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Abstract 

In this paper, optimal control problem is applied to Human immunodeficiency viruses (HIV) 

and Herpes simplex virus type 2 (HSV-2) coinfection model formulated by a system of 

ordinary differential equations. Optimal control strategy was employed to study the effect of 

combining different intervention strategy on the transmission dynamics of HIV-HSV-II 

coinfection diseases. The necessary conditions for the existence of the optimal controls were 

established using Pontryagin’s Maximum Principle. Optimal control system was performed 

with help of Runge-Kutta forward-backward sweep numerical approximation method. 

Finally, numerical simulation illustrated that a combination of all controls is the most effective 

strategy to minimize the disease from the community. 
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1. Introduction 
Human immunodeficiency viruses (HIV) are an RNA retrovirus. HIV translates its RNA to 

DNA with a viral enzyme called reverse transcriptase [1]. The target cell of HIV is CD4 T 

cells. A healthy human body has about 1000/mm3 of CD4 T cells. When the CD4 T cells of a 

patient decline to 200/mm3 or below, then that person is classified as having AIDS [2]. In the 

world, new HIV infections among young women aged 15–24 years were reduced by 25% 

between 2010 and 2018. The annual number of deaths from AIDS-related illness among 

people living with HIV globally has fallen from a peak of 1.7 million in 2004 to 770 000 in 

2018. The global decline in deaths has largely been driven by progress in eastern and southern 

Africa, which is home to 54% of the world’s people living with HIV. AIDS-related mortality 

in the region declined by 44% from 2010 to 2018.The annual number of new infections since 

2010 has declined from 2.1 million to 1.7 million in 2018 [3]. 

Herpes simplex virus type 2 (HSV-2) infections is widespread throughout the world and is 

almost exclusively sexually transmitted, causing genital herpes [4]. Genital herpes infections 

frequently have no symptoms, or mild symptoms that go unrecognized. When symptoms do 

occur, genital herpes is characterized by one or more genital or anal blisters or open sores 

called ulcers. In addition to genital ulcers, symptoms of new genital herpes infections often 

include fever, body aches, and swollen lymph nodes. HSV-2 is mainly transmitted during sex, 

through contact with genital surfaces, skin, sores or fluids of someone infected with the virus. 

HSV-2 can be transmitted from skin in the genital or anal area that looks normal and is often 

transmitted in the absence of symptoms [5]. An estimated 491 million (13%) people aged 15 

to 49 years worldwide were living with the infection in 2016. More women are infected with 

HSV-2 than men in 2016 it was estimated that 313 million women and 178 million men were 

living with the infection [6, 7]. 

Epidemiological analysis has recognized a link between the prevalence of HSV-II and HIV. 

In fact, individuals infected with HSV-II are at greater risk of acquiring HIV after exposure, 

underscoring the fact that herpes infection is an important cofactor for HIV transmission. 

While the prevalence of HIV is much lower than that of HSV-II, the global burden of HIV is 

significant [8]. In many countries, the major public health significance of HSV-II relates to 

its potential role in facilitating HIV transmission. HSV-II is highly widespread in most regions 

experiencing severe HIV epidemics, with infection rates rising sharply with age to arrive at 

levels of 70% or more among adult women and men in some African countries [9]. 

Several mathematical models involving Ordinary Differential Equations (ODEs) have been 

developed to describe the transmission dynamics of HIV-HSV-II coinfection and control. 

These models have been used by several authors to increase the understanding of mechanisms 

involved in the transmission dynamics of HIV-HSV-II coinfection [10,11]. Moreover, many 

studies have used autonomous system of ODEs to assess the impact of using different control 

strategies, such as, vaccination, prevention, Screening and treatment on the transmission 

dynamics of coinfection disease [12,13]. 

The study of Pontryagin et al. [14] has laid the foundation for comprehending how to introduce 

control into compartmental models, as well as deriving Optimal Control (OC) strategy for 

containing the transmission dynamics of various infectious diseases. Particularly, formulation 

of Optimal Control Problem (OCP) depends on the desired aim to be achieved. The Cost 

Functional (CF) or objective functional is considered based on the successive time for 

implementing the control intervention. One may choose to implement the control strategy at 

the final time of the control intervention period or at each time the control intervention is 
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administered. Hence, it is necessary to decide whether there is the need to include terminal 

costs or not. The three well-known standard forms of OCP are Lagrange, Bolza, and Mayer 

formulations [15]. In mathematical epidemiology, the most often used technique for OCP 

formulation of the transmission dynamics of infectious diseases is Lagrange form. The theory 

of OC has been applied to compartmental models in order to derive the efficient strategies for 

control implementation that are helpful to decision makers in the controlling and decline of 

the spread of infectious diseases [16-18]. 

The goal of this work is to study the effect of incorporating various control strategies on 

mathematical model of HIV and HSV-II co-infection in [19]. 

 

2. Model Assumption 
HIV-HSV-II coinfection model divided the total population at time 𝑡, denoted by   𝑁(𝑡) in 

Susceptible individuals  𝑆(𝑡), unawared HIV infected individuals   𝐼𝑢ℎ(𝑡),  unawared HSV-II 

infected individuals   𝐼𝑢𝑠(𝑡),  unawared HIV-HSV-II coinfected individuals   𝐼𝑢ℎ𝑠(𝑡),  

screened HIV infected individuals   𝐼𝑠ℎ(𝑡),  screened HSV-II infected individuals   𝐼𝑠𝑠(𝑡),  

screened HIV-HSV-II coinfected individuals   𝐼𝑠ℎ𝑠(𝑡),  individuals with AIDS  𝐴(𝑡), 

individuals with HSV-II  𝐻(𝑡),  individuals with both AIDS and HSV-II    𝐴𝐻(𝑡)  and 

recovered individuals  𝑅(𝑡). It is assumed that susceptible individuals are recruited into the 

population at a constant rate  Π. Susceptible individuals may acquire HIV infection with force 

of infection 𝜆ℎ =
𝛽1(𝐼𝑢ℎ+𝑞1𝐼𝑠ℎ)

𝑁ℎ
  when they come into effective contact with an infectious 

individual at the rate   𝛽1 that may lead to infection. Also, susceptible individuals may acquire 

HSV-II infection with force of infection 𝜆𝑠 =
𝛽2(𝐼𝑢𝑠+𝑞2𝐼𝑠𝑠)

𝑁𝑠
  when they come into effective 

contact with an infectious individual at the rate   𝛽1 that may lead to infection. The unawared 

HIV infected individuals are screened and join the screened HIV infected subclass at a rate 𝛼. 

However, some of the unawared HIV infected individuals progress to AIDS at a rate   𝛿  and 

others join the unawared HIV-HSV-II coinfection subclass at a rate  𝜙. Furthermore, screened 

HIV infected individuals’ progress to AIDS at a rate   𝜔 and also joined the screened HIV-

HSV-II coinfection subclass at a rate  𝜑. Also, the unawared HIV-HSV-II coinfection 

individuals are screened and join the screened HIV-HSV-II coinfected subclass at a rate  𝜃. 

But, some of the unawared HIV-HSV-II coinfected individuals progress to AIDS and HSV-

II coinfection subclass at rate  𝜌. The screened HIV-HSV-II coinfection is also progress to 

AIDS and HSV-II coinfection subclass at rate  𝜎. The unawared HSV-II infected individuals 

are screened and joined the screened HSV-II infected subclass at a rate 𝛾 and others join the 

unawared HIV-HSV-II coinfection subclass at rate  𝜓.  However, some of them are progress 

to HSV-II subclass with rate   𝜀 and recovered naturally by body immunity at rate  𝜅. The 

screened HSV-II infected individuals are treated at rate   𝜖 and joined the recovered subclass 

with this rate. Some of them are progress to HSV-II subclass and screened coinfection of HIV-

HSV-II subclass with rate   𝜂 and   𝜏 respectively. AIDS individuals and HSV-II individuals 

are also progress to coinfection of AIDS and HSV-II subclass with rate   𝜈 and   𝜒 respectively. 

Finally, recovered individuals revert to susceptible subclass after losing their immunity at a 

rate  𝜗. All individuals suffer natural mortality at a rate   𝜇 and sick individuals die of AIDS, 

HSV-II and AIDS-HSV-II coinfection at rate  𝜉  [19]. 

The above assumptions can be written as linear system of differential equation as follows [19]: 
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𝑑𝑆

𝑑𝑡
= Π + 𝜗𝑅 − (𝜆ℎ + 𝜆𝑠 + 𝜇)𝑆  

𝑑𝐼𝑢ℎ

𝑑𝑡
= 𝜆ℎ𝑆 − (𝜙𝜆𝑠 + 𝛼 + 𝛿 + 𝜇)𝐼𝑢ℎ  

𝑑𝐼𝑢𝑠

𝑑𝑡
= 𝜆𝑠𝑆 − (𝜓𝜆ℎ + 𝜀 + 𝛾 + 𝜅 + 𝜇)𝐼𝑢𝑠  

𝑑𝐼𝑢ℎ𝑠

𝑑𝑡
= 𝜙𝜆𝑠𝐼𝑢ℎ + 𝜓𝜆ℎ𝐼𝑢𝑠 − (𝜌 + 𝜃 + 𝜇)𝐼𝑢ℎ𝑠                    (𝟏) 

𝑑𝐼𝑠ℎ

𝑑𝑡
= 𝛼𝐼𝑢ℎ − (𝜑 + 𝜔 + 𝜇)𝐼𝑠ℎ  

𝑑𝐼𝑠𝑠

𝑑𝑡
= 𝛾𝐼𝑢𝑠 − (𝜏 + 𝜂 + 𝜖 + 𝜇)𝐼𝑠𝑠  

𝑑𝐼𝑠ℎ𝑠

𝑑𝑡
= 𝜃𝐼𝑢ℎ𝑠 + 𝜑𝐼𝑠ℎ + 𝜏𝐼𝑠𝑠 − (𝜎 + 𝜇)𝐼𝑠ℎ𝑠  

𝑑𝐴

𝑑𝑡
= 𝛿𝐼𝑢ℎ + 𝜔𝐼𝑠ℎ − (𝜈 + 𝜇 + 𝜉)𝐴  

𝑑𝐻

𝑑𝑡
= 𝜀𝐼𝑢𝑠 + 𝜂𝐼𝑠𝑠 − (𝜒 + 𝜋 + 𝜇 + 𝜉)𝐻  

𝑑𝑅

𝑑𝑡
= 𝜅𝐼𝑢𝑠 + 𝜖𝐼𝑠𝑠 + 𝜋𝐻 − (𝜗 + 𝜇)𝑅  

𝑑𝐴𝐻

𝑑𝑡
= 𝜌𝐼𝑢ℎ𝑠 + 𝜎𝐼𝑠ℎ𝑠 + 𝜈𝐴 + 𝜒𝐻 − (𝜇 + 𝜉)𝐴𝐻  

With initial condition 𝑆(0) = 𝑆0, 𝐼𝑢ℎ(0) = 𝐼𝑢ℎ0, 𝐼𝑢𝑠(0) = 𝐼𝑢𝑠0, 𝐼𝑢ℎ𝑠(0) = 𝐼𝑢ℎ𝑠0,   𝐼𝑠ℎ(0) =
𝐼𝑠ℎ0,   𝐼𝑠𝑠(0) = 𝐼𝑠𝑠0,   𝐼𝑠ℎ𝑠(0) = 𝐼𝑠ℎ𝑠0, 𝐴(0) = 𝐴0,   𝐻(0) = 𝐻0,   𝐴𝐻(0) = 𝐴𝐻0, 𝑅(0) =
𝑅0.  

 

3. Stability Analysis of HIV-HSV-II Co-infection Model 

In this section, the analysis of HIV-HSV-II co-infection in model equation (1) was considered. 

3.1 Invariant Region 

Theorem 1: The total population size   𝑁 of the system of model equation (1) is bounded in 

the invariant regionΩ. That is, size of   𝑁 is bounded for all  𝑡. 

Proof: In model equation (1) the total population of    𝑁 is given a 

  𝑁 = 𝑆 + 𝐼𝑢ℎ + 𝐼𝑢𝑠 + 𝐼𝑢ℎ𝑠 + 𝐼𝑠ℎ + 𝐼𝑠𝑠 + 𝐼𝑠ℎ𝑠 + 𝐴 + 𝐻 + 𝐴𝐻 + 𝑅 

Differentiating   𝑁 both sides with respect to  𝑡 leads to 

𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐼𝑢ℎ

𝑑𝑡
+

𝑑𝐼𝑢𝑠

𝑑𝑡
+

𝑑𝐼𝑢ℎ𝑠

𝑑𝑡
+

𝑑𝐼𝑠ℎ

𝑑𝑡
+

𝑑𝐼𝑠𝑠

𝑑𝑡
+

𝑑𝐼𝑠ℎ𝑠

𝑑𝑡
+

𝑑𝐴

𝑑𝑡
+

𝑑𝐻

𝑑𝑡
+

𝑑𝐴𝐻

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
                (2) 

Substituting model equation (1) into equation (2), we can get 

𝑑𝑁

𝑑𝑡
= Π − 𝜇𝑁 − 𝜉(𝐴 + 𝐻 + 𝐴𝐻)                                                                               (3) 

In the absence of mortality due to disease (𝜉 = 0), then equation (3) become 

𝑑𝑁

𝑑𝑡
≤ Π − 𝜇𝑁                                                                                                              (4) 

Rearranging and integrating both sides of (4), we get 
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∫
𝑑𝑁

Π − 𝜇𝑁
≤ ∫𝑑𝑡 

⇔
−1

𝜇
ln(Π − 𝜇𝑁) ≤ 𝑡 + 𝑐12  , where 𝑐12  is integration constant 

⇒ ln(Π − 𝜇𝑁) ≥ −𝜇𝑡 + 𝑐13, where 𝑐13 = −𝜇𝑐12 

⇒ (Π − 𝜇𝑁) ≥ 𝑐𝑒−𝜇𝑡, where 𝑐 = 𝑒−𝑐13 

Then, applying initial condition𝑁(0) = 𝑁0, we obtain  c = Π − 𝜇𝑁0 

⇒ Π − 𝜇𝑁 ≥ (Π − 𝜇𝑁0)𝑒
−𝜇𝑡 

⇒ 𝑁 ≤
Π

𝜇
− [

Π−𝜇𝑁

𝜇
]𝑒−𝜇𝑡                                                                (5) 

As   𝑡 → ∞ in equation (5), the population size 𝑁(𝑡) →
Π

μ
  which implies that   0 ≤ 𝑁(𝑡) ≤

(
Π

μ
) . Thus, the feasible solution set of the model equation (1) enters and remains in the 

region:Ω = {(𝑆,   𝐼𝑢ℎ,   𝐼𝑢𝑠,    𝐼𝑢ℎ𝑠,    𝐼𝑠ℎ ,     𝐼𝑠𝑠,   𝐼𝑠ℎ𝑠 ,   𝐴,   𝐻, 𝐴𝐻,   𝑅 ) ∈ ℝ+
11  ∶  𝑁ℎ ≤ Π 𝜇⁄ }. 

Therefore, the model equation (1) is wellposed epidemiologically and mathematically. Hence, 

it is sufficient to study the dynamics of the model in the regionΩ. 

3.2. Existence of solution  

Lemma 1: Solutions of the model equations (1) together with the initial conditions𝑆(0) > 0,
𝐼𝑢ℎ(0) > 0, 𝐼𝑢𝑠(0) > 0, 𝐼𝑢ℎ𝑠(0) > 0, 𝐼𝑠ℎ(0) > 0, 𝐼𝑠𝑠(0) > 0, 𝐼𝑠ℎ𝑠(0) > 0,   𝐴(0) > 0,
𝐻(0) > 0, 𝐴𝐻(0) > 0, 𝑅(0) > 0 exist in ℝ+

11i.e., the solution of the model variables 𝑆(𝑡),
𝐼𝑢ℎ(𝑡), 𝐼𝑢𝑠(𝑡),    𝐼𝑢ℎ𝑠(𝑡),    𝐼𝑠ℎ(𝑡),     𝐼𝑠𝑠(𝑡),   𝐼𝑠ℎ𝑠(𝑡),   𝐴(𝑡),   𝐻(𝑡), 𝐴𝐻(𝑡)and  𝑅(𝑡)   exist for 

all 𝑡 and will remain inℝ+
11. 

Proof: Existence of solution for  (  𝑆,   𝐼𝑢ℎ,   𝐼𝑢𝑠,    𝐼𝑠ℎ ,     𝐼𝑠𝑠,   𝐴,   𝐻,   𝑅 ) [19]. Now, positivity 

for  (𝐼𝑢ℎ𝑠,     𝐼𝑠ℎ𝑠,   𝐴𝐻) are shown below in table 1. Let 

𝑓10( 𝑆, 𝐼𝑢ℎ, 𝐼𝑢𝑠,    𝐼𝑢ℎ𝑠,    𝐼𝑠ℎ,     𝐼𝑠𝑠, 𝐼𝑠ℎ𝑠 , 𝐴,   𝐻, 𝐴𝐻, 𝑅) = 𝜙𝐼𝑢ℎ + 𝜓𝐼𝑢𝑠 − (𝜌 + 𝜃 + 𝜇)𝐼𝑢𝑠 

𝑓11(𝑆, 𝐼𝑢ℎ, 𝐼𝑢𝑠,    𝐼𝑢ℎ𝑠,    𝐼𝑠ℎ,     𝐼𝑠𝑠, 𝐼𝑠ℎ𝑠 , 𝐴,   𝐻, 𝐴𝐻, 𝑅) = 𝜃𝐼𝑢ℎ𝑠 + 𝜑𝐼𝑠ℎ + 𝜏𝐼𝑠𝑠 − (𝜎 + 𝜇)𝐼𝑠ℎ𝑠 

𝑓12(𝑆, 𝐼𝑢ℎ, 𝐼𝑢𝑠,    𝐼𝑢ℎ𝑠,    𝐼𝑠ℎ,     𝐼𝑠𝑠, 𝐼𝑠ℎ𝑠 , 𝐴,   𝐻, 𝐴𝐻, 𝑅) = 𝜌𝐼𝑢ℎ𝑠 + 𝜎𝐼𝑠𝑠ℎ + 𝜈𝐴 + 𝜒𝐻 − (𝜇 +
𝜉)𝐴𝐻  

According to Derrick and Groosman theorem as in [19], let Ω denote the regionΩ =
{(𝑆, 𝐼𝑢ℎ, 𝐼𝑢𝑠,    𝐼𝑢ℎ𝑠,    𝐼𝑠ℎ ,     𝐼𝑠𝑠, 𝐼𝑠ℎ𝑠 , 𝐴,   𝐻,   𝐴𝐻, 𝑅) ∈ ℝ+

11  ∶   𝑁 ≤ Π 𝜇⁄ }. Then equations 

(1) have a unique solution if (𝜕𝑓𝑖) (𝜕𝑥𝑗)⁄ , 𝑖, 𝑗 = 1, 2, 3, 4, 5,6,7,8,9,10,11 are continuous and 

bounded inΩ. Here,𝑥1 = 𝑆,   𝑥2 = 𝐼𝑢ℎ, 𝑥3 = 𝐼𝑢𝑠, 𝑥4  =   𝐼𝑢ℎ𝑠, 𝑥5 =   𝐼𝑠ℎ, 𝑥6 = 𝐼𝑠𝑠, 𝑥7 =
𝐼𝑠ℎ𝑠 , 𝑥8 =  𝐴, 𝑥9 = 𝐻, 𝑥10 = 𝐴𝐻and𝑥11 = 𝑅. The continuity and the boundedness are 

verified as here under: 

Thus, all the partial derivatives (𝜕𝑓𝑖) (𝜕𝑥𝑗),⁄ 𝑖, 𝑗 = 1, 2, 3, 4,5,6,7,8,9,10,11    exist, 

continuous and bounded inΩ. Hence, by Derrick and Groosman theorem, a solution for the 

model (1) exists and is unique. 
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Table 1. Continuity and boundedness of the model solution 

|
(𝜕𝑓1)

(𝜕𝑆)
| = |

(𝜕𝑓1)

(𝜕𝐼𝑠ℎ)
| = |

(𝜕𝑓1)

(𝜕𝐼𝑠𝑠)
| = |

(𝜕𝑓1)

(𝜕𝐼𝑠ℎ𝑠)
| = |

(𝜕𝑓1)

(𝜕𝐴)
| = |

(𝜕𝑓1)

(𝜕𝐻)
| = |

(𝜕𝑓1)

(𝜕𝐴𝐻)
| = |

(𝜕𝑓1)

(𝜕𝑅)
| = 0 < ∞ 

|
(𝜕𝑓1)

(𝜕𝐼𝑢ℎ)
| = |𝜙| < ∞,    |

(𝜕𝑓1)

(𝜕𝐼𝑢𝑠)
| = |𝜓| < ∞,    |

(𝜕𝑓1)

(𝜕𝐼𝑢ℎ𝑠)
| = |−(𝜌 + 𝜃 + 𝜇)| < ∞ 

|
(𝜕𝑓2)

(𝜕𝑆)
| = |

(𝜕𝑓2)

(𝜕𝐼𝑢ℎ)
| = |

(𝜕𝑓2)

(𝜕𝐼𝑢𝑠)
| = |

(𝜕𝑓2)

(𝜕𝐴)
| = |

(𝜕𝑓2)

(𝜕𝐻)
| = |

(𝜕𝑓2)

(𝜕𝐴𝐻)
| = |

(𝜕𝑓2)

(𝜕𝑅)
| = 0 < ∞ 

|
(𝜕𝑓2)

(𝜕𝐼𝑢ℎ𝑠)
| = |𝜃| < ∞,   |

(𝜕𝑓2)

(𝜕𝐼𝑠ℎ)
| = |𝜑| < ∞,  |

(𝜕𝑓2)

(𝜕𝐼𝑠𝑠)
| = |𝜏| < ∞,  |

(𝜕𝑓2)

(𝜕𝐼𝑠ℎ𝑠)
| = |−(𝜎 + 𝜇)| < ∞ 

|
(𝜕𝑓3)

(𝜕𝑆)
| = |

(𝜕𝑓3)

(𝜕𝐼𝑢ℎ)
| = |

(𝜕𝑓3)

(𝜕𝐼𝑢𝑠)
| = |

(𝜕𝑓3)

(𝜕𝐼𝑠ℎ)
| = |

(𝜕𝑓3)

(𝜕𝐼𝑠𝑠)
| = |

(𝜕𝑓3)

(𝜕𝑅)
| = 0 < ∞ 

|
(𝜕𝑓3)

(𝜕𝐼𝑢ℎ𝑠)
| = |𝜌| < ∞, |

(𝜕𝑓3)

(𝜕𝐼𝑠ℎ𝑠)
| = |𝜎| < ∞, |

(𝜕𝑓3)

(𝜕𝐴)
| = |𝜈| < ∞,|

(𝜕𝑓3)

(𝜕𝐻)
| = |𝜒| < ∞,|

(𝜕𝑓3)

(𝜕𝐴𝐻)
| = |−(𝜇 + 𝜉)| <

∞ 

 

 

3.3.Positivity of Solution 

In this section, we show all the solution of the model equation (1) remains positive for future 

time if their respective initial values are positive. 

Theorem 2: LetΩ =  {(S, 𝐼𝑢ℎ, 𝐼𝑢𝑠,    𝐼𝑢ℎ𝑠,    𝐼𝑠ℎ ,     𝐼𝑠𝑠, 𝐼𝑠ℎ𝑠 , 𝐴,   𝐻,   𝐴𝐻, 𝑅) ∈ ℝ+
11; 𝑆0(0) >

0, 𝐼𝑢ℎ0(0) > 0, 𝐼𝑢𝑠0(0) > 0, 𝐼𝑢ℎ𝑠0(0) > 0, 𝐼𝑠ℎ0(0) > 0, 𝐼𝑠𝑠0(0) > 0, 𝐼𝑠ℎ𝑠0(0) >
0,   𝐴0(0) > 0,   𝐻0(0) > 0, 𝐴𝐻0(0) > 0,   ,   𝑅0(0) > 0 } then the solutions of {S, 𝐼𝑢ℎ,
𝐼𝑢𝑠,    𝐼𝑢ℎ𝑠,    𝐼𝑠ℎ,     𝐼𝑠𝑠, 𝐼𝑠ℎ𝑠 , 𝐴,   𝐻,   𝐴𝐻, 𝑅} are positive for all  𝑡 ≥ 0. 

Proof: Since positivity of 𝑆(𝑡), 𝐼𝑢ℎ(𝑡), 𝐼𝑢𝑠(𝑡), 𝐼𝑠ℎ(𝑡),𝐼𝑠𝑠(𝑡), 𝐴(𝑡), 𝐻(𝑡) and𝑅(𝑡)are 

shown in [19] separately. Now let us show 𝐼𝑢ℎ𝑠(𝑡), 𝐼𝑠ℎ𝑠(𝑡) and 𝐴𝐻(𝑡) are positive for future 

time. 

From model equation (1) we have: 

𝑑𝐼𝑢ℎ𝑠

𝑑𝑡
= 𝜙𝐼𝑢ℎ + 𝜓𝐼𝑢𝑠 − (𝜌 + 𝜃 + 𝜇)𝐼𝑢ℎ𝑠, eliminating the positive terms (𝜙𝐼𝑢ℎ + 𝜓𝐼𝑢𝑠)we 

get, 

⇔
𝑑𝐼𝑢ℎ𝑠

𝑑𝑡
≥ −(𝜌 + 𝜃 + 𝜇)𝐼𝑢ℎ𝑠, using variables separable method we get, 

⇒
𝑑𝐼𝑢ℎ𝑠

𝐼𝑢ℎ𝑠
≥ −(𝜌 + 𝜃 + 𝜇)𝑑𝑡, integrating both side we can get, 

⇒ ∫
𝑑𝐼𝑢ℎ𝑠

𝐼𝑢ℎ𝑠
≥ −∫(𝜌 + 𝜃 + 𝜇)𝑑𝑡 

⇒ ln 𝐼𝑢ℎ𝑠 ≥ −(𝜌 + 𝜃 + 𝜇)𝑡 + 𝑐13, where 𝑐13 is integration constant 

⇒ 𝐼𝑢ℎ𝑠(𝑡) ≥ 𝐼𝑢ℎ𝑠0e
−(𝜌+𝜃+𝜇)𝑡,𝐼𝑢ℎ𝑠0 = ec13and e−(𝜌+𝜃+𝜇)𝑡 ≥ 0,for all 𝑡 ≥ 0. 

Hence, it can be concluded that𝐼𝑢ℎ𝑠(𝑡) ≥ 0. 

From model equation (1) we have: 

𝑑𝐼𝑠ℎ𝑠

𝑑𝑡
= 𝜃𝐼𝑢ℎ𝑠 + 𝜑𝐼𝑠ℎ + 𝜏𝐼𝑠𝑠 − (𝜎 + 𝜇)𝐼𝑠ℎ𝑠, eliminating the positive terms (𝜃𝐼𝑢ℎ𝑠 + 𝜑𝐼𝑠ℎ +

𝜏𝐼𝑠𝑠)we get, 
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⇔
𝑑𝐼𝑠ℎ𝑠

𝑑𝑡
≥ −(𝜎 + 𝜇)𝐼𝑠ℎ𝑠, using variables separable method we get, 

⇒
𝑑𝐼𝑠ℎ𝑠

𝐼𝑠ℎ𝑠
≥ −(𝜎 + 𝜇)𝑑𝑡, integrating both side we can get, 

⇒ ∫
𝑑𝐼𝑠ℎ𝑠

𝐼𝑠ℎ𝑠
≥ −∫(𝜎 + 𝜇)𝑑𝑡 

⇒ ln 𝐼𝑠ℎ𝑠 ≥ −(𝜎 + 𝜇)𝑡 + 𝑐14, where 𝑐14 is integration constant 

⇒ 𝐼𝑠ℎ𝑠(𝑡) ≥ 𝐼𝑠ℎ𝑠0e
−(𝜎+𝜇)𝑡,𝐼shs0 = e14and e−(𝜎+𝜇)𝑡 ≥ 0,for all 𝑡 ≥ 0. 

Hence, it can be concluded that𝐼𝑠ℎ𝑠(𝑡) ≥ 0. 

 From model equation (1) we have: 

𝑑𝐴𝐻

𝑑𝑡
= 𝜌𝐼𝑢ℎ𝑠 + 𝜎𝐼𝑠ℎ𝑠 + 𝜈𝐴 + 𝜒𝐻 − (𝜇 + 𝜉)𝐴𝐻, eliminating the positive terms (𝜌𝐼𝑢ℎ𝑠 +

𝜎𝐼𝑠ℎ𝑠 + 𝜈𝐴 + 𝜒𝐻)we get, 

⇔
𝑑𝐴𝐻

𝑑𝑡
≥ −(𝜇 + 𝜉)𝐴𝐻, using variables separable method we get, 

⇒
𝑑𝐴𝐻

𝐴𝐻
≥ −(𝜇 + 𝜉)𝑑𝑡, integrating both side we can get, 

⇒ ∫
𝑑𝐴𝐻

𝐴𝐻
≥ −∫(𝜇 + 𝜉) 𝑑𝑡 

⇒ lnAH ≥ −(𝜇 + 𝜉)𝑡 + 𝑐15, where 𝑐15 is integration constant 

⇒ 𝐴𝐻(𝑡) ≥ 𝐴𝐻0e
−(𝜇+𝜉)𝑡,𝐴𝐻0 = ec15and e−(𝜇+𝜉)𝑡 ≥ 0,for all 𝑡 ≥ 0. 

Hence, it can be concluded that   𝐴𝐻(𝑡) ≥ 0. 

Therefore, the model variables 𝐼𝑢ℎ𝑠(𝑡), 𝐼𝑠ℎ𝑠(𝑡) and 𝐴𝐻(𝑡)  representing population sizes of 

various types of cells are positive quantities and will remain in ℝ+
11for all𝑡. 

 

3.4. Stability Analysis of the Disease-free Equilibrium (DFE) 

The disease-free equilibrium of the HIV-HSV-II coinfection is obtained by equating the 

system of model equation (1) to zero. At disease free equilibrium, there are no infections and 

recovery. Then we can get; 

𝐸1 = {(
Π

μ
) , 0, 0, 0, 0,     0,     0,      0,      0, 0, 0} 

The local stability of the DFE,𝐸1, can be established using the next generation operator 

method in Van den Driessche and Watmouth [22] on the system (1). It follows that the basic 

reproduction number of the HIV-HSV-II model equation (1), denoted by ℜℎ𝑠 is given by    

ℜℎ𝑠 = max {ℜℎ, ℜ𝑠} as obtained in [19]. 

Where, ℜℎ = [
𝛽1(𝜔+𝜇)+𝛽1𝑞1𝛼(𝛼+𝛿+𝜇)

(𝛼+𝛿+𝜇)(𝜔+𝜇)
] & ℜ𝑠 = [

𝛽2(𝜂+𝜖+𝜇)+𝛽2𝑞2𝛾(𝜀+𝛾+𝜅+𝜇)

(𝜀+𝛾+𝜅+𝜇)(𝜂+𝜖+𝜇)
] 

Theorem 3: The disease-free equilibrium points 𝐸1 of the system (1) is locally asymptotically 

stable whenever the basic reproduction number is less than one (ℜhs < 1) and unstable if 

otherwise. 
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Proof: To proof this theorem first we obtained the Jacobian matrix of the model equation (1) 

at the disease-free equilibrium 𝐸1  is given by: 

𝐽(𝐸1) =

[
 
 
 
 
 
 
 
 
 
 
 
−𝜇 −𝛽1 −𝛽2 0 −𝛽1𝑞1 −𝛽2𝑞2 0 0 0 0 0
0 𝛽1 − 𝑟1 0 0 𝛽1𝑞1 0 0 0 0 0 0
0 0 𝛽2 − 𝑟2 0 0 𝛽2𝑞2 0 0 0 0 0
0 𝜙 𝜓 −𝑟3 0 0 0 0 0 0 0
0 𝛼 0 0 −𝑟4 0 0 0 0 0 0
0 0 𝛾 0 0 −𝑟5 0 0 0 0 0
0 0 0 𝜃 𝜑 𝜏 −𝑟6 0 0 0 0
0 𝛿 0 0 𝜔 0 0 −𝑟7 0 0 0
0 0 𝜀 0 0 𝜂 0 0 −𝑟8 0 0
0 0 0 𝜌 0 0 𝜎 𝜈 𝜒 −𝑟9 0
0 0 𝜅 0 0 𝜖 0 0 𝜋 0 −𝑟10]

 
 
 
 
 
 
 
 
 
 
 

 

Now, the eigenvalues of 𝐽(𝐸1) are required to be found. The characteristic equation 

𝑑𝑒𝑡[𝐽(𝐸1) − 𝜆𝐼] = 0 is expanded and simplified as follows: 

|

|

|

|

−𝜇 − 𝜆 −𝛽1 −𝛽2 0 −𝛽1𝑞1 −𝛽2𝑞2 0 0 0 0 0

0 (𝛽1 − 𝑟1) − 𝜆 0 0 𝛽1𝑞1 0 0 0 0 0 0

0 0 (𝛽2 − 𝑟2) − 𝜆 0 0 𝛽2𝑞2 0 0 0 0 0
0 𝜙 𝜓 −𝑟3−𝜆 0 0 0 0 0 0 0
0 𝛼 0 0 −𝑟4 − 𝜆 0 0 0 0 0 0
0 0 𝛾 0 0 −𝑟5 − 𝜆 0 0 0 0 0
0 0 0 𝜃 𝜑 𝜏 −𝑟6 − 𝜆 0 0 0 0
0 𝛿 0 0 𝜔 0 0 −𝑟7 − 𝜆 0 0 0
0 0 𝜀 0 0 𝜂 0 0 −𝑟8 − 𝜆 0 0
0 0 0 𝜌 0 0 𝜎 𝜈 𝜒 −𝑟9 − 𝜆 0
0 0 𝜅 0 0 𝜖 0 0 𝜋 0 −𝑟10 − 𝜆

|

|

|

|

= 0  (6) 

From the Jacobian matrix of (6), we obtained a characteristic polynomial: 

[−𝜇 − 𝜆][−𝑟10 − 𝜆][−𝑟9 − 𝜆][−𝑟8 − 𝜆][−𝑟7 − 𝜆][−𝑟6 − 𝜆][4𝜆4 + 𝐿1𝜆
3 + 𝐿2𝜆

2 + 𝐿3𝜆 +
𝐿4] = 0 (7) 

Where 𝐿1 = 𝑟4 − 𝛽1 + 𝑟5 − 𝛽2 

𝐿2 = 2[𝛼𝛽1𝑞1 − 𝛾𝛽2𝑞2 − 𝑟4(𝛽1 − 𝑟1) − 𝑟5(𝛽2 − 𝑟2)] + (𝑟5 − 𝛽2)(𝑟4 − 𝛽1) 

𝐿3 = 𝛼𝛽1𝑞1(𝑟5 − 𝛽2) − 𝛾𝛽2𝑞2(𝑟4 − 𝛽1) − 𝑟4(𝑟5 − 𝛽2)(𝛽1 − 𝑟1) − 𝑟5(𝛽2 − 𝑟2)(𝑟4 − 𝛽1) 

𝐿4 = 𝛾𝛽2𝑞2𝑟4(𝛽1 − 𝑟1) + 𝛾𝛽2𝑞2𝛼𝛽1𝑞1 + 𝑟4𝑟5(𝛽2 − 𝑟2)(𝛽1 − 𝑟1) − 𝑟5𝛼𝛽1𝑞1(𝛽2 − 𝑟2) 

Thus, from equation (7) clearly, we see that: 

𝜆1 = −𝜇, 𝜆2 = −𝑟10, 𝜆3 = −𝑟9, 𝜆4 = −𝑟8, 𝜆5 = −𝑟7, 𝜆6 = −𝑟6, 𝜆7 = −𝑟3  

It can be observed that the eigenvalues𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6and 𝜆7 are absolutely negative 

quantities.  

For the last expression, that is, 

4𝜆4 + 𝐿1𝜆
3 + 𝐿2𝜆

2 + 𝐿3𝜆 + 𝐿4 = 0                                                                                       (8) 

We applied Routh-Hurwitz criteria. By the principle of Routh-Hurwitz criteria, (8) has strictly 

negative real root if and only if 𝐿1 > 0, 𝐿2 > 0, 𝐿3 > 0, 𝐿4 > 0  and𝐿1𝐿2𝐿3 > 𝐿3
2 + 𝐿1

2𝐿4. 
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Therefore, it is concluded that the DFE 𝐸1 of the system of differential equations (1) is locally 

asymptotically stable if ℜℎ𝑠 < 1 and unstable ifℜℎ𝑠 > 1. Here, 

𝑟1 = (𝜙 + 𝛼 + 𝛿 + 𝜇), 𝑟2 = (𝜓 + 𝜀 + 𝛾 + 𝜅 + 𝜇), 𝑟3 = (𝜌 + 𝜃 + 𝜇), 𝑟4 = (𝜑 + 𝜔 + 𝜇), 

𝑟5 = (𝜏 + 𝜂 + 𝜖 + 𝜇), 𝑟6 = (𝜎 + 𝜇), 𝑟7 = (𝜈 + 𝜇 + 𝜉), 𝑟8 = (𝜒 + 𝜋 + 𝜇 + 𝜉), 

𝑟9 = (𝜇 + 𝜉), 𝑟10 = (𝜗 + 𝜇).  

 

3.5. Global Stability of Disease-Free Equilibrium 
The global stability of disease-free equilibrium is determined using Castillo-Chavez and Song 

[23] technique. The model equation (1) can be re-written as 

𝑑𝑋 𝑑𝑡⁄ = 𝐹(𝑋, 𝑌) 

𝑑𝑌 𝑑𝑡⁄ = 𝐺(𝑋, 𝑌),   𝐺(𝑋, 0) = 0 

Where,  𝑋 stands for the uninfected population, that is  𝑋 = (𝑆, 𝑅) and  𝑌  also stands for the 

infected population, that is  𝑌 = (𝐼𝑢ℎ, 𝐼𝑢𝑠, 𝐼𝑢ℎ𝑠, 𝐼𝑠ℎ,   𝐼𝑠𝑠, 𝐼𝑠ℎ𝑠, 𝐴, 𝐻, 𝐴𝐻). The disease-free 

equilibrium point of the model is denoted by  𝑈 = (𝑋∗, 0). The point  𝑈 = (𝑋∗, 0) to be 

globally asymptotically stable equilibrium for the model provided that ℜℎ𝑠 < 1 and the 

following conditions must be met: 

(𝐻1).  For𝑑𝑋 𝑑𝑡⁄ = 𝐹(𝑋, 0), 𝑋∗  is globally asymptotically stable. 

(𝐻2).   𝐺(𝑋, 𝑌) = 𝐴𝑌 − �̃�(𝑋, 𝑌),    �̃�(𝑋, 𝑌) ≥ 0  for  (𝑋, 𝑌) ∈ Ω. 

Where 𝐴 = 𝐷𝑌𝐺(𝑈, 0) is a Metzler matrix (the off diagonal elements of 𝐴 are non-negative) 

and 𝐺 is the region where the model make biologically sense. 

If the model equation(1) met the above two criteria, then the following theorem holds. 

Theorem 4: The point 𝑈 = (𝑋∗, 0) is globally asymptotically stable equilibrium provided that 

ℜhs < 1 and the condition (𝐻1) and (𝐻2)are satisfied. 

Proof: From system (1) we can get   𝐹(𝑋, 𝑌) and  𝐺(𝑋, 𝑌); 

𝑑𝑋 𝑑𝑡⁄ = 𝐹(𝑋, 𝑌) = [
Π + 𝜗𝑅 − (𝜆ℎ + 𝜆𝑠 + 𝜇)𝑆

𝜅𝐼𝑢𝑠 + 𝜖𝐼𝑠𝑠 + 𝜋𝐻 − (𝜗 + 𝜇)𝑅
] and 

𝑑𝑌 𝑑𝑡⁄ = 𝐺(𝑋, 𝑌) =

[
 
 
 
 
 
 
 
 

𝜆ℎ𝑆 − 𝑟1𝐼𝑢ℎ

𝜆𝑠𝑆 − 𝑟2𝐼𝑢𝑠

𝜙𝐼𝑢ℎ + 𝜓𝐼𝑢𝑠 − 𝑟3𝐼𝑢ℎ𝑠

𝛼𝐼𝑢ℎ − 𝑟4𝐼𝑠ℎ
𝛾𝐼𝑢𝑠 − 𝑟5𝐼𝑠𝑠

𝜃𝐼𝑢ℎ𝑠 + 𝜑𝐼𝑠ℎ + 𝜏𝐼𝑠𝑠 − 𝑟6𝐼𝑠ℎ𝑠

𝛿𝐼𝑢ℎ + 𝜔𝐼𝑠ℎ − 𝑟7𝐴
𝜀𝐼𝑢𝑠 + 𝜂𝐼𝑠𝑠 − 𝑟8𝐻

𝜌𝐼𝑢ℎ𝑠 + 𝜎𝐼𝑠ℎ𝑠 + 𝜈𝐴 + 𝜒𝐻 − 𝑟9𝐴𝐻]
 
 
 
 
 
 
 
 

 

Consider the reduced system 

𝑑𝑋

𝑑𝑡 |𝑌=0
= [

Π − 𝜇𝑆
0

]                                                                               (9) 
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From (9), it is obvious that 𝑋∗ = [(Π 𝜇⁄ ), 0] is the global asymptotic point. This can be 

verified from the solution, namely   𝑆 = [Π 𝜇⁄ ] + [𝑆(0) − (Π 𝜇⁄ )]𝑒−𝜇𝑡. As  𝑡 → ∞, the 

solution  (𝑆) → [Π 𝜇⁄ ], implying that the global convergence of (9) in  Ω. 

From the equation for infected compartments in the model we have: 

𝐴 =

[
 
 
 
 
 
 
 
 
𝛽1 − 𝑟1 0 0 𝛽1𝑞1 0 0 0 0 0

0 𝛽2 − 𝑟2 0 0 𝛽2𝑞2 0 0 0 0
𝜙 𝜓 −𝑟3 0 0 0 0 0 0
𝛼 0 0 −𝑟4 0 0 0 0 0
0 𝛾 0 0 −𝑟5 0 0 0 0
0 0 𝜃 𝜑 𝜏 −𝑟6 0 0 0
𝛿 0 0 𝜔 0 0 −𝑟7 0 0
0 𝜀 0 0 𝜂 0 0 −𝑟8 0
0 0 𝜌 0 0 𝜎 𝜈 𝜒 −𝑟9]

 
 
 
 
 
 
 
 

 

Since  𝐴 is Metzler matrix, i.e., all off diagonal elements are nonnegative. Then,   𝐺(𝑋, 𝑌) can 

be written as,  𝐺(𝑋, 𝑌) = 𝐴𝑌 − �̃�(𝑋, 𝑌), where 

�̃�(𝑋, 𝑍) =

[
 
 
 
 
 
 
 
 
 𝛽1(𝐼𝑢ℎ + 𝑞1𝐼𝑠ℎ) [1 −

𝑆

𝑁
]

𝛽2(𝐼𝑢𝑠 + 𝑞2𝐼𝑠𝑠) [1 −
𝑆

𝑁
]

0
0
0
0
0
0
0 ]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
�̃�1(𝑋, 𝑍)

�̃�2(𝑋, 𝑍)

�̃�3(𝑋, 𝑍)

�̃�4(𝑋, 𝑍)

�̃�5(𝑋, 𝑍)

�̃�6(𝑋, 𝑍)

�̃�7(𝑋, 𝑍)

�̃�8(𝑋, 𝑍)

�̃�9(𝑋, 𝑍)]
 
 
 
 
 
 
 
 
 
 

                                                                 (10) 

It follows that, in equation (10)�̃�1(𝑋, 𝑌) ≥ 0, �̃�2(𝑋, 𝑌) ≥ 0,  and  

�̃�3(𝑋, 𝑌) = �̃�4(𝑋, 𝑌) = �̃�5(𝑋, 𝑌) = �̃�6(𝑋, 𝑌) = �̃�7(𝑋, 𝑌) = �̃�8(𝑋, 𝑌) = �̃�9(𝑋, 𝑌) = 0. 

Hence,�̃�(𝑋, 𝑌) ≥ 0. Therefore, condition  (𝐻1) and  (𝐻2) are satisfied and we conclude that 

𝑈 is globally asymptotically stable forℜℎ𝑠 < 1. 

 

3.6.Endemic Equilibrium Point 

The endemic equilibrium denoted by (𝑆∗, 𝐼𝑢ℎ
∗ , 𝐼𝑢𝑠

∗ , 𝐼𝑢ℎ𝑠
∗ ,

𝐼𝑠ℎ
∗ ,   𝐼𝑠𝑠

∗ ,   𝐼𝑠ℎ𝑠
∗ ,   𝐴∗,   𝐻∗,   𝐴𝐻∗,   𝑅∗ ) and it occur when the disease persist in the community. 

To obtain it we equate all the model (1) to zero. Then we obtained; 

𝑆∗ =
Π+ϑR∗

(𝜆ℎ
∗ +𝜆𝑠

∗+𝜇)
, 𝐼𝑢ℎ

∗ =
(Π+ϑR∗)𝜆ℎ

∗

(𝜆ℎ
∗ +𝜆𝑠

∗+𝜇)(𝜙+𝛼+𝛿+𝜇)
,  𝐼𝑢𝑠

∗ =
(Π+ϑR∗)𝜆𝑠

∗

(𝜆ℎ
∗ +𝜆𝑠

∗+𝜇)(𝜓+𝜀+𝛾+𝜅+𝜇)
,   

𝐼𝑢ℎ𝑠
∗ =

𝜙𝐼𝑢ℎ
∗ +𝜓𝐼𝑢𝑠

∗

(𝜌+𝜃+𝜇)
,   𝐼𝑠ℎ

∗ =
𝛼𝐼𝑢ℎ

∗

(𝜑+𝜔+𝜇)
, 𝐼𝑠𝑠

∗ =
𝛾𝐼𝑢𝑠

∗

(𝜏+𝜂+𝜖+𝜇)
, 

𝐼𝑠ℎ𝑠
∗ =

𝜃𝐼𝑢ℎ𝑠
∗ +𝜑𝐼𝑠ℎ

∗ +𝜏𝐼𝑠𝑠

(𝜎+𝜇)
, 𝐴∗ =

𝜆ℎ
∗ (𝜋+𝜗𝑅∗)[𝛿(𝜑+𝜔+𝜇)+𝜔𝛼]

(𝜆ℎ
∗ +𝜆𝑠

∗+𝜇)(𝜙+𝛼+𝛿+𝜇)(𝜑+𝜔+𝜇)(𝜈+𝜇+𝜉)
,  
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𝐻∗ =
𝜆𝑠

∗(𝜋+𝜗𝑅∗)𝜀[(𝜏+𝜂+𝜖+𝜇)+𝜂𝛾]

(𝜆ℎ
∗ +𝜆𝑠

∗+𝜇)(𝜓+𝜀+𝛾+𝜅+𝜇)(𝜏+𝜂+𝜖+𝜇)(𝜒+𝜋+𝜇+𝜉)
, (𝐴𝐻)∗ =

𝜌𝐼𝑢ℎ𝑠
∗ +𝜎𝐼𝑠ℎ𝑠

∗ +𝜈𝐴∗+𝜒𝐻∗

(𝜇+𝜉)
,  

𝑅∗ =
𝜅𝐼𝑢𝑠

∗ + ϵ𝐼𝑠𝑠
∗ + 𝜋𝐻

(𝜗 + 𝜇)
 

After substituting the variables, we see that the endemic equilibrium point is very long and 

complicated. We have therefore decided to use numerical simulation of the co-infection 

dynamics considering when ℜℎ𝑠 < 1 andℜℎ𝑠 > 1. 

       

4. Optimal control formulation of the model 

This section discusses the optimal control problem formulation and analysis for the 

transmission dynamics of HIV-HSV-II coinfection model in [19] is considered. In this model, 

we introduce five control intervention; 𝑢1(𝑡) prevention effort of HIV infection that protect 

susceptible from contacting the HIV infection, 𝑢2(𝑡) prevention effort  of HSV-II infection 

that protect susceptible from contacting the HSV-II infection,  𝑢3(𝑡) screening effort of 

unawared HIV infected that used to screen unawared HIV infected , 𝑢4(𝑡) screening effort of 

unawared HIV infected that used to screen unawared HSV-II infected and 𝑢5(𝑡) treatment 

effort of HSV-II that help to treat HSV-II infectious individuals. Time is specified and is 

relatively short and is given by 𝑡 ∈ [0, 𝑇], 𝑇 is the terminal time. 

After incorporating all control functions  𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡) and 𝑢5(𝑡) in HIV-HSV-

II coinfection model, we obtain the following state system; 

𝑑𝑆

𝑑𝑡
= Π + 𝜗𝑅 − ((1 − 𝑢1)𝜆ℎ + (1 − 𝑢2)𝜆𝑠 + 𝜇)𝑆  

𝑑𝐼𝑢ℎ

𝑑𝑡
= (1 − 𝑢1)𝜆ℎ𝑆 − (1 − 𝑢2)𝜙𝜆𝑠𝐼𝑢ℎ − (𝑢3 + 𝛼)𝐼𝑢ℎ − (𝛿 + 𝜇)𝐼𝑢ℎ  

𝑑𝐼𝑢𝑠

𝑑𝑡
= (1 − 𝑢2)𝜆𝑠𝑆 − (1 − 𝑢1)𝜓𝜆ℎ𝐼𝑢𝑠 − (𝑢4 + 𝛾)𝐼𝑢𝑠 − (𝑢5 + 𝜅)𝐼𝑢𝑠 − ( 𝜀 + 𝜇)𝐼𝑢𝑠  

𝑑𝐼𝑢ℎ𝑠

𝑑𝑡
= (1 − 𝑢2)𝜙𝜆𝑠𝐼𝑢ℎ + (1 − 𝑢1)𝜓𝜆ℎ𝐼𝑢𝑠 − (𝑢3 + 𝑢4 + 𝜃)𝐼𝑢ℎ𝑠 − (𝜌 + 𝜇)𝐼𝑢ℎ𝑠   

𝑑𝐼𝑠ℎ

𝑑𝑡
= (1 − 𝑢3)𝛼𝐼𝑢ℎ − (𝜑 + 𝜔 + 𝜇)𝐼𝑠ℎ                                                             (11) 

𝑑𝐼𝑠𝑠

𝑑𝑡
= (1 − 𝑢4)𝛾𝐼𝑢𝑠 − (𝑢5 + 𝜖)𝐼𝑠𝑠 − (𝜏 + 𝜂 + 𝜇)𝐼𝑠𝑠  

𝑑𝐼𝑠ℎ𝑠

𝑑𝑡
= (1 − 𝑢3)(1 − 𝑢4)𝜃𝐼𝑢ℎ𝑠 + 𝜑𝐼𝑠ℎ + 𝜏𝐼𝑠𝑠 − (𝜎 + 𝜇)𝐼𝑠ℎ𝑠  

𝑑𝐴

𝑑𝑡
= 𝛿𝐼𝑢ℎ + 𝜔𝐼𝑠ℎ − (𝜈 + 𝜇 + 𝜉)𝐴  

𝑑𝐻

𝑑𝑡
= 𝜀𝐼𝑢𝑠 + 𝜂𝐼𝑠𝑠 − (𝑢5 + 𝜋)𝐻 − (𝜒 + 𝜇 + 𝜉)𝐻  

𝑑𝑅

𝑑𝑡
= (𝑢5 + 𝜅)𝐼𝑢𝑠 + (𝑢5 + 𝜖)𝐼𝑠𝑠 + (𝑢5 + 𝜋)𝐻 − (𝜗 + 𝜇)𝑅  

𝑑𝐴𝐻

𝑑𝑡
= 𝜌𝐼𝑢ℎ𝑠 + 𝜎𝐼𝑠ℎ𝑠 + 𝜈𝐴 + 𝜒𝐻 − (𝜇 + 𝜉)𝐴𝐻  

With initial condition 

 𝑆(0) = 𝑆0, 𝐼𝑢ℎ(0) = 𝐼𝑢ℎ0, 𝐼𝑢𝑠(0) = 𝐼𝑢𝑠0, 𝐼𝑢ℎ𝑠(0) = 𝐼𝑢ℎ𝑠0,   𝐼𝑠ℎ(0) = 𝐼𝑠ℎ0,   𝐼𝑠𝑠(0) =
𝐼𝑠𝑠0,   𝐼𝑠ℎ𝑠(0) = 𝐼𝑠ℎ𝑠0, 𝐴(0) = 𝐴0,   𝐻(0) = 𝐻0,   𝐴𝐻(0) = 𝐴𝐻0, 𝑅(0) = 𝑅0.                       (12) 



ED. Gurmu, et al./ IJIM Vol.15, No.4, (2023), 321-345 

 

332 
 

In formulation, cost function is quadratic with respect to the control terms and proposed as in 

[14, 18, 20, 21]. Thus, the objective functional is given as  

𝐽(𝑢) = ∫
𝑇

0
[𝐴1𝐼𝑢ℎ(𝑡) + 𝐴2𝐼𝑢𝑠(𝑡) + 𝐴3𝐼𝑢ℎ𝑠(𝑡) + 𝐴4𝐼𝑠ℎ(𝑡) + 𝐴5𝐼𝑠𝑠(𝑡) + 𝐴6𝐴𝑠ℎ𝑠(𝑡) +

1

2
∑ Biui

25
i=1 ]𝑑𝑡 → 𝑚𝑖𝑛    (13) 

Subject to the dynamical system, equation (11) with initial conditions (12). Where   𝑇 is the 

final time for control administration, and the control set   Ω, with   𝑢𝑖 ≤ 1 − 𝜖, 𝑖 = 1,2,3,4,5 

where 𝜖 ≪ 1 is defined as 

Ω = {(𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡), 𝑢5(𝑡)) ∈ (𝐿∞(0, 𝑇))
5
: 0 ≤ 𝑢𝑖(𝑡) ≤ 1 − 𝜖, ∀𝑡∈ [0, 𝑇]} (14) 

The controls are bounded between 0 and 1. The choice of   𝑢𝑖 ≤ 1 − 𝜖 is based on the fact that 

the intervention is not 100% perfectly implemented.  

The specification of objective functional in (13) involves minimization of the sizes of 

unawared infectious and screened infectious individuals and the costs associated with 

implementing the controls 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡) and 𝑢5(𝑡). In the integrand of objective 

functional, the coefficients 𝐴𝑖 > 0, 𝑖 = 1,2,3,4,5,6 are the weight constants associated with 

unawared HIV infected, unawared HSV-II infected, unawared HIV-HSV-II coinfected, 

screened HIV infected, screened HSV-II infected and screened HIV-HSV-II coinfected 

individuals respectively. They are used to balance each term of the integrand so that none of 

them dominates. The quantities 𝐵𝑖 > 0, 𝑖 = 1,2,3,4,5 are weight constants for prevention of 

(HIV, HSV-II, and HIV-HSV-II), screening of (HIV, HSV-II HIV-HSV-II) and treatment of 

HSV-II infectious controls respectively.   

The term  
𝐵1𝑢1

2

2
 ,

𝐵2𝑢2
2

2
,
𝐵3𝑢3

2

2
,
𝐵4𝑢4

2

2
 and 

𝐵5𝑢5
2

2
   denotes the costs related to the implementation of 

controls 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡) and 𝑢5(𝑡) respectively. Also,  𝐴𝑖 , 𝑖 = 1,2,3,4,5,6 

measures the importance of reducing the size of the HIV infectious individuals, HSV-II 

infectious individuals and the disease burden, while 𝐵𝑖 , 𝑖 = 1,2,3,4,5 are the relative measures 

of the costs or efforts required to implement the respective controls. Additionally, the 

functional   𝐽 corresponds the total cost due to HIV and HSV-II outbreak and its control 

strategies. Further, the integrand function 

 𝐿(∅, 𝑢) = 𝐴1𝐼𝑢ℎ(𝑡) + 𝐴2𝐼𝑢𝑠(𝑡) + 𝐴3𝐼𝑢ℎ𝑠(𝑡) + 𝐴4𝐼𝑠ℎ(𝑡) + 𝐴5𝐼𝑠𝑠(𝑡) + 𝐴6𝐴𝑠ℎ𝑠(𝑡) +
1

2
∑ Biui

25
i=1                     (15) 

measures the current cost at time  𝑡. Finally, the fixed constant  𝑇 denotes the terminal 

innervations time. 

The goal is to find an optimal control value   𝑢∗ = (𝑢1
∗ , 𝑢2

∗ ,   𝑢3
∗ , 𝑢4

∗ , 𝑢5
∗) of the controls  

𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5 ) such that the optimal control problem can be defined as 

        𝐽(𝑢1
∗ , 𝑢2

∗ ,   𝑢3
∗ , 𝑢4

∗ , 𝑢5
∗  ) = min

Ω
𝐽(𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡), 𝑢5(𝑡))                        (16) 

Satisfying model equation (11). 

 

4.1.Existence of optimal controls 

In this subsection, we prove the existence of such optimal control functions which minimize 

the cost function in the finite intervention period. The following result guarantees the 
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existence of optimal control functions. A detail and similar analysis on existence of optimal 

control can be obtained in [20, 21]. 

Theorem 5: There exists an optimal control   𝑢∗ = (𝑢1
∗ , 𝑢2

∗ ,   𝑢3
∗ , 𝑢4,

∗ 𝑢5 
∗ ) in   Ω and a 

corresponding solution vector �̅� = (𝑆̅,  𝐼𝑢ℎ
̅̅ ̅̅ ̅, 𝐼𝑢𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝐼𝑢ℎ𝑠

̅̅ ̅̅ ̅, 𝐼𝑠ℎ̅̅ ̅̅ , 𝐼𝑠𝑠̅̅ ̅, 𝐼𝑠ℎ𝑠
̅̅ ̅̅ ̅, �̅�, �̅�, �̅�, 𝐴𝐻̅̅ ̅̅ )  to the 

initial value problem (12) such that   

 𝐽(𝑢1
∗ , 𝑢2

∗ ,   𝑢3
∗ , 𝑢4,

∗ 𝑢5 
∗ ) = min

Ω
𝐽(𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡), 𝑢5(𝑡)) 

Proof: The entire state variables involved in the model are continuously differentiable. 

Therefore, we need to verify the following four conditions as given in [20] 

(i) The set of solutions to the system (11) with control variables are non-empty. 

(ii) The set   Ω is convex and closed. 

(iii) The state system can be written as linear function of control variables with coefficients 

depending on time and state variables. 

(iv) The integrand 𝐿  of (15) is convex on Ω and 𝐿(∅, 𝑢) ≥ 𝑔(𝑢), where g continuous and 

‖𝑢‖−1𝑔(𝑢) → +∞ as ‖𝑢‖ → ∞. 

Since the total population in (11) is defined as 

𝑁(𝑡) = 𝑆(𝑡) +  𝐼𝑝(𝑡) +  𝐼ℎ(𝑡) +  𝐼𝑝ℎ(𝑡) + 𝐶(𝑡) +  𝐼ℎ𝑐(𝑡) +  𝑅𝑠(𝑡) +  𝑅𝑝(𝑡) +  𝑅ℎ(𝑡) +

  𝑅𝑃ℎ(𝑡)  

From governing system (11) it follows that 

𝑑𝑁 𝑑𝑡⁄ = Π − 𝜇𝑁 

It follows that the solutions of the state system are continuous and bounded for each 

admissible control functions in Ω. Further, the right-hand side functions of the model 

equations (11) satisfy the Lipschitz condition with respect to state variables. Therefore, the 

initial value problem (11) has a unique solution corresponding to each admissible control 

function   𝑢 ∈ Ω . Thus, condition (i) is proved. 

To prove (ii), consider  

Ω = {𝑢 ∈ ℝ5: ‖𝑢‖ ≤ 1 − 𝜖}. 

Let   𝑢1, 𝑢2 ∈ Ω such that   ‖𝑢1‖ ≤ 1 − 𝜖  and  ‖𝑢2‖ ≤ 1 − 𝜖. Then for any  𝜆 ∈ [0,1], 

‖𝜆𝑢1 + (1 − 𝜆)𝑢2‖ ≤ 𝜆‖𝑢1‖ + (1 − 𝜆)‖𝑢2‖ ≤ 1 − 𝜖. 

This implies that   Ω is convex and closed. The state system (11) is linear in control variables 

𝑢1, 𝑢2, 𝑢3, 𝑢4 and 𝑢5 with coefficients depending on state variables. With this condition (iii) 

is satisfied. The integrand of the cost functional is the sum of convex function and hence 

convex with respect to control variables. Furthermore,  

𝐿(∅, 𝑢) = 𝐴1𝐼𝑢ℎ(𝑡) + 𝐴2𝐼𝑢𝑠(𝑡) + 𝐴3𝐼𝑢ℎ𝑠(𝑡) + 𝐴4𝐼𝑠ℎ(𝑡) + 𝐴5𝐼𝑠𝑠(𝑡) + 𝐴6𝐴𝑠ℎ𝑠(𝑡) +
1

2
∑ Biui

25
i=1   

Let 𝜒 = min (
1

2
∑ Biui

25
i=1 ) > 0 and define a continuous function  𝑔(𝑢) = 𝜒‖𝑢‖−1. Then 

from equation (15) we have  𝐿(∅, 𝑢) ≥ 𝑔(𝑢). Clearly, ‖𝑢‖−1𝑔(𝑢) → +∞ as ‖𝑢‖ → ∞. Thus, 

condition (iv) is achieved. Therefore, the existence of an optimal control pair (�̅�, 𝑢∗) is 

satisfying (11) and (15) is assured by results given in [20]. Hence the proof. 
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4.2. Characterization of optimal control 

In order to derive the necessary condition for the optimal control, we use pontryagin’s 

maximum principle [14]. This principle converts the system and the objective functional into 

a problem minimizing point wise a Hamiltonian 𝐻 with respect to 𝑢 as in [15]. The 

Hamiltonian associated to our problem is defined by  

𝐻 = L(∅, u) +
1

2
∑ Biui

25
i=1 + ∑ λi(t)gi(t, ∅, u)11

i=1                                                 (17) 

Where, L is as defined in equation (15). Now, in order to obtain the optimal solution to optimal 

control problem involving the non-autonomous HIV-HSV-II model equation (11) with the 

state’s initial conditions (12) and cost function in equation (13), Pontryagin’s Maximum 

Principle [14] is applied in the following way. Suppose (𝑋∗, 𝑢∗) is an optimal solution of the 

optimal control problem presented in equation (11) and (13). Then, there exists a non-trivial 

adjoint variable 𝜆 = (𝜆1(𝑡), 𝜆2(𝑡), 𝜆3(𝑡), 𝜆4(𝑡), 𝜆5(𝑡), 𝜆6(𝑡), 𝜆7(𝑡), 𝜆8(𝑡), 𝜆9(𝑡),
𝜆10(𝑡), 𝜆11(𝑡)) which satisfies the following equations. 

𝑑𝜆

𝑑𝑡
= −

𝜕𝐻(𝑡,∅,𝑢,𝜆)

𝜕∅
                                                                                   (18) 

0 =
𝜕𝐻(𝑡,∅,𝑢,𝜆)

𝜕𝑢
                                                                                        (19) 

0 = 𝜆(𝑇)                                                                                               (20) 

Next, the necessary condition given by equation (18-20) is applied to the Hamiltonian, 𝐻 in 

equation (17), to obtain the following result. 

Theorem 6: Let   𝑢∗ = (𝑢1
∗ , 𝑢2

∗ ,   𝑢3
∗ , 𝑢4

∗ , 𝑢5
∗) ∈ Ω be an optimal control with the 

corresponding optimal states 𝑆̅,  𝐼𝑢ℎ
̅̅ ̅̅ ̅, 𝐼𝑢𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝐼𝑢ℎ𝑠

̅̅ ̅̅ ̅, 𝐼𝑠ℎ̅̅ ̅̅ , 𝐼𝑠𝑠̅̅ ̅, 𝐼𝑠ℎ𝑠
̅̅ ̅̅ ̅, �̅�, �̅�, �̅� and  𝐴𝐻̅̅ ̅̅ . Then, there 

exist the costate variables 𝜆1(𝑡), 𝜆2(𝑡), 𝜆3(𝑡), 𝜆4(𝑡), 𝜆5(𝑡), 𝜆6(𝑡), 𝜆7(𝑡), 𝜆8(𝑡), 𝜆9(𝑡),
𝜆10(𝑡) and 𝜆11(𝑡) that satisfy 

𝑑𝜆1

𝑑𝑡
= 𝜆1[(1 − 𝑢1)𝜆ℎ + (1 − 𝑢2)𝜆𝑠 + 𝜇] − 𝜆2(1 − 𝑢1)𝜆ℎ − 𝜆3(1 − 𝑢2)𝜆𝑠, 

 
𝑑𝜆2

𝑑𝑡
= −𝐴1 + 𝜆1 [(1 − 𝑢1)

𝛽𝑆

𝑁
] − 𝜆2 [(1 − 𝑢1)

𝛽𝑆

𝑁
− ((1 − 𝑢2)𝜙𝜆𝑠 + 𝑢3 + 𝛼 + 𝛿 + 𝜇)] + 

𝜆3 [(1 − 𝑢1)𝜓
𝛽𝑆

𝑁
𝐼𝑢𝑠] − 𝜆4[(1 − 𝑢2)𝜙𝜆𝑠 + (1 − 𝑢1)𝜓

𝛽𝑆

𝑁
𝐼𝑢𝑠] − 𝜆5(1 − 𝑢3)𝛼 − 𝜆8𝛿,  

.
𝑑𝜆3

𝑑𝑡
= −𝐴2 + 𝜆1 [(1 − 𝑢2)

𝛽𝑆

𝑁
] + 𝜆2 [(1 − 𝑢2)𝜙

𝛽𝑆

𝑁
𝐼𝑢𝑠] − 𝜆3 [(1 − 𝑢2)

𝛽𝑆

𝑁
− ((1 −

𝑢1)𝜓𝜆ℎ + 𝑢4 + 𝑢5 + 𝛾 + 𝜅 + 𝜀 + 𝜇)] + 

𝜆4 [(1 − 𝑢2)𝜙
𝛽𝑆

𝑁
𝐼𝑢ℎ + (1 − 𝑢1)𝜓𝜆ℎ] + 𝜆6(1 − 𝑢4)𝛾 + 𝜆9𝜀 + 𝜆10(𝑢5 + 𝜅),    

 
𝑑𝜆4

𝑑𝑡
= −𝐴3 + 𝜆4(𝑢3 + 𝑢4 + 𝜃 + 𝜌 + 𝜇) − 𝜆7[(1 − 𝑢3)(1 − 𝑢4)𝜃] − 𝜆11𝜌, 

 
𝑑𝜆5

𝑑𝑡
= −𝐴4 + 𝜆1 [(1 − 𝑢1)

𝛽𝑞1𝑆

𝑁
] − 𝜆2 [(1 − 𝑢1)

𝛽𝑞1𝑆

𝑁
] + 𝜆3 [(1 − 𝑢1)𝜓

𝛽𝑞1𝑆

𝑁
𝐼𝑢𝑠] − 

 𝜆4 [(1 − 𝑢1)𝜓
𝛽𝑞1𝑆

𝑁
𝐼𝑢𝑠] + 𝜆5(𝜑 + 𝜔 + 𝜇) − 𝜆7𝜑 − 𝜆8𝜔, 

 
𝑑𝜆6

𝑑𝑡
= −𝐴5 + 𝜆1 [(1 − 𝑢2)

𝛽𝑞2𝑆

𝑁
] + 𝜆2 [(1 − 𝑢2)𝜙

𝛽𝑞2𝑆

𝑁
𝐼𝑢ℎ] − 𝜆3 [(1 − 𝑢2)

𝛽𝑞2𝑆

𝑁
] − 
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 𝜆4 [(1 − 𝑢2)𝜙
𝛽𝑞2𝑆

𝑁
𝐼𝑢ℎ] + 𝜆6(𝑢5 + 𝜖 + 𝜂 + 𝜏 + 𝜇) − 𝜆7𝜏 − 𝜆9𝜂 − 𝜆10(𝑢5 + 𝜖), 

 
𝑑𝜆7

𝑑𝑡
= −𝐴6 + 𝜆7(𝜎 + 𝜇) − 𝜆11𝜎 

 
𝑑𝜆8

𝑑𝑡
= 𝜆8(𝜈 + 𝜇 + 𝜉) − 𝜆11𝜈,                                                                                         (21) 

 
𝑑𝜆9

𝑑𝑡
= 𝜆9(𝑢5 + 𝜋 + 𝜒 + 𝜇 + 𝜉) − 𝜆10(𝑢5 + 𝜋) − 𝜆11𝜒, 

 
𝑑𝜆10

𝑑𝑡
= 𝜆10(𝜗 + 𝜇) − 𝜆1𝜗 

 
 𝑑𝜆11

𝑑𝑡
= 𝜆11(𝜇 + 𝜉) 

And the transversality or boundary conditions expressed by equation (22) as 

𝜆𝑖(𝑇) = 0,   𝑖 = 1,2, … ,11                                                                                                (22) 

With optimal controls given as 

 𝑢1
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

(𝜆2−𝜆1)𝜆ℎ𝑆+(𝜆4−𝜆3)𝜓𝜆ℎ𝐼𝑢𝑠

𝐵1
} , 1 − 𝜖} 

  𝑢2
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

(𝜆3−𝜆1)𝜆𝑠𝑆+(𝜆4−𝜆2)𝜙𝜆𝑠𝐼𝑢ℎ

𝐵2
} , 1 − 𝜖} 

 𝑢3
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

(𝜆2+𝛼𝜆5)𝐼𝑢ℎ+(𝜆4+𝜃𝜆7)𝐼𝑢ℎ𝑠

𝐵3
} , 1 − 𝜖} 

𝑢4
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

(𝜆3+𝛾𝜆6)𝐼𝑢𝑠+(𝜆4+𝜃𝜆7)𝐼𝑢ℎ𝑠

𝐵4
} ,           1 − 𝜖}  

𝑢5
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

(𝜆3−𝜆10)𝐼𝑢𝑠+(𝜆6−𝜆10)𝐼𝑠𝑠+(𝜆9−𝜆10)𝐻

𝐵5
} ,           1 − 𝜖}                           (23) 

Proof: Let the Hamiltonian, 𝐻, be as defined in equation (17). Then, using Pontryagin’s 

Maximum Principle, equation (21) is obtained from equation (18). It is clear that the boundary 

conditions have the form equation (22), since all the states are at terminal time  𝑇. The 

Hamiltonian, 𝐻, is minimized with respect to the controls at 𝑢∗ = (𝑢1
∗, 𝑢2

∗ ,   𝑢3
∗ , 𝑢4

∗ , 𝑢5
∗) by 

solving equation (19) at 𝑢∗ = (𝑢1
∗ , 𝑢2

∗ ,   𝑢3
∗ , 𝑢4

∗ , 𝑢5
∗), respectively. Hence,  

𝜕𝐻

𝜕𝑢1
= 𝐵1𝑢1 − (𝜆2 − 𝜆1)𝜆ℎ𝑆 − (𝜆4 − 𝜆3)𝜓𝜆ℎ𝐼𝑢𝑠 = 0, at   𝑢1 = 𝑢1

∗ 

𝜕𝐻

𝜕𝑢2
= 𝐵2𝑢2 − (𝜆3 − 𝜆1)𝜆𝑠𝑆 − (𝜆4 − 𝜆2)𝜙𝜆𝑠𝐼𝑢ℎ = 0, at   𝑢2 = 𝑢2

∗  

𝜕𝐻

𝜕𝑢3
= 𝐵3𝑢3 − (𝜆2 + 𝛼𝜆5)𝐼𝑢ℎ − (𝜆4 + 𝜃𝜆7)𝐼𝑢ℎ𝑠 = 0, at   𝑢3 = 𝑢3

∗                                    (24) 

𝜕𝐻

𝜕𝑢4
= 𝐵4𝑢4 − (𝜆3 + 𝛾𝜆6)𝐼𝑢𝑠 − (𝜆4 + 𝜃𝜆7)𝐼𝑢ℎ𝑠 = 0, at   𝑢4 = 𝑢4

∗  

𝜕𝐻

𝜕𝑢5
= 𝐵5𝑢5 − (𝜆3 − 𝜆10)𝐼𝑢𝑠 − (𝜆6 − 𝜆10)𝐼𝑠𝑠 − (𝜆9 − 𝜆10)𝐻 = 0, at   𝑢5 = 𝑢5

∗             

Therefore, solving for  𝑢1
∗ , 𝑢2

∗ ,   𝑢3
∗ , 𝑢4

∗  and 𝑢5
∗   from equation (24) we obtain 

 𝑢1
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

(𝜆2−𝜆1)𝜆ℎ𝑆+(𝜆4−𝜆3)𝜓𝜆ℎ𝐼𝑢𝑠

𝐵1
} , 1 − 𝜖} 
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  𝑢2
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

(𝜆3−𝜆1)𝜆𝑠𝑆+(𝜆4−𝜆2)𝜙𝜆𝑠𝐼𝑢ℎ

𝐵2
} , 1 − 𝜖} 

 𝑢3
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

(𝜆2+𝛼𝜆5)𝐼𝑢ℎ+(𝜆4+𝜃𝜆7)𝐼𝑢ℎ𝑠

𝐵3
} , 1 − 𝜖}                                       (25) 

𝑢4
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

(𝜆3+𝛾𝜆6)𝐼𝑢𝑠+(𝜆4+𝜃𝜆7)𝐼𝑢ℎ𝑠

𝐵4
} ,           1 − 𝜖}  

𝑢5
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {0,

(𝜆3−𝜆10)𝐼𝑢𝑠+(𝜆6−𝜆10)𝐼𝑠𝑠+(𝜆9−𝜆10)𝐻

𝐵5
} ,           1 − 𝜖}               

Finally, optimal controls and optimal state are found by solving numerically the optimality 

system which consists of the non-autonomous equation (11) with initial condition (12) and 

the costate system (21) with its boundary conditions coupled with the control characterization 

given in equation (25). 

4.3. Uniqueness of the optimality system 

In order to successively discuss uniqueness of the optimality system we notice that the adjoint 

system is also linear in 𝜆𝑖 for 𝑖 = 1,2,3,4,5,6,… ,11 with bounded coefficients. Thus, there 

exists a 𝑀 > 0 such that |𝜆𝑖(𝑡)| < 𝑀 for 𝑖 = 1,2,3,4,5,6,… ,11 on [0, 𝑇]. 

Theorem 7. [18] For 𝑇 sufficiently small the solution to the optimality system is unique. 

 

5. Numerical Simulation 

In this section, the numerical solutions of optimality system are discussed. Using the initial 

conditions 𝑆(0) = 200, 𝐼𝑢ℎ(0) = 180, 𝐼𝑢𝑠(0) = 175, 𝐼𝑢ℎ𝑠(0) = 170, 𝐼𝑠ℎ(0) =
150, 𝐼𝑠𝑠(0) = 140, 𝐼𝑠ℎ𝑠(0) = 120, 𝐴(0) = 60,𝐻(0) = 50, 𝐴𝐻(0) = 40, 𝑅(0) = 30   and 

also coefficients of the state and controls that we used are 𝐴1 = 40, A2 = 35, 𝐴3 = 30, A4 =
25, A5 = 20, A6 = 15,𝐵1 = 5 , 𝐵2 = 5, 𝐵3 = 5, B4 = 5, B5 = 5 a simulation study is 

conducted. Finally, an optimal control strategy is designed and discussed using different 

control strategies.To solve the optimal controls and states, we use the Runge-Kutta numerical 

method using MATLAB program. The solution of the optimal control problem is obtained by 

solving the optimality system which consists of the state and adjoint systems. For 

computational illustration, the values of parameters in Table 2 were employed and the solution 

is obtained by using the following iterative scheme. 

Step1: Make a guess of the controls. 

Step 2: Use the values of the controls together with the initial conditions to solve the state 

equations, using a forward numerical scheme. 

Step 3: Using the current solution of the state system together with the transversality 

conditions, solve the adjoint equations using a backward numerical scheme. We use a 

backward scheme for the costate system because the transversality conditions are final time 

conditions. 

Step 4: Update the controls using the characterizations in (25). 

Step 5: Repeat Steps 2 to 4 until the values of the unknowns at the current iteration are very 

close to those of the previous iteration [24]. 
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Table 2:  Parameter values used in simulations 

Parameter Value Source Parameter Value Source 

𝛱 0.004 [19] 𝜅 0.02 [19] 

𝑞1 0.002 [19] 𝜃 0.003 [19] 

𝑞2 0.00197 [19] 𝜑 0.003 [19] 

𝜇 0.02 [19] 𝜔 0.054 [19] 

𝜗 0.0031 [19] 𝜏 0.003 [19] 

𝜙 0.003 [19] 𝜂 0.011 [19] 

𝛼 0.003 [19] 𝜖 0.02 [19] 

𝜌 0.064 [19] 𝜎 0.017 [19] 

𝛿 0.016 [19] 𝜈 0.001 [19] 

𝜓 0.003 [19] 𝜒 0.001 [19] 

𝜀 0.039 [19] 𝜋 0.0041 [19] 

𝛾 0.003 [19] 𝜉 0.0001 [19] 

𝛽 0.068 [19]    

 

a) Strategy I: Optimal use of HIV prevention, HIV and HSV-II screening and HSV-II 

treatment 

This intervention combines prevention effort for HIV, both screening effort for HIV and HSV-

II and HSV-II treatment are used to optimize objective functional while setting prevention 

effort for HSV-II equal to zero. Results illustrate that the size of infectious population reduce 

sharply with controls more than the case without controls as shown in Figure 1. 

 

b) Strategy II: Optimal use of HIV and HSV-II prevention, HSV-II screening and HSV-

II treatment 

This intervention strategy combines both prevention effort for HIV- HSV-II, screening effort 

for HSV-II and treatment effort HSV-II are used to optimize objective functional while setting 

screening effort for HIV equal to zero. As shown in Figure 2, the magnitudes of infectious 

population reduce more when controls are in use than the case without controls. 
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Figure 1: Simulations of using HIV prevention, HIV and HSV-II screening and HSV-II 

treatment 
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Figure 2: Simulations of using HIV and HSV-II prevention, HSV-II screening and 

HSV-II treatment 
 

c) Strategy III: Optimal use of HIV and HSV-II prevention, HIV screening and HSV-

II treatment 

This strategy illustrates effect of prevention effort for both HIV and HSV-II, screening effort 

for HIV and  treatment effort for HSV-II are used to optimize objective functional while 

setting screening effort for HSV-II  equal to zero. As expected, the number of infectious 
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populations diminishes more rapidly with controls than the case without controls as illustrated 

in Figure 3.  

 

d) Strategy IV: Optimal use of both HIV and HSV-II prevention and both HIVand 

HSV-II screening 

This strategy shows effect of both prevention effort for HIV and HSV-II and both screening 

effort for HIV-HSV-II are used to optimize objective functional while setting treatment effort 

for HSV-II equal to zero. Results describe that, the number of infectious populations decreases 

more rapidly with controls than the case without controls as illustrated in Figure 4. 
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Figure 3: Simulations of using both HIV and HSV-II prevention, HIV screening and 

HSV-II treatment 
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Figure 4: Simulations of using  both HIV and HSV-II prevention and both HIVand 

HSV-II screening 

 

e) Strategy V: Optimal use of all controls 

This strategy shows effect of prevention effort for both HIV and HSV-II and treatment effort for both 

HIV and HSV-II and HSV-II treatment are used to optimize objective functional. Results describe that, 

the number of infectious populations decreases more rapidly with controls than the case without 

controls as illustrated in Figure 5. 
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Figure 5: Simulations of using all controls 

 

6. Conclusion 

In this paper, an optimal control problem was  formulated to study the effects of combining 

different control strategies on HIV-HSV-II coinfection model in [19]. In this study, we 

formulated an optimal control strategy that minimizes the cost for implementation of the 

controls while also minimizing the infectious individuals over the intervention interval.The 

existence of optimal controls and characterization was done using Pontryagin’s Maximum 

Principle. The results shows that  the size of infectious population are minimized  by using 

different control strategies.  

HIV-HSV-II coinfection remain a challenge especially in developing countries, but from 

results of this study we recommend that, the government should introduce education 

programmers on the importance of voluntary and routinely screening on HIV-HSV-II 

coinfection. In future work, we plan to extend the study by incorporating protected and 

treatment class to HIV- HSV-II  transmission dynamics. 
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