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Abstract

The main purpose of this paper is to introduce the notion of ∗-fusion frames in Hilbert modules over
locally C∗-algebras to study some properties about these frames. We present some results of frames
in the view of ∗-fusion frames in Hilbert modules over locally C∗-algebras, inparticular we give the
reconstruction formula for these frames.
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1 Introduction

F
rames for Hilbert spaces were introduced in
1952 by Duffin and Schaeffer [5] to study

some problems in nonharmonic Fourier series.
Then Daubecheies, Grassman and Mayer [4] rein-
troduced and developed them. Various general-
izations of frames e.g. frames of subspaces and
g-frames were developed [3, 12, 13]. Frank and
Larson [6] presented a general approach to the
frame theory in Hilbert C∗-modules. A. Khos-
ravi and B. Khosravi [9] generalized the con-
cept of fusion frames and g-frames to Hilbert C∗-
modules. A. Alijani and M.A. Dehghan [1] in-
troduced ∗-frames and studied the properties of
them in Hilbert C∗-modules. Finally, M. Azhini
and N. Haddadzadeh [2] generalized the theory
of fusion frames to Hilbert modules over locally
C∗-algebras.
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It is well known that Hilbert C∗-modules
are generalizations of Hilbert spaces which the
inner product takes values in a C∗-algebra.
The theory of Hilbert C∗-modules has ap-
plications in the study of locally compact
quantum groups, complete maps between C∗-
algebras, non-commutative geometry, and KK-
theory. There are some differences between
Hilbert C∗-modules and Hilbert spaces. For ex-
ample, there exist closed subspaces in Hilbert
C∗-modules that have no orthogonal complement
[10]. Moreover, every bounded operator on a
Hilbert space has an adjoint such that there are
bounded operators on Hilbert C∗-modules which
have not this property [11]. So, problems about
frames and ∗-frames for Hilbert C∗-modules are
more complicated than those for Hilbert spaces.
This makes the topic of the frames for Hilbert
C∗-modules important and absorbing. In this
paper, we introduce ∗-fusion frames for Hilbert
modules over locally C∗-algebras and give some
results about them.
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2 Preliminaries

In this section, locally C∗-algebras and Hilbert
modules over them are defined. Recall that a C∗-
seminorm on a topological ∗-algebra A is a semi-
norm p such that p(ab) ≤ p(a)p(b) and p(aa∗) =
(p(a))2 for all a, b ∈ A.

Definition 2.1. A locally C∗-algebra is a Haus-
dorff complete complex topological ∗-algebra A
whose topology is determined by its continuous
C∗-seminorms.

In the sense that a net {aα}α∈I converges to 0
if and only if the net {p(aα)}α∈I converges to 0,
for all continuous C∗seminorm p on A.
Note that, each C∗-algebra is a locally C∗-
algebra.

The set of all continuous C∗-seminorms on A is
denoted by S(A). Now, let A be a unital locally
C∗-algebra with unit 1A and a ∈ A. Then a is
called positive if a∗ = a and sp(a) = {λ ∈ C :
λ1A − a is not invertible} ⊆ R+. The set of all
positive elements of A denotes by A+. If a, b ∈ A,
then a ≤ b means that b− a ∈ A+.

Proposition 2.1. ([7]) Let A be a unital locally
C∗-algebra with unit 1A. Then for any p ∈ S(A)
and a, b ∈ A, the followings hold:
(1) p(a) = p(a∗)
(2) p(1A) = 1
(3) If a, b ∈ A+ and a ≤ b, then p(a) ≤ p(b)
(4) If 1A ≤ b, then b is invertible and b−1 ≤ 1A
(5) If a, b ∈ A+ are invertible and 0 ≤ a ≤ b,
then 0 ≤ b−1 ≤ a−1

(6) If a ≤ b and c ∈ A, then c∗ac ≤ c∗bc
(7) If a, b ∈ A+ and a2 ≤ b2, then 0 ≤ a ≤ b.

Now, we recall some definitions and basic prop-
erties of Hilbert modules over locally C∗-algebras,
for more detailes see [8].

Definition 2.2. A pre-Hilbert module over lo-
cally C∗-algebra A is a complex vector space E
which is also a left A-module equipped with an
A-valued inner product ⟨., .⟩ : E × E → A which
is C-linear and A-linear in its first variable and
satisfies the following conditions:
(i) ⟨x, x⟩ ≥ 0,
(ii) ⟨x, x⟩ = 0 iff x = 0,
(iii) ⟨x, y⟩∗ = ⟨y, x⟩ , for all x, y ∈ E.

A pre-Hilbert A-module E is called Hilbert A-
module if E is complete with respect to the topol-
ogy determined by the family of seminorms

p̄E(x) =
√

p(⟨x, x⟩) (x ∈ E, p ∈ S(A)).

If A is a locally C∗-algebra, then it is a Hilbert A-
module with respect to the inner product ⟨a, b⟩ =
ab∗ (a, b ∈ A).

Lemma 2.1. [8, Lemma 2.1] For every p ∈ S(A)
and for all x, y ∈ E, the Cauchy-Bunyakovskii
inequality holds

p(⟨x, y⟩)2 ≤ p(⟨x, x⟩)p(⟨y, y⟩).

Example 2.1. Let l2(A) be the set of all se-
quences {an}n∈N of elements of a locally C∗-
algebra A such that the series

∑∞
n=1 ana

∗
n is con-

vergent in A. Then l2(A) is a Hilbert A-module
with respect to the pointwise operations and inner
product defined by

⟨{an}n∈N, {bn}n∈N⟩ =
∞∑
n=1

anb
∗
n.

Definition 2.3. Let M be a closed submodule of
a Hilbert A-module E. Define

M⊥ = {y ∈ E : ⟨x, y⟩ = 0, for all x ∈ M}.

Then M⊥ is a closed submodule of E. A closed
submodule M in a Hilbert A-module E is called
orthogonally complemented if E = M ⊕M⊥.

Let E and F be two locally Hilbert A-modules.
An A-module map T : E → F is said to be
bounded if for each p ∈ S(A), there exists Cp > 0
such that

p̄E(Tx) ≤ Cpp̄E(x) (x ∈ E).

The set of all bounded A-module maps from
E to F is denoted by HomA(E,F ) and we set
HomA(E,E) = EndA(E).
Let T ∈ HomA(E,F ), T is called adjointable if
there exists a map T ∗ ∈ HomA(F,E) such that

⟨Tx, y⟩ = ⟨x, T ∗y⟩

for all x ∈ E, y ∈ F . The set of all adjointable
operators from E to F is denoted byHom∗

A(E,F )
and we set Hom∗

A(E,E) = End∗A(E).
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3 ∗-Fusion frames in Hilbert
modules over locally C∗-
algebras

In this section, we assume that A is a unital lo-
cally C∗-algebra and E is a Hilbert A-module.
We introduce ∗-fusion frames in Hilbert modules
over locally C∗-algebras, and then we give some
results about them.

Definition 3.1. Let {vi ∈ A : i ∈ I} be a se-
quence of weights in A, that is each vi is a positive
invertible element from the center of A, and let
{Mi : i ∈ I} be a sequence of orthogonally comple-
mented submodules of E. Then {(Mi, vi) : i ∈ I}
is called a ∗-fusion frame if there are two strictly
nonzero elements C,D ∈ A such that

C ⟨x, x⟩C∗ ≤
∑
i∈I

v2i ⟨PMi(x), (3.1)

PMi(x) ≤ D ⟨x, x⟩D∗, (x ∈ E),

where PMi is the orthogonal projection of E onto
Mi.

We call C and D the lower and upper bounds
of the ∗-fusion frame. Since A is not a partial or-
dered set, lower and upper ∗-frame bounds may
not have order and the optimal bounds may not
exist. If C = D = λ, the family {(Mi, vi) :
i ∈ I} is called a λ-tight ∗-fusion frame and if
C = D = 1A, it is called a Parseval ∗-fusion
frame. If in (3.1), we only have the upper bound,
then {(Mi, vi) : i ∈ I} is called a ∗-Bessel fusion
sequence with ∗-Bessel bound D. Now, we give
some results about ∗-fusion frames.

Remark 3.1. Note that each fusion frame is a
∗-fusion frame. For this, let {(Mi, vi) : i ∈ I} be
a fusion frame for the Hilbert A-module E with
real frame bounds C and D. Then for x ∈ E, we
have

(
√
C)1A ⟨x, x⟩ (

√
C)1A ≤

∑
i∈I

v2i ⟨PMi(x), (3.2)

PMi(x) ≤ (
√
D)1A ⟨x, x⟩ (

√
D)1A.

Hence, {(Mi, vi) : i ∈ I} is a ∗-fusion frame with
C∗-algebra valued bounds (

√
C)1A and (

√
D)1A,

where 1A is the identity element of A.

Example 3.1. Let {Mi : i ∈ I} be a sequence of
Hilbert A-modules and

X = ⊕i∈NMi = {{xi}i∈N : xi ∈ Mi

and ∑
i∈N

⟨xi, xi⟩ is norm convergent in A}.

Then X is a Hilbert A-module with inner product
⟨{xi}, {yi}⟩ =

∑
i∈N ⟨xi, yi⟩, point wise operations

and the norm defined by ∥x∥= ∥⟨x, x⟩ ∥
1
2 . Then

{Mi}i∈N is a Parseval ∗-fusion frame with respect
to {vi : i ∈ I}, where vi = 1 for all i ∈ I ([9]).

Proposition 3.1. Let E be a Hilbert A-module
and let {vi : i ∈ I} be a family of weights in A.
Let for each i ∈ I, Mi be an orthogonally comple-
mented submodule of E and {xij : j ∈ Ji} a frame
for Mi with positive bounds Ci and Di in the cen-
ter of A. Suppose that C2

i ≥ 1A for each i ∈ I
and Dp = supi p(Di) < ∞, for some p ∈ S(A).
Then the following conditions are equivalent.
(i) {vixij : i ∈ I; j ∈ Ji} is a ∗-frame for E.
(ii) {(Mi, vi) : i ∈ I} is a ∗-fusion frame for E.

Proof. Since Ci and Di in the center of A and
for each i ∈ I, {xij : j ∈ Ji} is a frame for Mi

with positive bounds Ci and Di, hence for any
x ∈ Mi we have

C2
i ⟨x, x⟩ ≤

∑
i∈Ji

⟨x, xij⟩ ⟨xij , x⟩ ≤ D2
i ⟨x, x⟩ .

Since C2
i ≥ 1A, thus for each a ∈ A,

aa∗C2
i = aC2

i a
∗ ≥ aa∗, therefore for x ∈ E, we

get∑
i∈I v

2
i ⟨PMi(x), PMi(x)⟩

≤
∑
i∈I

C2
i v

2
i ⟨PMi(x), PMi(x)⟩

≤
∑
i∈I

∑
i∈Ji

⟨viPMi(x), xij⟩ ⟨xij , viPMi(x)⟩

=
∑
i∈I

∑
i∈Ji

v2i ⟨PMi(x), xij⟩ ⟨xij , PMi(x)⟩

≤
∑
i∈I

D2
i v

2
i ⟨PMi(x), PMi(x)⟩

≤
∑
i∈I

p(D2
i )v

2
i ⟨PMi(x), PMi(x)⟩

≤ D2
p

∑
i∈I

v2i ⟨PMi(x), PMi(x)⟩ .
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Hence, we can write∑
i∈I v

2
i ⟨PMi(x), PMi(x)⟩

≤
∑
i∈I

∑
i∈Ji

⟨x, vixij⟩ ⟨vixij , x⟩

≤ D2
p

∑
i∈I

v2i ⟨PMi(x), PMi(x)⟩ .

This shows that if {vixij : i ∈ I; j ∈ Ji} is
a ∗-frame for E with frame bounds A and
B, then {(Mi, vi) : i ∈ I} is a ∗-fusion frame
for E with frame bounds A

D2
p

and B. Con-

versely if {(Mi, vi) : i ∈ I} is a ∗-fusion frame
for E with frame bounds A and B, then
{vixij : i ∈ I; j ∈ Ji} is a ∗-frame for E with
frame bounds A and BD2

p. This completes the
proof.

Now, We generalize [6, Theorem 4.1] to ∗-
Bessel fusion sequences. First, by a little
modification in the proof of [2, Lemma 4.4], we
get the following lemma.

Lemma 3.1. Let {(Mi, vi) : i ∈ I} be a ∗-Bessel
fusion sequence for a Hilbert A-module E with ∗-
Bessel bound D. Then for each x = (xi)i∈I in
the Hilbert A-module M =

⊕
i∈I Mi, the series∑

i∈I vixi converges unconditionally and for each
p ∈ S(A), we have

p̄E(
∑
i∈I

vixi) ≤
√

p(D)p̄M (x).

We need the following proposition in the proof
of the next theorem.

Proposition 3.2. [2, Proposition 3.1] Let T :
E → F and T ∗ : F → E be two maps such that
the equality ⟨x, T ∗y⟩ = ⟨Tx, y⟩ holds for all x ∈
E, y ∈ F . Then T ∈ Hom∗

A(E,F ).

Theorem 3.1. Let {(Mi, vi) : i ∈ I} be a ∗-
Bessel fusion sequence for a Hilbert A-module E
with ∗-Bessel bound D. Then, the correspond-
ing frame transform θ : E → l2(E) defined by
θ(x) = (viPMi(x))i∈I for x ∈ E, is also bounded
and its adjoint operator θ∗ : l2(E) → E defined
as θ∗(y) =

∑
i∈I viPMi(yi) for each y = (yi)i∈I ∈

l2(E), is bounded.

Proof. Since {(Mi, vi) : i ∈ I} is a ∗-Bessel
fusion sequence, we have∑

i∈I
v2i ⟨PMi(x), PMi(x)⟩ ≤ D ⟨x, x⟩D∗,

hence θ is well-defined and for each p ∈ S(A) and
x ∈ E, we get

p ⟨θ(x), θ(x)⟩ ≤ p(D ⟨x, x⟩D∗) ≤ (p(D))2p ⟨x, x⟩ .

Hence, if p̄E and p̄l2(E) are continuous seminorms
on E and l2(E), respectively, we obtain

p̄l2(E)(θ(x)) ≤
√

(p(D))2p̄E(x) = p(D)p̄E(x).

Therefore θ is bounded. Now for each y =
(yi)i∈I ∈ l2(E) define θ∗(y) =

∑
i∈I viPMi(yi), by

[2, Proposition 2.2], the series
∑

i∈I ⟨yi, yi⟩ con-
verges unconditionally. Moreover∑

i∈I
⟨PMi(yi), PMi(yi)⟩ ≤

∑
i∈I

⟨yi, yi⟩ .

Therefore (PMi(yi))i∈I is in
⊕

i∈I Mi. Hence by
Lemma 3.1,

∑
i∈I viPMi(yi) converges uncon-

ditionally and θ∗ is well-defined. On the other
hand, for each x ∈ E and y = (yi)i∈I ∈ l2(E), we
have

⟨x, θ∗(y)⟩ =⟨
x,

∑
i∈I

viPMi(yi)

⟩
=

∑
i∈I

⟨viPMi(x), yi⟩ = ⟨θ(x), y⟩ ,

and so by Proposition 3.2, θ∗ is bounded. This
completes the proof.

If {(Mi, vi) : i ∈ I} is a ∗-fusion frame for
E with frame bounds C and D and M is an
orthogonally complemented submodule of E, for
each i ∈ I and x ∈ M we have∑

i∈I v
2
i ⟨PMi∩M (x), PMi∩M (x)⟩

=
∑
i∈I

v2i ⟨PMi(PM (x)), PMi(PM (x))⟩

=
∑
i∈I

v2i ⟨PMi(x), PMi(x)⟩ .

Hence we have the following result.
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Proposition 3.3. Let E be a Hilbert A-module
and let {(Mi, vi) : i ∈ I} be a ∗-fusion frame for
E with frame bounds C and D. If M is an or-
thogonally complemented submodule of E. Then
{(Mi ∩M,vi) : i ∈ I} is a ∗-fusion frame for M
with frame bounds C and D.

By the polariation identity

⟨x, y⟩ = 1

4

3∑
k=0

ik
⟨
x+ iky, x+ iky

⟩
we get the next proposition.

Proposition 3.4. Let {(Mi, vi) : i ∈ I} be a
Parseval ∗-fusion frame for a Hilbert A-module
E. Then, the corresponding frame transform θ
preserves the inner product.

Definition 3.2. Let {(Mi, vi) : i ∈ I} be a ∗-
fusion frame for a Hilbert A-module E. Then the
fusion frame operator S for {(Mi, vi) : i ∈ I} is
defined by

S(x) = θ∗θ(x) =
∑
i∈I

v2i PMi(x), (x ∈ E).

Our next result is a generalization of [9, The-
orem 2.11] for ∗-fusion frames with invertible ∗-
fusion frame bounds.

Theorem 3.2. ( Reconstruction formula) Let
{(Mi, vi) : i ∈ I} be a ∗-fusion frame for a Hilbert
A-module E with ∗-fusion frame operator S and
strictly nonzero ∗-fusion frame bounds C and D
in the center of unital locally C∗-algebra A. Then,
S is a positive, self-adjoint and invertible opera-
tor on E such that for each x ∈ E and p ∈ S(A)

(p(C−1))−2p̄E(x) ≤ p̄E(S
1
2 ) ≤ (p(D))2p̄E(x)

and
x =

∑
i∈I

v2i S
−1PMi(x).

Proof. It is clear that ⟨S(x), y⟩ = ⟨x, S(y)⟩,
for each x, y ∈ E. Thus by Proposition 3.2,
S ∈ End∗A and S∗ = S. Also for each x ∈ E, we
have

⟨S(x), x⟩ =∑
i∈I

v2i ⟨PMi(x), x⟩ =
∑
i∈I

v2i ⟨PMi(x), PMi(x)⟩ .

Hence S is a positive operator. Hence there
is a positive element T in End∗A(E) such that
S = T ∗T . We show that T has the closed
range. Let {Txn} be a sequence in RT such that
Txn → y as n → ∞. Then for each p ∈ S(A) we
have

p(C ⟨xn − xm, xn − xm⟩C∗)

≤ p( ⟨S(xn − xm), xn − xm⟩ )
= p( ⟨T (xn − xm), T (xn − xm)⟩ ),

for n,m ∈ N. Since {Txn} is a cauchy sequence
in E, so p(C ⟨xn − xm, xn − xm⟩C∗) → 0, for
n,m ∈ N. Moreover

p( ⟨xn − xm, xn − xm⟩ )

= p(C−1C ⟨xn − xm, xn − xm⟩C∗(C∗)−1)

≤ (p(C−1))2p(C ⟨xn − xm, xn − xm⟩C∗).

Hence the sequence {xn} is cauchy and so there
is x ∈ E such that xn → x as n → ∞. By the
definition of ∗-fusion frames, we get

p( ⟨T (xn − x), T (xn − x)⟩ )

≤ (p(D))2p( ⟨xn − x, xn − x⟩ ).

Therefore p̄E(Txn − Tx) → 0 as n → ∞
implies that Tx = y. Consequently RT is
closed. Similarly one can see that T is injective.
Therefore S = T ∗T is invertible. Further-
more we have ⟨x, x⟩ ≤ C−1 ⟨Sx, x⟩ (C∗)−1 and
⟨Sx, x⟩ ≤ D ⟨x, x⟩D∗ and so for each p ∈ S(A)

(p(C−1))−2p(⟨x, x⟩)

≤ p(⟨Sx, x⟩) ≤ (p(D))2p(⟨x, x⟩),

for each x ∈ E. Therefore

(p(C−1))−2p̄E(x) ≤ p̄E(S
1
2 ) ≤ (p(D))2p̄E(x).

Also for each x ∈ E, we have

x = S−1S(x) =
∑
i∈I

v2i S
−1PMi(x).

This completes the proof.
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