

Available online at http://ijim.srbiau.ac.ir/ Int. J. Industrial Mathematics (ISSN 2008-5621) Vol. 13, No. 2, 2021 Article ID IJIM-1207, 6 pages DOR: http://dorl.net/dor/20.1001.1.20085621.2021.13.2.8.3 Research Article

-Fusion Frames in Hilbert Modules Over Locally C^ -Algebras

T. Lal Shateri *[†]

Received Date: 2018-06-25 Revised Date: 2020-12-21 Accepted Date: 2021-02-10

Abstract

The main purpose of this paper is to introduce the notion of *-fusion frames in Hilbert modules over locally C^* -algebras to study some properties about these frames. We present some results of frames in the view of *-fusion frames in Hilbert modules over locally C^* -algebras, inparticular we give the reconstruction formula for these frames.

Keywords : C^* -algebra; Locally C^* -algebra; Hilbert C^* -module; Frame; *-fusion frame.

1 Introduction

 F_{1952}^{Rames} for Hilbert spaces were introduced in 1952 by Duffin and Schaeffer [5] to study some problems in nonharmonic Fourier series. Then Daubecheies, Grassman and Mayer [4] reintroduced and developed them. Various generalizations of frames e.g. frames of subspaces and g-frames were developed [3, 12, 13]. Frank and Larson [6] presented a general approach to the frame theory in Hilbert C^* -modules. A. Khosravi and B. Khosravi [9] generalized the concept of fusion frames and *g*-frames to Hilbert C^* modules. A. Alijani and M.A. Dehghan [1] introduced *-frames and studied the properties of them in Hilbert C^* -modules. Finally, M. Azhini and N. Haddadzadeh [2] generalized the theory of fusion frames to Hilbert modules over locally C^* -algebras.

It is well known that Hilbert C^* -modules are generalizations of Hilbert spaces which the inner product takes values in a C^* -algebra. The theory of Hilbert C^* -modules has applications in the study of locally compact quantum groups, complete maps between C^* algebras, non-commutative geometry, and KKtheory. There are some differences between Hilbert C^* -modules and Hilbert spaces. For example, there exist closed subspaces in Hilbert C^* -modules that have no orthogonal complement [10]. Moreover, every bounded operator on a Hilbert space has an adjoint such that there are bounded operators on Hilbert C^* -modules which have not this property [11]. So, problems about frames and *-frames for Hilbert C^* -modules are more complicated than those for Hilbert spaces. This makes the topic of the frames for Hilbert C^* -modules important and absorbing. In this paper, we introduce *-fusion frames for Hilbert modules over locally C^* -algebras and give some results about them.

^{*}Corresponding author. t.shateri@hsu.ac.ir, Tel:+98(51)44013052.

[†]Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

2 Preliminaries

In this section, locally C^* -algebras and Hilbert modules over them are defined. Recall that a C^* seminorm on a topological *-algebra \mathcal{A} is a seminorm p such that $p(ab) \leq p(a)p(b)$ and $p(aa^*) = (p(a))^2$ for all $a, b \in \mathcal{A}$.

Definition 2.1. A locally C^* -algebra is a Hausdorff complete complex topological *-algebra \mathcal{A} whose topology is determined by its continuous C^* -seminorms.

In the sense that a net $\{a_{\alpha}\}_{\alpha \in I}$ converges to 0 if and only if the net $\{p(a_{\alpha})\}_{\alpha \in I}$ converges to 0, for all continuous C^* seminorm p on \mathcal{A} .

Note that, each C^* -algebra is a locally C^* -algebra.

The set of all continuous C^* -seminorms on \mathcal{A} is denoted by $S(\mathcal{A})$. Now, let \mathcal{A} be a unital locally C^* -algebra with unit $1_{\mathcal{A}}$ and $a \in \mathcal{A}$. Then a is called positive if $a^* = a$ and $sp(a) = \{\lambda \in \mathbb{C} : \lambda 1_{\mathcal{A}} - a \text{ is not invertible}\} \subseteq \mathbb{R}^+$. The set of all positive elements of \mathcal{A} denotes by \mathcal{A}^+ . If $a, b \in \mathcal{A}$, then $a \leq b$ means that $b - a \in \mathcal{A}^+$.

Proposition 2.1. ([7]) Let \mathcal{A} be a unital locally C^* -algebra with unit $1_{\mathcal{A}}$. Then for any $p \in S(\mathcal{A})$ and $a, b \in \mathcal{A}$, the followings hold:

(1) $p(a) = p(a^*)$ (2) $p(1_{\mathcal{A}}) = 1$ (3) If $a, b \in \mathcal{A}^+$ and $a \leq b$, then $p(a) \leq p(b)$ (4) If $1_{\mathcal{A}} \leq b$, then b is invertible and $b^{-1} \leq 1_{\mathcal{A}}$ (5) If $a, b \in \mathcal{A}^+$ are invertible and $0 \leq a \leq b$, then $0 \leq b^{-1} \leq a^{-1}$ (6) If $a \leq b$ and $c \in \mathcal{A}$, then $c^*ac \leq c^*bc$ (7) If $a, b \in \mathcal{A}^+$ and $a^2 \leq b^2$, then $0 \leq a \leq b$.

Now, we recall some definitions and basic properties of Hilbert modules over locally C^* -algebras, for more detailes see [8].

Definition 2.2. A pre-Hilbert module over locally C^* -algebra \mathcal{A} is a complex vector space Ewhich is also a left \mathcal{A} -module equipped with an \mathcal{A} -valued inner product $\langle ., . \rangle : E \times E \to \mathcal{A}$ which is \mathbb{C} -linear and \mathcal{A} -linear in its first variable and satisfies the following conditions:

$$\begin{array}{l} (i) \ \langle x,x\rangle \geq 0, \\ (ii) \ \langle x,x\rangle = 0 \ iff \ x = 0, \end{array}$$

(*iii*)
$$\langle x, y \rangle^* = \langle y, x \rangle$$
, for all $x, y \in E$.

A pre-Hilbert \mathcal{A} -module E is called Hilbert \mathcal{A} module if E is complete with respect to the topology determined by the family of seminorms

$$\bar{p}_E(x) = \sqrt{p(\langle x, x \rangle)} \quad (x \in E, p \in S(\mathcal{A})).$$

If \mathcal{A} is a locally C^* -algebra, then it is a Hilbert \mathcal{A} module with respect to the inner product $\langle a, b \rangle = ab^* \quad (a, b \in \mathcal{A}).$

Lemma 2.1. [8, Lemma 2.1] For every $p \in S(\mathcal{A})$ and for all $x, y \in E$, the Cauchy-Bunyakovskii inequality holds

$$p(\langle x, y \rangle)^2 \le p(\langle x, x \rangle)p(\langle y, y \rangle)$$

Example 2.1. Let $l^2(\mathcal{A})$ be the set of all sequences $\{a_n\}_{n\in\mathbb{N}}$ of elements of a locally C^* -algebra \mathcal{A} such that the series $\sum_{n=1}^{\infty} a_n a_n^*$ is convergent in \mathcal{A} . Then $l^2(\mathcal{A})$ is a Hilbert \mathcal{A} -module with respect to the pointwise operations and inner product defined by

$$\langle \{a_n\}_{n\in\mathbb{N}}, \{b_n\}_{n\in\mathbb{N}} \rangle = \sum_{n=1}^{\infty} a_n b_n^*$$

Definition 2.3. Let M be a closed submodule of a Hilbert A-module E. Define

$$M^{\perp} = \{ y \in E : \langle x, y \rangle = 0, \text{ for all } x \in M \}.$$

Then M^{\perp} is a closed submodule of E. A closed submodule M in a Hilbert \mathcal{A} -module E is called orthogonally complemented if $E = M \oplus M^{\perp}$.

Let E and F be two locally Hilbert \mathcal{A} -modules. An \mathcal{A} -module map $T : E \to F$ is said to be bounded if for each $p \in S(\mathcal{A})$, there exists $C_p > 0$ such that

$$\bar{p}_E(Tx) \le C_p \bar{p}_E(x) \quad (x \in E).$$

The set of all bounded \mathcal{A} -module maps from E to F is denoted by $Hom_{\mathcal{A}}(E, F)$ and we set $Hom_{\mathcal{A}}(E, E) = End_{\mathcal{A}}(E)$.

Let $T \in Hom_{\mathcal{A}}(E, F)$, T is called adjointable if there exists a map $T^* \in Hom_{\mathcal{A}}(F, E)$ such that

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$

for all $x \in E, y \in F$. The set of all adjointable operators from E to F is denoted by $Hom^*_{\mathcal{A}}(E, F)$ and we set $Hom^*_{\mathcal{A}}(E, E) = End^*_{\mathcal{A}}(E)$.

3 *-Fusion frames in Hilbert modules over locally C^* algebras

In this section, we assume that \mathcal{A} is a unital locally C^* -algebra and E is a Hilbert \mathcal{A} -module. We introduce *-fusion frames in Hilbert modules over locally C^* -algebras, and then we give some results about them.

Definition 3.1. Let $\{v_i \in \mathcal{A} : i \in I\}$ be a sequence of weights in \mathcal{A} , that is each v_i is a positive invertible element from the center of \mathcal{A} , and let $\{M_i : i \in I\}$ be a sequence of orthogonally complemented submodules of E. Then $\{(M_i, v_i) : i \in I\}$ is called a *-fusion frame if there are two strictly nonzero elements $C, D \in \mathcal{A}$ such that

$$C \langle x, x \rangle C^* \leq \sum_{i \in I} v_i^2 \langle P_{M_i}(x), (3.1) \rangle$$
$$P_{M_i}(x) \leq D \langle x, x \rangle D^*, \quad (x \in E),$$

where P_{M_i} is the orthogonal projection of E onto M_i .

We call C and D the lower and upper bounds of the *-fusion frame. Since \mathcal{A} is not a partial ordered set, lower and upper *-frame bounds may not have order and the optimal bounds may not exist. If $C = D = \lambda$, the family $\{(M_i, v_i) :$ $i \in I\}$ is called a λ -tight *-fusion frame and if $C = D = 1_{\mathcal{A}}$, it is called a Parseval *-fusion frame. If in (3.1), we only have the upper bound, then $\{(M_i, v_i) : i \in I\}$ is called a *-Bessel fusion sequence with *-Bessel bound D. Now, we give some results about *-fusion frames.

Remark 3.1. Note that each fusion frame is a *-fusion frame. For this, let $\{(M_i, v_i) : i \in I\}$ be a fusion frame for the Hilbert \mathcal{A} -module E with real frame bounds C and D. Then for $x \in E$, we have

$$(\sqrt{C})1_{\mathcal{A}} \langle x, x \rangle (\sqrt{C})1_{\mathcal{A}} \leq \sum_{i \in I} v_i^2 \langle P_{M_i}(x), (3.2)$$
$$P_{M_i}(x) \leq (\sqrt{D})1_{\mathcal{A}} \langle x, x \rangle (\sqrt{D})1_{\mathcal{A}}.$$

Hence, $\{(M_i, v_i) : i \in I\}$ is a *-fusion frame with C^* -algebra valued bounds $(\sqrt{C})1_{\mathcal{A}}$ and $(\sqrt{D})1_{\mathcal{A}}$, where $1_{\mathcal{A}}$ is the identity element of \mathcal{A} .

Example 3.1. Let $\{M_i : i \in I\}$ be a sequence of Hilbert A-modules and

$$\mathcal{X} = \bigoplus_{i \in \mathbb{N}} M_i = \{\{x_i\}_{i \in \mathbb{N}} : x_i \in M_i\}$$

and

$$\sum_{i \in \mathbb{N}} \langle x_i, x_i \rangle \text{ is norm convergent in } \mathcal{A} \}.$$

Then \mathcal{X} is a Hilbert \mathcal{A} -module with inner product $\langle \{x_i\}, \{y_i\} \rangle = \sum_{i \in \mathbb{N}} \langle x_i, y_i \rangle$, point wise operations and the norm defined by $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$. Then $\{M_i\}_{i \in \mathbb{N}}$ is a Parseval *-fusion frame with respect to $\{v_i : i \in I\}$, where $v_i = 1$ for all $i \in I$ ([9]).

Proposition 3.1. Let *E* be a Hilbert *A*-module and let $\{v_i : i \in I\}$ be a family of weights in *A*. Let for each $i \in I$, M_i be an orthogonally complemented submodule of *E* and $\{x_{ij} : j \in J_i\}$ a frame for M_i with positive bounds C_i and D_i in the center of *A*. Suppose that $C_i^2 \ge 1_A$ for each $i \in I$ and $D_p = \sup_i p(D_i) < \infty$, for some $p \in S(\mathcal{A})$. Then the following conditions are equivalent. (i) $\{v_i x_{ij} : i \in I; j \in J_i\}$ is a *-frame for *E*. (ii) $\{(M_i, v_i) : i \in I\}$ is a *-fusion frame for *E*.

Proof. Since C_i and D_i in the center of \mathcal{A} and for each $i \in I$, $\{x_{ij} : j \in J_i\}$ is a frame for M_i with positive bounds C_i and D_i , hence for any $x \in M_i$ we have

$$C_i^2 \langle x, x \rangle \le \sum_{i \in J_i} \langle x, x_{ij} \rangle \langle x_{ij}, x \rangle \le D_i^2 \langle x, x \rangle.$$

Since $C_i^2 \geq 1_{\mathcal{A}}$, thus for each $a \in \mathcal{A}$, $aa^*C_i^2 = aC_i^2a^* \geq aa^*$, therefore for $x \in E$, we get

$$\begin{split} \sum_{i \in I} v_i^2 \langle P_{M_i}(x), P_{M_i}(x) \rangle \\ &\leq \sum_{i \in I} C_i^2 v_i^2 \langle P_{M_i}(x), P_{M_i}(x) \rangle \\ &\leq \sum_{i \in I} \sum_{i \in J_i} \langle v_i P_{M_i}(x), x_{ij} \rangle \langle x_{ij}, v_i P_{M_i}(x) \rangle \\ &= \sum_{i \in I} \sum_{i \in J_i} v_i^2 \langle P_{M_i}(x), x_{ij} \rangle \langle x_{ij}, P_{M_i}(x) \rangle \\ &\leq \sum_{i \in I} D_i^2 v_i^2 \langle P_{M_i}(x), P_{M_i}(x) \rangle \\ &\leq \sum_{i \in I} p(D_i^2) v_i^2 \langle P_{M_i}(x), P_{M_i}(x) \rangle \\ &\leq D_p^2 \sum_{i \in I} v_i^2 \langle P_{M_i}(x), P_{M_i}(x) \rangle \,. \end{split}$$

Hence, we can write

$$\sum_{i \in I} v_i^2 \langle P_{M_i}(x), P_{M_i}(x) \rangle$$

$$\leq \sum_{i \in I} \sum_{i \in J_i} \langle x, v_i x_{ij} \rangle \langle v_i x_{ij}, x \rangle$$

$$\leq D_p^2 \sum_{i \in I} v_i^2 \langle P_{M_i}(x), P_{M_i}(x) \rangle.$$

This shows that if $\{v_i x_{ij} : i \in I; j \in J_i\}$ is a *-frame for E with frame bounds A and B, then $\{(M_i, v_i) : i \in I\}$ is a *-fusion frame for E with frame bounds $\frac{A}{D_p^2}$ and B. Conversely if $\{(M_i, v_i) : i \in I\}$ is a *-fusion frame for E with frame bounds A and B, then $\{v_i x_{ij} : i \in I; j \in J_i\}$ is a *-frame for E with frame bounds A and BD_p^2 . This completes the proof.

Now, We generalize [6, Theorem 4.1] to *-Bessel fusion sequences. First, by a little modification in the proof of [2, Lemma 4.4], we get the following lemma.

Lemma 3.1. Let $\{(M_i, v_i) : i \in I\}$ be a *-Bessel fusion sequence for a Hilbert \mathcal{A} -module E with *-Bessel bound D. Then for each $x = (x_i)_{i \in I}$ in the Hilbert \mathcal{A} -module $M = \bigoplus_{i \in I} M_i$, the series $\sum_{i \in I} v_i x_i$ converges unconditionally and for each $p \in S(\mathcal{A})$, we have

$$\bar{p}_E(\sum_{i\in I} v_i x_i) \le \sqrt{p(D)}\bar{p}_M(x).$$

We need the following proposition in the proof of the next theorem.

Proposition 3.2. [2, Proposition 3.1] Let T: $E \to F$ and $T^*: F \to E$ be two maps such that the equality $\langle x, T^*y \rangle = \langle Tx, y \rangle$ holds for all $x \in$ $E, y \in F$. Then $T \in Hom^*_A(E, F)$.

Theorem 3.1. Let $\{(M_i, v_i) : i \in I\}$ be a *-Bessel fusion sequence for a Hilbert \mathcal{A} -module Ewith *-Bessel bound D. Then, the corresponding frame transform $\theta : E \to l^2(E)$ defined by $\theta(x) = (v_i P_{M_i}(x))_{i \in I}$ for $x \in E$, is also bounded and its adjoint operator $\theta^* : l^2(E) \to E$ defined as $\theta^*(y) = \sum_{i \in I} v_i P_{M_i}(y_i)$ for each $y = (y_i)_{i \in I} \in l^2(E)$, is bounded. **Proof.** Since $\{(M_i, v_i) : i \in I\}$ is a *-Bessel fusion sequence, we have

$$\sum_{i \in I} v_i^2 \left\langle P_{M_i}(x), P_{M_i}(x) \right\rangle \le D \left\langle x, x \right\rangle D^*,$$

hence θ is well-defined and for each $p \in S(\mathcal{A})$ and $x \in E$, we get

$$p\langle \theta(x), \theta(x) \rangle \le p(D\langle x, x \rangle D^*) \le (p(D))^2 p\langle x, x \rangle.$$

Hence, if \bar{p}_E and $\bar{p}_{l^2(E)}$ are continuous seminorms on E and $l^2(E)$, respectively, we obtain

$$\bar{p}_{l^2(E)}(\theta(x)) \le \sqrt{(p(D))^2} \bar{p}_E(x) = p(D)\bar{p}_E(x).$$

Therefore θ is bounded. Now for each $y = (y_i)_{i \in I} \in l^2(E)$ define $\theta^*(y) = \sum_{i \in I} v_i P_{M_i}(y_i)$, by [2, Proposition 2.2], the series $\sum_{i \in I} \langle y_i, y_i \rangle$ converges unconditionally. Moreover

$$\sum_{i \in I} \left\langle P_{M_i}(y_i), P_{M_i}(y_i) \right\rangle \le \sum_{i \in I} \left\langle y_i, y_i \right\rangle.$$

Therefore $(P_{M_i}(y_i))_{i \in I}$ is in $\bigoplus_{i \in I} M_i$. Hence by Lemma 3.1, $\sum_{i \in I} v_i P_{M_i}(y_i)$ converges unconditionally and θ^* is well-defined. On the other hand, for each $x \in E$ and $y = (y_i)_{i \in I} \in l^2(E)$, we have

$$\langle x, \theta^*(y) \rangle =$$

 $\left\langle x, \sum_{i \in I} v_i P_{M_i}(y_i) \right\rangle = \sum_{i \in I} \langle v_i P_{M_i}(x), y_i \rangle = \langle \theta(x), y \rangle$

and so by Proposition 3.2, θ^* is bounded. This completes the proof.

If $\{(M_i, v_i) : i \in I\}$ is a *-fusion frame for E with frame bounds C and D and M is an orthogonally complemented submodule of E, for each $i \in I$ and $x \in M$ we have

$$\sum_{i \in I} v_i^2 \langle P_{M_i \cap M}(x), P_{M_i \cap M}(x) \rangle$$

$$= \sum_{i \in I} v_i^2 \langle P_{M_i}(P_M(x)), P_{M_i}(P_M(x)) \rangle$$

$$= \sum_{i \in I} v_i^2 \langle P_{M_i}(x), P_{M_i}(x) \rangle.$$

Hence we have the following result.

Proposition 3.3. Let E be a Hilbert A-module and let $\{(M_i, v_i) : i \in I\}$ be a *-fusion frame for E with frame bounds C and D. If M is an orthogonally complemented submodule of E. Then $\{(M_i \cap M, v_i) : i \in I\}$ is a *-fusion frame for Mwith frame bounds C and D.

By the polariation identity

$$\langle x, y \rangle = \frac{1}{4} \sum_{k=0}^{3} i^{k} \left\langle x + i^{k} y, x + i^{k} y \right\rangle$$

we get the next proposition.

Proposition 3.4. Let $\{(M_i, v_i) : i \in I\}$ be a Parseval *-fusion frame for a Hilbert A-module E. Then, the corresponding frame transform θ preserves the inner product.

Definition 3.2. Let $\{(M_i, v_i) : i \in I\}$ be a *fusion frame for a Hilbert \mathcal{A} -module E. Then the fusion frame operator S for $\{(M_i, v_i) : i \in I\}$ is defined by

$$S(x) = \theta^* \theta(x) = \sum_{i \in I} v_i^2 P_{M_i}(x), \quad (x \in E).$$

Our next result is a generalization of [9, Theorem 2.11] for *-fusion frames with invertible *fusion frame bounds.

Theorem 3.2. (Reconstruction formula) Let $\{(M_i, v_i) : i \in I\}$ be a *-fusion frame for a Hilbert \mathcal{A} -module E with *-fusion frame operator S and strictly nonzero *-fusion frame bounds C and D in the center of unital locally C^* -algebra \mathcal{A} . Then, S is a positive, self-adjoint and invertible operator on E such that for each $x \in E$ and $p \in S(\mathcal{A})$

$$(p(C^{-1}))^{-2}\bar{p}_E(x) \le \bar{p}_E(S^{\frac{1}{2}}) \le (p(D))^2\bar{p}_E(x)$$

and

$$x = \sum_{i \in I} v_i^2 S^{-1} P_{M_i}(x)$$

Proof. It is clear that $\langle S(x), y \rangle = \langle x, S(y) \rangle$, for each $x, y \in E$. Thus by Proposition 3.2, $S \in End_{\mathcal{A}}^*$ and $S^* = S$. Also for each $x \in E$, we have

$$\langle S(x), x \rangle = \sum_{i \in I} v_i^2 \langle P_{M_i}(x), x \rangle = \sum_{i \in I} v_i^2 \langle P_{M_i}(x), P_{M_i}(x) \rangle.$$

Hence S is a positive operator. Hence there is a positive element T in $End^*_{\mathcal{A}}(E)$ such that $S = T^*T$. We show that T has the closed range. Let $\{Tx_n\}$ be a sequence in R_T such that $Tx_n \to y$ as $n \to \infty$. Then for each $p \in S(\mathcal{A})$ we have

$$p(C \langle x_n - x_m, x_n - x_m \rangle C^*)$$

$$\leq p(\langle S(x_n - x_m), x_n - x_m \rangle))$$

$$= p(\langle T(x_n - x_m), T(x_n - x_m) \rangle),$$

for $n, m \in \mathbb{N}$. Since $\{Tx_n\}$ is a cauchy sequence in E, so $p(C \langle x_n - x_m, x_n - x_m \rangle C^*) \to 0$, for $n, m \in \mathbb{N}$. Moreover

$$p(\langle x_n - x_m, x_n - x_m \rangle)$$

= $p(C^{-1}C \langle x_n - x_m, x_n - x_m \rangle C^*(C^*)^{-1})$
 $\leq (p(C^{-1}))^2 p(C \langle x_n - x_m, x_n - x_m \rangle C^*).$

Hence the sequence $\{x_n\}$ is cauchy and so there is $x \in E$ such that $x_n \to x$ as $n \to \infty$. By the definition of *-fusion frames, we get

$$p(\langle T(x_n - x), T(x_n - x) \rangle)$$

$$\leq (p(D))^2 p(\langle x_n - x, x_n - x \rangle).$$

Therefore $\bar{p_E}(Tx_n - Tx) \to 0$ as $n \to \infty$ implies that Tx = y. Consequently R_T is closed. Similarly one can see that T is injective. Therefore $S = T^*T$ is invertible. Furthermore we have $\langle x, x \rangle \leq C^{-1} \langle Sx, x \rangle (C^*)^{-1}$ and $\langle Sx, x \rangle \leq D \langle x, x \rangle D^*$ and so for each $p \in S(\mathcal{A})$

$$(p(C^{-1}))^{-2}p(\langle x, x \rangle)$$

$$\leq p(\langle Sx, x \rangle) \leq (p(D))^{2}p(\langle x, x \rangle),$$

for each $x \in E$. Therefore

$$(p(C^{-1}))^{-2}\bar{p}_E(x) \le \bar{p}_E(S^{\frac{1}{2}}) \le (p(D))^2\bar{p}_E(x).$$

Also for each $x \in E$, we have

$$x = S^{-1}S(x) = \sum_{i \in I} v_i^2 S^{-1} P_{M_i}(x).$$

This completes the proof.

References

- A. Alijani, M. A. Dehghan, *-Frames in Hilbert C*-modules, U.P.B. Sci. Bull. Series A 73 (2011) 89-106.
- M. Azhini, N. Haddadzadeh, Fusion frames in Hilbert modules over pro-C*-algebras, Int. J. Industrial Mathematics 5 (2013) 112-123.
- [3] P. G. Casazza, G. Kutyniok, Frames of subspaces, in Wavelets, *Frames and Operator Theory, Contemp. Math.* 345 (2004) 87-113.
- [4] I. Daubechies, A. Grassman, Y. Meyer, Painless nonothogonal expanisions, J. Math. Phys. 2 (1986) 1271-1283.
- [5] R. J. Duffin, A. C. Schaeffer, A class of nonharmonic Fourier series, *Trans. Amer. Math. Soc.* 72 (1952) 341-366.
- [6] M. Frank, D. R. Larson, Frames in Hilbert C*-modules and C*-algebras, J. Operator Theory 48 (2002) 273-314.
- [7] A. Inoue, Locally C*-algebras, Mem. Fac. Sci. Kyushu Univ. Ser. A 25 (1971) 197-235.
- [8] M. Joita, On Hilbert modules over locally C*-algebras II, *Periodica Math. Hungarica* 51 (2005) 27-36.
- [9] A. Khosravi, B. Khosravi, Fusion frames and g-frames in Hilbert C*-Modules, Int. J. Wavelet, Multiresolution and Information Processing 6 (2008) 433-446.
- [10] B. Magajna, Hilbert C*-modules in which all closed submodules are complemented, Proc. Amer. Math. Soc. 125 (1997) 849-852.
- [11] V. M. Manuilov, Adjointability of operators on Hilbert C^{*}-modules, Acta Math. Univ. Comenianae LXV 2 (1996) 161-169.
- [12] A. Nejati, A. Rahimi, Generalized frames in Hilbert spaces, Bull. Iranian Math. Soc. 35 (2009) 97-109.
- [13] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006) 437-452.

- [14] S. Abbasbandy, T. Allahviranloo, Numerical solutions of fuzzy differential equations by taylor method, *Computational Methods* in Applied Mathematics 2 (2002) 113-124.
- [15] D. Dubois, H. Prade, Towards fuzzy differential calculus, *Fuzzy Sets and Systems* 8 (1982) 1-7.
- [16] Y. Lai, C. L. Hwang, Fuzzy Mathematical programming theory and applications, *Springer, Belin*, (1992).

Tayebe Lal Shateri is Assistance Professor of Mathematics at the Department of Mathematics and Computer Sceinces, Hakim Sabzevari University. His main research interest is include functional analysis, abstract harmonic analysis.