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Abstract

In the present paper, we obtain the traveling wave fuzzy solution for the fuzzy linear Transport equa-
tion and the fuzzy Wave equation by considering the type of generalized Hukuhara differentiability.
The d’Alembert’s formulas for the fuzzy Wave equation obtained by Considering the type of gH-
differentiability of the solution. Also, The existence and the uniqueness of these solutions and the
stability of the fuzzy Wave equation are shown. Furthermore, Some examples are solved to illustrate
the technique.
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1 Introduction

A
ny modeling of phenomena is subject to lim-
itations such as correct understanding, am-

biguity in the accuracy and uncertainty of the
data, and measurement errors that lead to uncer-
tainties in the model. Fuzzy modeling and uti-
lizing fuzzy systems is an effective way that en-
ables researchers to express engineering and other
sciences issues by taking into account the uncer-
tainties in the model so that it is closer to its true
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reality and nature.

Often modeling of many physical phenomena
such as dynamical and magnetic systems, engi-
neering and biological and environmental issues,
and humanities phenomena result in the use of
differential equations, whether ordinary differen-
tial equations or partial differential equations.
Uncertainties in differential equation models can
occur anywhere in the equations, including initial
and boundary values, equation coefficients, shape
and domain amplitude, and so on.

Starting from the pioneering papers [2, 3, 6, 10,
11, 12], considerable interest has been shown in
finding fuzzy solutions to the fuzzy partial differ-
ential equation. Maria Bertone [10] obtained the
fuzzy solutions of heat, wave, and Poisson equa-
tions by using the fuzzification of the determin-
istic solutions. Allahviranloo [4] converted the
fuzzy heat equation with appropriate fuzzy ini-
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tial conditions into the fuzzy ordinary differential
equation and found the corresponding analytical
solution, also proved the existence and uniqueness
of the solution to this equation. Furthermore,
the authors in [14] presented the fuzzy solutions
of the fuzzy Poisson and fuzzy Laplace equation.
Recently, in [5] a new approach for the linear par-
tial differential equations with fuzzy coefficients
has been presented.

The traveling wave solutions of the partial dif-
ferential equations can provide physical aspects
of the problems, therefore, they play an essential
role in applied science fields [1, 13, 15]. In this
article, we will obtain the fuzzy traveling wave
solution for the fuzzy linear transform equation
and fuzzy Wave equation. We will discuss the
fuzzy traveling wave solution of these equations
by considering the type of gH−differentiability.

A brief outline of the contents is now given.
Some concepts associated with fuzzy numbers
and generalized Hukuhara differentiability and,
etc. are expressed, and some new theorems and
lemmas to be used in the main part of the paper
are proved in Section 2. In Section 3, we develop
the ideas of the traveling wave solution for two-
variable fuzzy function and depending on the type
of gH-differentiability different formulas are ob-
tained. Section 4 then obtains the traveling wave
fuzzy solution of the fuzzy linear traveling equa-
tion, and the fuzzy Wave equation, and consider-
ing the type of [gH − p]-differentiability; the cor-
responding formulas are shown. Additionally, the
d’Alembert’s formulas for the fuzzy Wave equa-
tion are obtained, and the existence and unique-
ness of these solutions also the stability of the
fuzzy Wave equation are shown.

2 Preliminaries

In this section the basic definitions used in fuzzy
operations and the necessary notation which will
be used throughout the paper are introduced.

The triangular fuzzy number u ∈ RF is defined
as an ordered triple a = (a1, a2, a3) with a1 ≤
a2 ≤ a3. The generalized Hukuhara difference of
two fuzzy number a, b ∈ RF is the fuzzy number

c,(if it exists), such that

a⊖gH b = c ⇐⇒ (i). a = b⊕ c, or

(ii).b = a⊕ (−1)c.

Now consider a, b ∈ RF , then

a⊖gH b = c ⇐⇒
(i). c = (a1 − b1, a2 − b2, a3 − b3);

or (ii). c = (a3 − b3, a2 − b2, a1 − b1).

provided that c is a triangular fuzzy number [5, 7].
The results obtained in [7] show that if a, b ∈ RF ,
then a⊖gH b always exists in RF .

Definition 2.1 (See [7]) The fuzzy function
f(t) is generalized Hukuhara differentiable
([gH]−differentiable) at t0 ∈ J if

f ′
gH(t0) = lim

h→0

f(t0 + h)⊖gH f(t0)

h
,

belongs to RF . In addition we can say that f(t)
is

• [(i)−gH]−differentiable function if and only
if for all t ∈ J

f ′
i.gH(t) =

(
f ′
1(t), f

′
2(t), f

′
3(t)

)
,

defines a triangular fuzzy number.

• [(ii)−gH]−differentiable function if and only
if for all t ∈ J

f ′
ii.gH(t) =

(
f ′
3(t), f

′
2(t), f

′
1(t)

)
,

is a triangular fuzzy number.

Definition 2.2 (See [4]) A triangular fuzzy
function u(x, t) : D ⊆ R2 → RF , without any
switching point on D is called

• [(i)− p]-differentiable w.r.t. x at (x0, t0) if

∂i.gHu(x0, t0)

∂x
=(∂u1(x0, t0)

∂x
,
∂u2(x0, t0)

∂x
,
∂u3(x0, t0)

∂x

)
,
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• [(ii)− p]-differentiable w.r.t. x at (x0, t0) if

∂ii.gHu(x0, t0)

∂x
=(∂u3(x0, t0)

∂x
,
∂u2(x0, t0)

∂x
,
∂u1(x0, t0)

∂x

)
.

Moreover, if
∂gHu
∂x is [gH − p]−differentiable at

(x0, t0) with respect to x without any switching
point on D and

• if the type of [gH−p]−differentiability of both

u(x, t) and
∂gHu
∂x are the same, then

∂gHu
∂x is

[(i)− p]-differentiable w.r.t x and

∂2
ii.gHu(x0, t0)

∂x2
=(∂2u1(x0, t0)

∂x2
,
∂2u2(x0, t0)

∂x2
,

∂2u3(x0, t0)

∂x2

)
,

• if the type of [gH-p]-differentiability u(x, t)

and fxgH (x, t) are different, therefore
∂gHu
∂x

is [(ii)− p]−differentiable w.r.t x and

∂2
ii.gHu(x0, t0)

∂x2
=(∂2u1(x0, t0)

∂x2
,
∂2u2(x0, t0)

∂x2
,

∂2u3(x0, t0)

∂x2

)
.

Definition 2.3 (See [7]) Let f : (a, b) → RT is
a triangular fuzzy-valued function and t0 ∈ (a, b)
then∫ b

a
f(t)t =(∫ b

a
f1(t)dt,

∫ b

a
f2(t)dt,

∫ b

a
f3(t)dt

)
.

Theorem 2.1 ([9]) If f is gH-differentiable with
no switching point in the interval [a, b], then we
have ∫ b

a
f ′
gH(t)dt = f(b)⊖gH f(a).

Lemma 2.1 If f : [a, b] → RF be a triangular
fuzzy function with no switching point, then we
have

1. If f(t) is [i− gH]−differentiable , then∫ b

a
f ′
i.gH(t)dt = f(b)⊖ f(a).

2. If f(t) is [ii− gH]−differentiable , then∫ b

a
f ′
ii.gH(t)dt = (−1)f(a)⊖ (−1)f(b).

Proof. Suppose that f(t) is [ii −
gH]−differentiable, in this case by Definition 2.3∫ b

a
f ′
ii.gH(t)dt =(∫ b

a
f ′
3(t)dt,

∫ b

a
f ′
2(t)dt,

∫ b

a
f ′
1(t)dt

)
=(

f3(b)− f3(a), f2(b)− f2(a), f1(b)− f1(a)
)
=

(−1)f(a)⊖ (−1)f(b).

The other case is proved in a similar way. ■

Proposition 2.1 Let λ1 and λ2 are two real
constants such that λ1, λ2 ≥ 0 (or λ1, λ2 ≤ 0 ).
If f(t) is a triangular fuzzy function, then

λ1f(t)⊖gH λ2f(t) = (λ1 − λ2)f(t). (2.1)

Proof. First consider λ1 and λ2 are positive
constants, then

λ1f(t) =
(
λ1f1(t), λ1f1(t), λ1f1(t)

)
,

λ2f(t) =
(
λ2f1(t), λ2f1(t), λ2f1(t)

)
.

Now , we have two cases

i. If λ1 ≥ λ2, we have

λ1f(t)⊖gH λ2f(t) =(
(λ1−λ2)f1(x), (λ1−λ2)f2(x), (λ1−λ2)f3(x)

)
=

(λ1 − λ2)f(x),

ii. If λ1 ≤ λ2 , therefore

λ1f(t)⊖gH λ2f(t) =(
(λ1−λ2)f3(x), (λ1−λ2)f2(x), (λ1−λ2)f1(x)

)
=

(λ1 − λ2)f(x).
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Hence we have Eq. (2.1). The case where λ1 and
λ2 are negative constants , is similar and we omit
the details. ■

Lemma 2.2 Consider g : [a, b] → I ⊆ R
is real and differentiable function at t , and
f : I → RF is gH-differentiable at the point
g(t) without any switching points. Then type of
gH−differentiability for f(t) and f(g(t)) is the
same if(

f(g(x))
)′

gH
=

g′(x)⊙ f ′
gH(g(x)),

If g(t) is an increasing function,
⊖(−1)g′(x)⊙ f ′

gH(g(x)),

If g(t) is a decreasing function.

Lemma 2.3 (See [14])
∫ a
b u(x, t) dx =

⊖
∫ b
a u(x, t) dx ; where ⊖ denote Hukuhara

deference and u(x, t) be a fuzzy valued function.

Theorem 2.2 (See [14]) Let t ∈ I ⊆ R and f :
I ⇒ R and g : I ⇒ R. Suppose that g(t) is real
continuous function and fuzzy function f(t) is a
fuzzy function gH-differentiable at t. Then

(f ⊙ g)′gH(t) = f ′
gH(t)⊙ g(t)⊕ f(t)⊙ g′(t).

Theorem 2.3 (See [14]) (The Chain rule)Let
Z := F (ξ(t), η(t)) is a fuzzy valued function,
where ξ(t) and η(t) are differentiable real valued
functions of t. Then, F is gH-differentiable func-
tion of t and we have:

∂Z

∂t
=

dgHF

dξ
⊙ ∂ξ

∂t
⊕

dgHF

dη
⊙ ∂η

∂t
.

Theorem 2.4 Let Z(x, t) = F (ξ) is a fuzzy val-
ued function, where ξ(x, t) is differentiable real
valued function of x and t. Then, F is gH-
differentiable function of ξ and

∂Z

∂t
=

dgHF

dξ
⊙ ∂ξ

∂t

and

1. If ∂ξ
∂t > 0 and

i. F (ξ) is [(i) − gH]−differentiable then
Z(x, t) is [(i) − p]−differentiable w.r.t.
t.

ii. F (ξ) is [(ii) − gH]−differentiable then
Z(x, t) is [(ii)− p]−differentiable w.r.t.
t.

2. If ∂ξ
∂t < 0 and

i. F (ξ) is [(i) − gH]−differentiable then
Z(x, t) is [(ii)− p]−differentiable w.r.t.
t.

ii. F (ξ) is [(ii) − gH]−differentiable then
Z(x, t) is [(i) − p]−differentiable w.r.t.
t.

Proof. For Z(x, t) := F (ξ(x, t)), by the Chain
rule 2.3 we have

∂Z

∂t
=

dgHF

dξ
⊙ ∂ξ

∂t
.

Now, let ∂ξ
∂t > 0 and Consider F (ξ) is [(i)− gH]-

differentiable for all α ∈ [0, 1] for every t ∈ J , it
follows that

di.gHF

dξ
⊙ ∂ξ

∂t
=(dF1(ξ)

dξ
,
dF2(ξ)

dξ
,
dF3(ξ)

dξ

)
⊙ ∂ξ

∂t
=(dF1(ξ)

dξ

∂ξ

∂t
,
dF2(ξ)

dξ

∂ξ

∂t
,
dF3(ξ)

dξ

∂ξ

∂t

)
=

∂i.gHZ

∂t
.

Now, if F (ξ) is [(ii) − gH]-differentiable for all
α ∈ [0, 1] for every t ∈ J we obtain

dii.gHF

dξ
⊙ ∂ξ

∂t
=(dF3(ξ)

dξ
,
dF2(ξ)

dξ
,
dF1(ξ)

dξ

)
⊙ ∂ξ

∂t
=(dF3(ξ)

dξ

∂ξ

∂t
,
dF2(ξ)

dξ

∂ξ

∂t
,
dF1(ξ)

dξ

∂ξ

∂t

)
=

∂ii.gHZ

∂t
.

This concludes the proof for these cases. The
other cases prove in a similar manner. ■

Theorem 2.5 Let Z(x, t) := F (ξ(x, t)) and
Z(x, t) is a [gH − p]−differentiable function such
that the second order generalized partial Hukuhara
derivatives w.r.t t and x exist, then
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∂2Z

∂t2
=

dgHF

dξ
⊙ ∂2ξ

∂t2
⊕

d2gHU

dξ2
⊙

(∂ξ
∂t

)2
,

∂2Z

∂x2
=

dgHF

dξ
⊙ ∂2ξ

∂x2
⊕

d2i.gHF

dξ2
⊙

(∂ξ

∂x

)2
.

Proof. For Z(x, t) := F (ξ(x, t)), by the Chain
rule 2.3 we have

∂Z

∂t
=

dgHF

dξ
⊙ ∂ξ

∂t
. (2.2)

Then by Theorem 2.2 and (2.2), the desired result
is obtained

∂2Z

∂t2
=

dgHF

dξ
⊙ ∂2ξ

∂t2
⊕

d2gHU

dξ2
⊙

(∂ξ
∂t

)2
.

Using the same method, the equation ∂2Z
∂x2 can

also be proved. ■

3 The Traveling Wave Fuzzy
Solution

Consider that we have a linear fuzzy partial dif-
ferential equation in the following form

P
(
u,

∂gHu

∂t
,
∂gHu

∂x
,
∂2
gHu

∂t2
,

∂2
gHu

∂x2
, ...

)
= 0, (3.3)

where u = u(x, t) is an unknown fuzzy function,
P is a polynomial in u = u(x, t) and its gen-
eralized Hukuhara derivatives. Let us now give
the main step for solving equation (3.3) using the
traveling wave method

Step 1. To find a traveling wave solution for
equation (3.3), consider

u(x, t) = U(ξ),

ξ(x, t) = x− ct, (3.4)

where c ∈ R+ is arbitrary constant generally
termed the wave velocity. In this paper we
consider c > 0, it means the profile U(x−ct)
at a later time t is moving to the positive x
direction by a amount ct with speed c.

Step 2. The traveling wave variable U(ξ), per-
mit us reducing equation (3.3) to the follow-
ing fuzzy ordinary differential equation of ξ

P
(
U, (−1)c⊙

di.gHU

dξ
,
di.gHU

dξ
,

d2i.gHU

dξ2
, c2

d2i.gHU

dξ2
, ...

)
, (3.5)

and

P
(
U, (−1)c⊙

dii.gHU

dξ
,
dii.gHU

dξ
,

d2ii.gHU

dξ2
, c2

d2ii.gHU

dξ2
, ...

)
. (3.6)

Since, by using Theorems 2.4, 2.5 and

∂ξ

∂t
= −c,

∂ξ

∂x
= 1,

∂2ξ

∂x2
=

∂2ξ

∂t2
= 0, (3.7)

and by considering the type of
gH−differentiability for U , the follow-
ing cases are obtained

Case i. Let U(ξ) is a [(i) −
gH]−differentiable fuzzy function,
then

• u(x, t) is [(ii) − p]−differentiable
with respect to t and

∂ii.gHu

∂t
=

di.gHU

dξ
⊙ ∂ξ

∂t
=

(−1)c⊙
di.gHU

dξ
.

• u(x, t) is [(i) − p]−differentiable
with respect to x and

∂i.gHu

∂x
=

di.gHU

dξ
⊙ ∂ξ

∂x
=

di.gHU

dξ
.

• ∂gHu
∂t is [(i)−p]−differentiable with
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respect to t and

∂2
i.gHu

∂t2
=

di.gHU

dξ
⊙ ∂2ξ

∂t2
⊕

d2i.gHU

dξ2
⊙
(∂ξ
∂t

)2
=

c2 ⊙
d2i.gHU

dξ2
.

• ∂gHu
∂x is [(i)−p]−differentiable with

respect to x and

∂2
i.gHu

∂x2
=

di.gHU

dξ
⊙ ∂2ξ

∂x2
⊕

d2i.gHU

dξ2
⊙

(∂ξ

∂x

)2
=

d2i.gHU

dξ2
.

Case ii. Consider U(ξ) is a [(ii) −
gH]−differentiable fuzzy function,
hence we have

• u(x, t) is [(i) − p]−differentiable
with respect to t and

∂i.gHu

∂t
=

dii.gHU

dξ
⊙ ∂ξ

∂t
=

(−1)c⊙
dii.gHU

dξ
.

• u(x, t) is [(ii) − p]−differentiable
with respect to x and

∂ii.gHu

∂x
=

dii.gHU

dξ
⊙ ∂ξ

∂x
=

dii.gHU

dξ
.

• ∂gHu
∂t is [(ii)−p]−differentiable with

respect to t and

∂2
ii.gHu

∂t2
=

dii.gHU

dξ
⊙ ∂2ξ

∂t2
⊕

d2ii.gHU

dξ2
⊙
(∂ξ
∂t

)2
=

c2 ⊙
d2ii.gHU

dξ2
.

• ∂gHu
∂x is [(ii)−p]−differentiable with

respect to x and

∂2
ii.gHu

∂x2
=

dii.gHU

dξ
⊙ ∂2ξ

∂x2
⊕

d2ii.gHU

dξ2
⊙
(∂ξ

∂x

)2
=

d2ii.gHU

dξ2
.

Step 3. To find fuzzy solutions for equations
(3.5) and (3.6), we need some initial con-
ditions and some auxiliary conditions. In
this paper we consider the following auxil-
iary boundary conditions

lim
ξ→±∞

U(ξ) = 0,

lim
ξ→±∞

dU

dξ
= 0,

lim
ξ→±∞

d2U

dξ2
= 0. (3.8)

4 Application

This section examines the traveling wave solu-
tions for two important fuzzy linear partial differ-
ential equations, the fuzzy linear transport equa-
tion and the fuzzy wave equation, which are very
important in the mathematical physics and have
been paid attention by many researchers.

4.1 The Fuzzy Linear Transport Equa-
tion

Consider u is a quantity to be transported and
the positive constant a is the velocity. Consider
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the following fuzzy transport equation

∂u

∂t
= (−1)a

∂u

∂x
,

(x, t) ∈ R× (0,∞), (4.9)

with fuzzy initial condition

u(x, 0) = f(x). (4.10)

To obtain a traveling fuzzy solution for equation
(4.9), consider

u(x, t) = U(ξ), ξ = x− ct.

First, we consider U(ξ) is [(i)−gH]−differentiable
then

(−1)c
di.gHU

dξ
= −a

di.gHU

dξ
⇒

c
di.gHU

dξ
⊖gH a

di.gHU

dξ
= 0.

Two constants a and c are positive, therefore
Proposition 2.1 implies

(c− a)
di.gHU

dξ
= 0.

For non-constant U , we have
di.gHU

dξ ̸= 0 which
implies that c = a. So any function U(x−at) with
sufficiently smooth U which satisfies in the initial
fuzzy value (4.10) and [(i) − gH]-differentiable ,
is a traveling wave solution. In fact, the traveling
fuzzy solution of equation (4.9) is u(x, t) = f(x−
at), such that u(x, t) is [(ii) − p]−differentiable
with respect to t and [(i)−p]−differentiable with
respect to x.

Similarly , consider U(ξ) is [(ii) −
gH]−differentiable, then in this case,
the initial fuzzy value f(x) has to be
[(ii)−gH]−differentiable at ξ = x−ct and we ob-
tain the traveling wave solution u(x, t) = f(x−at)
which is [(i)− p]−differentiable with respect to t
and [(ii)− p]−differentiable with respect to x.

Example 4.1 Consider the following transport
equation

∂u

∂t
=

−∂u

∂x
, (4.11)

with the fuzzy initial condition

u(x, 0) = (1.2, 3.5, 6)e−x2
. (4.12)

Then according to the method described above,
equation (4.11) has the following traveling wave
solution

u(x, t) = (1.2, 3.5, 6)e−(x−t)2 .

4.2 The Fuzzy Wave Equation

We want to find traveling wave fuzzy solution of
the fuzzy Cauchy one-dimensional homogeneous
wave equation

∂2u

∂t2
⊖gH a2 ⊙ ∂2u

∂x2
= 0,

(x, t) ∈ R× (0,∞). (4.13)

Assuming that ∂u
∂t and ∂u

∂x are [(i) −
p]−differentiable with respect to t and x,
respectively. Now, set u(x, t) = U(ξ), where
ξ = x− ct. We obtain

c2
d2i.gHU

dξ2
⊖gH a2

d2i.gHU

dξ2
= 0,

then by Proposition 2.1

(c2 − a2)
d2U

dξ2
= 0. (4.14)

One possibility is for
d2i.gHU

dξ2
= 0 in which case we

have

U(ξ) = A⊕Bξ ⇒ u(x, t) = A+B(x− ct),

where A and B are fuzzy integral constants. But
the boundary conditions (3.8) cannot be satisfied
unless B = 0. Thus the only traveling solution in
this case is a fuzzy constant. Another possibility
is for c2 = a2. In this case

u(x, t) = U(x− at),

u(x, t) = U(x+ at), (4.15)

are traveling wave solution of the wave equation
and U can be any two gH-differentiable func-
tion. In general, it follows that any solution to
the fuzzy wave equation can be obtained as a su-
perposition of two traveling waves,

u(x, t) = F (x+ at)⊕G(x− at). (4.16)

Now we would like to satisfy the initial conditions

u(x, 0) = f(x), utgH (x, 0) = g(x). (4.17)
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Since equation (4.16) is a fuzzy solution for equa-
tion (4.13), then it must apply to the initial con-
ditions of the equation (4.17), hence the initial
condition u(x, 0) = f(x) concludes

F (x)⊕G(x) = f(x). (4.18)

Differentiating (4.16) with respect to t yields

∂u(x, t)

∂t
=

a⊙ F ′
gH(x+ at)⊖ a⊙G′

gH(x− at).

In the following, all fuzzy solutions of the
fuzzy wave equation in different type of [gH −
p]−differentiability will be examined.

Case 1. If u(x, t) is [(i)− p]−differentiable with
respect to t, then F and G are [(i) − gH]-
differentiable with respect to (x + at) and
(x − at), respectively. Thus by Lemma 2.2
we have

∂u(x, t)

∂t
=

a⊙ F ′
i.gH(x+ at)⊖ a⊙G′

i.gH(x− at),

so that at t = 0 by initial condition, we ob-
tain

aF ′
i.gH(x) ⊖ aG′

i.gH(x) = g(x).

Dividing this last equation by a and after
integration using Lemma 2.1(

F (x)⊖ F (0)
)
⊖

(
G(x)⊖G(0)

)
=

1

a

∫ x

0
g(s)ds,

⇒ F (x)⊖G(x) =

(
F (0)⊖G(0)

)
⊕ 1

a

∫ x

0
g(s)ds. (4.19)

By Eqs.(4.18) and (4.19) we obtain the fol-

lowing system of equations

F (x)⊕G(x) = f(x),

F (x)⊖G(x) =
(
F (0)⊖G(0)

)
⊕

1
a

∫ x
0 g(s)ds.

The solution of this system of equations is
given by

F (x) =

1

2
f(x)⊕ 1

2

(
F (0)⊖G(0)

)
⊕ 1

2a

∫ x

0
g(s)ds,

G(x) =

1

2
f(x)⊖ 1

2

(
F (0)⊖G(0)

)
⊖ 1

2a

∫ x

0
g(s)ds.

But according to Lemma 2.3 we can write

G(x) =
1

2
f(x)⊖ 1

2

(
F (0)⊖G(0)

)
⊕

1

2a

∫ 0

x
g(s)ds.

By substituting these equations for F and G
into the general solution (4.16) we observe
that

u(x, t) =
1

2

(
f(x+ at)⊕ f(x− at)

)
⊕

1

2a

∫ x+at

x−at
g(s)ds. (4.20)

Case 2. If u(x, t) is [(ii)−p]−differentiable with
respect to t, then F and G are [(ii) − gH]-
differentiable with respect to (x + at) and
(x− at), respectively. Thus we get

utii.gH (x, t) = a⊙ F ′
ii.gH(x+ at)⊖

a⊙G′
ii.gH(x− at),

by initial value at t = 0 we conclude that

aF ′
ii.gH(x)⊖

aG′
ii.gH(x) = g(x).
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Using Lemma 2.1 we have(
(−1)F (0)⊖ (−1)F (x)

)
⊖(

(−1)G(0)⊖ (−1)G(x)
)
=

1

a

∫ x

0
g(s)ds,

⇒ G(x)⊖ F (x) =(
G(0)⊖ F (0)

)
⊕

(−1)

a

∫ x

0
g(s)ds.

Consequently, we find that

F (x)⊕G(x) = f(x),

G(x)⊖ F (x) =(
G(0)⊖ F (0)

)
⊕ (−1)

a

∫ x
0 g(s)ds.

Solving this system get the following solution

G(x) =
1

2
f(x)⊕ 1

2

(
G(0)⊖ F (0)

)
⊕

(−1)

2a

∫ x

0
g(s)ds,

F (x) =
1

2
f(x)⊖ 1

2

(
G(0)⊖ F (0)

)
⊖

(−1)

2a

∫ x

0
g(s)ds.

On the other hand, we can write

G(x) =
1

2
f(x)⊕ 1

2

(
G(0)⊖ F (0)

)
⊖

(−1)

2a

∫ 0

x
g(s)ds.

Then the general solution (4.16), we have
that

u(x, t) =
1

2

(
f(x+ at)⊕ f(x− at)

)
⊖

(−1)

2a

∫ x+at

x−at
g(s)ds. (4.21)

Theorem 4.1 The homogeneous Wave equation
(4.17) in the domain −∞ < x < ∞, 0 ≤ t ≤ T is
well-posed for f ∈ C2(R,RF ), g ∈ C1(R,RF ).

Proof. The d’Alembert’s formula shows the exis-
tence and the uniqueness of the solution of (4.17).
Actually, it was shown that any solution of the
homogeneous fuzzy wave equation, by attention
the type of [gH − p]−differentiability, will be ob-
tained by using the d’Alembert formula. Now, it
sufficient that the problem (4.17) is stable. Let
u1 and u2 be two fuzzy solution of (4.17) with
fuzzy initial condition given by fi(x) and gi(x),
where i = 1, 2. Moreover for all x ∈ R

D
(
f1(x), f2(x)

)
< δ,

D
(
g1(x), g2(x)

)
< δ. (4.22)

First, suppose that u1(x, t) and u2(x, t) are [(i)−
p]−differentiable with respect to t, hence for
(x, t) ∈ R×[0, T ] and by using properties of Haus-
dorff distance D

D
(
u1(x, t), u2(x, t)

)
≤

1

2
D

(
f1(x+ ct), f2(x+ ct)

)
+

1

2
D

(
f1(x− ct), f2(x− ct)

)
+

1

2c

∫ x+ct

x−ct
D
(
g1(s), g2(s)

)
ds ≤

1

2
(δ + δ) +

1

2c
(2ct)δ =

(1 + t)δ ≤ (1 + T )δ,

then, for a given ε > 0, we consider δ < ε
(1+T ) ,

therefore

D
(
u1(x, t), u2(x, t)

)
≤

(1 + T )δ < ε. (4.23)

With the same procedure, we can be prove that
if u1(x, t) and u2(x, t) are [(ii)−p]−differentiable
with respect to t, the same result is still valid. ■

Example 4.2 We want to find a [(i) −
gH]−differentiable solution for the following
fuzzy Wave equation

∂2u(x,t)
∂t2

⊖gH
∂2u(x,t)

∂x2 = 0,

u(x, 0) = (2.7, 5, 9.8)x2,

∂u(x,0)
∂t = 0.
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So using equation (4.20) we have

u(x, t) =
1

2

(
f(x+ at)⊕ f(x− at)

)
⊕

1

2a

∫ x+at

x−at
g(s)ds =

1

2

(
(2.7, 5, 9.8)(x+ t)2 ⊕ (2.7, 5, 9.8)(x− t)2

)
= (2.7, 5, 9.8)(x2 + t2).

Example 4.3 Consider the following wave
equation

∂2u(x,t)
∂t2

⊖gH 4∂2u(x,t)
∂x2 = 0,

u(x, 0) = (1.1, 3, 6)ex,

∂u(x,0)
∂t = (−12,−6,−2.2)ex.

We want to find a [(ii) − gH]−differentiable so-
lution for this problem. By equation (4.21) we
have

u(x, t) =
1

2

(
f(x+ at)⊕ f(x− at)

)
⊖

(−1)

2a

∫ x+at

x−at
g(s)ds

=
1

2

(
(1.1, 3, 6)ex+2t ⊕ (1.1, 3, 6)ex−2t

)
⊖

1

4

∫ x+2t

x−2t
(2.2, 6, 12)esds

= (1.1, 3, 6)ex−2t.

5 Conclusion

In this paper, we obtain the fuzzy traveling wave
solution of the partial differential equation by
considering the type ofgH-differentiability. To
demonstrate the efficiency of the method, the
fuzzy traveling wave solutions of the fuzzy trans-
port equation and fuzzy Wave equation are ob-
tained. All results show that this method is a
very powerful and efficient method for obtaining
an analytical solution for the fuzzy linear partial
differential equation.
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