hΘ(x, T, ξn)

exists and is equal to hΘ(T,mx).

Theorem 3.6. Suppose T : X → X is a con-

tinuous map on the compact metric space X. Let

Ξ = {ξn}n∈N and Π = {ηn}n∈N be two sequences

of finite Borel partitions of X, such that both

diam(ξn) and diam(ηn) → 0 as n → ∞. Then

LT
Θ(f,m,Ξ) = LT

Θ(f,m,Π).

Proof. Let x ∈ X be arbitrary. We obtain

lim sup
l→∞

1

l
ΨΘ

(
x, T,∨l−1

i=0T
−iξn

)
=

hΘ(x, T, ξn), (3.1)

lim sup
l→∞

1

l
ΨΘ

(
x, T,∨l−1

i=0T
−iηn

)
=

hΘ(x, T, ηn) (3.2)

Applying Equations (3.1) and (3.2) and Theorem

3.5, we conclude that

hΘ(x, T,Ξ) = lim
n→∞

hΘ(x, T, ξn)

= hΘ(T,mx)

= lim
n→∞

hΘ(x, T, ηn)

= hΘ(x, T,Π).

So, if f ∈ C(X), then

f(x)hΘ(x, T,Ξ) = f(x)hΘ(x, T,Π),

for all x ∈ X. Therefore,

LT
Θ(f,m,Ξ) = LT

Θ(f,m,Π).
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Remark 3.2. By using results of the Theorem

3.6, we conclude that the definition of relative en-

tropy functional is independent of the selection

of finite Borel partitions. Therefore, given any

invariant measure µ and any sequence of finite

Borel partitions Ξ = {ξn}n∈N, with diam(ξn) →
0, there exist unique relative entropy functional

LT
Θ(f, µ,Ξ). So, we can write LT

Θ(f, µ) instead of

LT
Θ(f, µ,Ξ), without confusion.

Example 3.1. Let X = R
Z , β denote the Borel

sigma-algebra, Θ = χX , and f(x) = 1. Also,

let T : X → X be the doubling map T (x) = 2x

(mod 1). We know that T preserves Lebesgue

measure m, and so is ergodic. Hence, by The-

orem 2.1, for each x ∈ X and A ⊂ X, we have

mx(A) = m(A). Let

ξn =

{[
i

2n
,
i+ 1

2n

)
: i = 0, 1, ..., 2n − 1

}
,

then we see that hΘ(x, T, ξn) = log 2 and thus

letting n → ∞, gives that hΘ(x, T,Ξ) = log 2.

So, for each µ ∈ M(X,T ) we have LT
Θ(f, µ,Ξ) =

log 2.

Theorem 3.7. Suppose T : X → X is a contin-

uous map on the compact metric space X. Then,

(i) The relative entropy functional f 7→ LT
Θ(f, µ)

is linear, for any given µ ∈ M(X,T ).

(ii) The map µ 7→ LT
Θ(f, µ) is affine, for any

given f ∈ C(X).

Proof. The proof is trivial.

Definition 3.8. Two relative dynamical systems

(X,T1,Θ1) and (Y, T2,Θ2) are said to be conju-

gate, if there exists a homeomorphism φ : X → Y

such that

φ ◦ T1 = T2 ◦ φ,
and

Θ2(T2 ◦ φ(x)) = Θ1(T1(x)),

for all x ∈ X.

Theorem 3.8. Let T : X → X be a continu-

ous map on compact metric space X. Then, If

two relative dynamical systems (X,T1,Θ1) and

(Y, T2,Θ2) are conjugate, and µ ∈ M(X,T ), then

LT1
Θ1

(f, µ) = LT2
Θ2

(fφ−1, µφ−1),

for all f ∈ C(X).

Proof. Note that

mT1
Θ (A)(x) = mT2

Θ (φ(A))(φ(x)),

for x ∈ X and the Borel set A ⊂ X. So,

ΨΘ(x, T1, ξ) = ΨΘ(φ(x), T2, φ(ξ)),

for any finite Borel partition ξ. Now, by using

definition of hΘ(·, T,Ξ), we conclude that

hΘ1(·, T1,Ξ) = hΘ2(·, T2, φ(Ξ)) ◦ φ,

for any sequence Ξ = {ξn}n∈N of finite Borel par-

titions of X, with diam(ξn) → 0.

Note that, φ(Ξ) = {φ(ξn)}n∈N and

diam(φ(ξn)) → 0. Therefore, for µ ∈ M(X,T1),

and f ∈ C(X) we have

LT1
Θ1

(f, µ)

=

∫
X
f(x)hΘ1(x, T1,Ξ)dµ(x)

=

∫
X
f(x)hΘ1(φ(x), T2, φ(Ξ))dµ(x)

=

∫
Y
f(φ−1(x))hΘ1(x, T2, φ(Ξ))d(µφ

−1)(x)

= LT2
Θ2

(fφ−1, µφ−1).

From observer viewpoint, the following version of

Jacobs theorem, can be obtained as follows.

Theorem 3.9. Let T : X → X be a continu-

ous map on compact metric space X. If µ =∫
E(X,T )mdτ(m) ∈ M(X,T ) is the ergodic decom-

position of µ, then

LT
Θ(f, µ) =

∫
E(X,T )

LT
Θ(f,m)dτ(m),

for all f ∈ C(X).

Proof. Suppose Ξ = {ξn}n∈N is a sequence of

finite Borel partitions ofX, such that diam(ξn) →
0. Now, let f ∈ C+(X). Using the Corollary 2.1,

we obtain that
LT
Θ(f, µ, ξ)

=

∫
X
f(x)hΘ(x, T, ξ)dµ(x)

=

∫
E(X,T )

(∫
X
f(x)hΘ(x, T, ξ)dm(x)

)
dτ(m)

=

∫
E(X,T )

∫
X
LT
Θ(f,m, ξ)dτ(m).

For the rest of proof, write f = f+ − f−, for

f ∈ C(X), where f+, f− ∈ C+(X).
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Theorem 3.10. Let T : X → X be a continuous

map on compact metric space X. Moreover, let

x ∈ X and µ ∈ M(X,T ). Then, LT
Θ(1, µ) =

hΘ(T,mx).

Proof. Let Ξ = {ξn}n∈N be a sequence of finite

Borel partitions of X, such that diam(ξn) → 0.

Let µ ∈ M(X,T ). Similar to proof of the Theo-

rem 3.6, we can obtain

hΘ(x, T,Ξ) = hΘ(T,mx), ∀ x ∈ X.

Therefore,

LT
Θ(1, µ) =

∫
X
hΘ(T,mx)dµ(x)

= hΘ(T,mx).

Theorem 3.11. Let T : X → X be a continuous

map on compact metric space X. Moreover, let

x ∈ X, and µ ∈ M(X,T ). Then, the relative

entropy functional f 7→ LT
Θ(f, µ) is a continuous

linear function on C(X), and

∥LT
Θ(·, µ)∥= hΘ(T,mx).

Proof. Let Ξ = {ξn}n∈N be a sequence of finite

Borel partitions of X, such that diam(ξn) → 0.

Then, for f ∈ C(X), we have∣∣LT
Θ(f, µ)

∣∣ = ∣∣∣∣∫
X
f(x)hΘ(x, T,Θ)dµ(x)

∣∣∣∣
≤
∫
X
|f(x)|hΘ(x, T, µ)dµ(x)

≤ ∥f∥∞
∫
X
hΘ(x, T, µ)dµ(x)

= ∥f∥∞ LT
Θ(1, µ)

= ∥f∥∞hΘ(T,mx).

Finally we conclude that, the relative en-

tropy functional is a continuous function and

∥LT
Θ(·, µ)∥≤ hSΘ(T,mx). The equality holds us-

ing the Theorem 3.10.

In the following, we extract the Kolmogorov en-

tropy from relative entropy functional, as a spe-

cial case.

Theorem 3.12. Let T : X → X be a con-

tinuous map on compact metric space X. If

Θ : X → [0, 1] is the characteristic function χX ,

then LT
Θ(1, µ) = hµ(T ).

Proof. Let Ξ = {ξn}n∈N be a sequence of fi-

nite Borel partitions of X, such that diam(ξn) →
0. Using the Definition 3.6, we deduce that

hΘ(x, T, ξ) = hΘ(T,mx). Let m ∈ E(X,T ). By

applying Theorem 2.1, we have mx(A) = m(A),

for each Borel set A and x ∈ X. So by replacing

mx with m, we have hΘ(x, T, ξ) = hm(T ). There-

fore,

LΘ(1,m) =

∫
X
hΘ(x, T, ξ)dm(x) = hm(T ).

Now, let µ ∈ M(X,T ), and µ =
∫
E(X,T )mdτ(m)

be the ergodic decomposition of µ. Using the

Theorems 2.3 and 3.9, we have

LT
Θ(1, µ) =

∫
E(X,T )

LT
Θ(1,m)dτ(m)

=

∫
E(X,T )

hm(T )dτ(m)

= hµ(T ).

4 Conclusions

In this paper, we introduced a new notion of rela-

tive entropy functional for relative dynamical sys-

tems from the viewpoint of observer Θ by using

a sequence of Borel partitions. This notion is an

extension of Kolmogorov entropy, as we proved

that if Θ : X → [0, 1] is the characteristic func-

tion χX , then LT
Θ(1, µ) is the Kolmogorov entropy

of T . It is important to highlight that, relative en-

tropy functional is an invariant object under the

relative conjugate relation, and so, it can be used

to obtain a new method for comparing between

the perspectives of observers. Moreover, it can be

used to measure complexity and/or uncertainty of

the system from the viewpoint of observers. This

notion is a continuous linear functional on C(X),

such that its norm equals the relative entropy of

T , at each x ∈ X.
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