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Abstract

The present work is aimed to extend the common pollution indices into the fuzzy environment. For
this purpose, a method was developed for converting the heavy metal contamination in soil by fuzzy
numbers. Then, the most commonly used pollution indices are defined as fuzzy numbers by applying
the α-cuts approach. To evaluate the degree of heavy metal contamination in a specific level, a degree
of belonging was also suggested. The feasibility and effectiveness of the proposed methods were also
examined via an applied example.

Keywords : Fuzzy contamination; Triangular fuzzy number; Fuzzy pollution criterion; Degree of be-
longing.
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1 Introduction

H
eavy metal pollution of surface soils has be-
come a serious concern for human health.

Since it can enter drinking water and food chain
due to the result of economic activities or increas-
ing agriculture, industrialization, and urbaniza-
tion. Therefore, the evaluation of heavy metals
in the environment is of crucial importance in
environmental pollution studies. In this regard,
the pollution indices are crucial tools for evaluat-
ing ecological geochemistry assessment (for more
information, see [2, 5, 7, 8, 10, 14, 17, 19, 26,
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29, 34]). To quantify metal accumulation and
their contamination degree, some common crite-
ria have been employed by authors. The heavy
metal enrichment factor (EF) [28] is defined as
EF = c/(cM + 2cMAD) where c is the concentra-
tion of a given metal at contaminated sites. cM
is the median concentration of an element in the
background soil sample while cMAD is the median
absolute deviation from the median. Enrichment
factor categories are interpreted as EF ≤ 2: de-
ficiently to minimal enrichment, 2 < EF ≤ 5:
moderate enrichment, 5 < EF ≤ 20: signifi-
cant enrichment, 20 < EF ≤ 40: very high en-
richment and EF ≥ 40: extremely high enrich-
ment. The contamination factor (CF ) [1] can
be calculated by CF = c/CM . The degree of
mean contamination of soil by k metal is defined
as MCF = 1/k

∑k
j=1CFi. The CF (MCF )

of each metal can be classified as either: low
(CF < 1), moderate (1 ≤ CF < 3), consid-
erable (3 ≤ CF < 6), or very high (6 ≤ CF )
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contaminations. The pollution load index esti-
mates the metal contamination status and the
necessary action of k heavy metals can be calcu-
lated by PLI = (

∏k
j=1CFJ)

1/k [30]. PLI ≥ 1
indicates an immediate intervention to amelio-
rate pollution; whereas 0.5 ≤ PLI < 1 suggests
that more detailed study is required to moni-
tor the site, 0 ≤ PLI < 0.5 is indicative of
the need for drastic rectification measures to be
taken, while PLI < 0 suggests that the metal
contamination is perfect. The value of the geoac-
cumulation index (Igeo) can be determined by
Igeo = log2(

c
1.5cM

) [22]. The contamination lev-
els evaluated by Igeo can be classified as follows:
unpolluted (Igeo ≤ 0), unpolluted to moderately
polluted (0 < Igeo ≤ 1), moderately polluted
(1 < Igeo ≤ 2), moderately to strongly polluted
(2 < Igeo ≤ 3), strongly polluted (4 < Igeo ≤ 5),
extremely polluted (Igeo > 5).

Notably, the heavy metals accumulation in sur-
face soils is under the influence of many envi-
ronmental variables such as parent material, soil
properties, and human activities such as indus-
trial areas, traffic, farming, wastewater irrigation,
and mine tailings. Moreover, the heavy metals
accumulation level could be different in surface
soils of an environment. To evaluate the degree
of heavy metal pollution of surface soils, the clas-
sical procedure usually makes a rigorous report
as a mean or median of some central quantities
based on the random soil samples. In such a
case, it is hard to determine whether the accu-
mulations of heavy metals in an environment is
an exact value or not. On the other hand, the
fuzzy set theory does not make rigorous descrip-
tions for uncertain situations like heavy metals
accumulation. Fuzzy accumulation such as fuzzy
mean or fuzzy median seems more suitable when
evaluating the degree of pollution of an environ-
ment. Therefore, there is a need to extend the
conventional pollination indices as well as their
interpreters in a fuzzy environment. Since Zadeh
[33] introduced the notion of fuzzy sets to evalu-
ate the uncertainty as an imprecise number, the
fuzzy set theory has been successfully applied in
various fields of decision making as a suitable
tool for handling vague information [3,5,6,9,12-
14,16,20,21,23-25,27,31,32,35]. During the last
decades, fuzzy sets have been largely explored for

a wide diversity of real-world applications. Re-
garding the modeling uncertainty and impreci-
sion of soil heavy metal pollution, some common
fuzzy pollution indices have been extended into
the fuzzy environment. A degree of belonging was
also proposed to verify the conditions of the de-
gree of pollution of the proposed fuzzy pollution
indices. For practical reasons, the proposed fuzzy
pollution indices are illustrated using an applied
study.

The rest of this paper is organized as follows:
Section 2 reviews some basic concepts of fuzzy
numbers. In this section, the degree of belonging
of a fuzzy number to an interval is also intro-
duced. Section 3 extends the classical common
pollution criteria based on the fuzzy heavy met-
als contamination. A numerical example is also
illustrated in this section to clarify the discus-
sions in this paper. Finally, a brief conclusion is
provided in Section 4.

2 Preliminaries

This section briefly reviews several concepts
and terminology related to fuzzy numbers used
throughout this paper. A fuzzy set Ã of X (the
universal set) is defined by its membership func-
tion Ã : R → [0, 1]. The set Ã[α] := {x ∈
X : Ã(x) ≥ α} is called the α-level set (or α-
cut) of the fuzzy set Ã, for each α ∈ (0, 1] [18].
The set supp(Ã) = Ã[0] is also defined equal to
the closure of the set {x ∈ X : Ã(x) > 0}. A
fuzzy set Ã of R (the real line) is called a fuzzy
number (FN) if it is normal, i.e. there exists a
unique x∗

Ã
∈ R with Ã(x∗

Ã
) = 1, and for every

α ∈ [0, 1], the set Ã[α] is a non-empty compact
interval in R. This interval will be denoted by
Ã[α] = [ÃL

α, Ã
U
α ], where ÃL

α = inf{x : x ∈ Ã[α]}
and ÃU

α = sup{x : x ∈ Ã[α]}. It said that Ã
is a positive fuzzy number if inf supp(Ã) ≥ 0.
It is worth noting that, having a sequence of α-
cuts {Ã[α]}1α=0 of a fuzzy number Ã, the mem-

bership function of Ã at x ∈ R can be calcu-
lated by Ã(x) = sup{α ∈ [0, 1] : x ∈ Ã[α]} [18].
The triangular fuzzy numbers (TFNs) denoted
by Ã = (a; l, r)T are the most common fuzzy
numbers used in real applications. The member-
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ship function of Ã = (a; l, r)T can be written as:

Ã(x) =


x−a+l

l a− l ≤ x < a,
a+r−x

r a ≤ x ≤ ar,
0 x ∈ R− [a− l, a+ r].

(2.1)

Specifically, a symmetric triangular fuzzy number
is denoted by Ã = (a; l)T . Moreover, for two FNs
of Ã and B̃ and any α ∈ [0, 1], some common
arithmetic operations can be defined as [18]:

(Ã⊕ B̃)[α] = [ÃL
α + B̃L

α , Ã
U
α + B̃U

α ],

(Ã⊗ B̃)[α] = [(Ã⊗ B̃)Lα, (Ã⊗ B̃)Uα ],

where

(Ã⊗ B̃)Lα =

[min{ÃL
αB̃

L
α , Ã

L
αB̃

U
α , Ã

U
α B̃

L
α , Ã

U
α B̃

U
α },

(Ã⊗ B̃)Lα =

[max{ÃL
αB̃

L
α , Ã

L
αB̃

U
α , Ã

U
α B̃

L
α , Ã

U
α B̃

U
α },

⊕ and ⊗ denote the addition and multiplication
operations, respectively [18]. It should be noted
that if Ã and B̃ are two positive FNs, then:

(Ã⊗ B̃)[α] = [ÃL
αB̃

L
α , Ã

U
α B̃

U
α ].

The rest of this section is devoted to define and
discuss a criterion to evaluate the degree to which
a fuzzy number belongs to an interval. This crite-
rion can be then applied to evaluate the pollution
of heavy metal in an environment.

Definition 2.1. Let Ã be an FN and I ⊆ R be
an interval. Then, the degree to which Ã belongs
to I is defined by

d(Ã ∈ I) =

∫
I Ã(x)dx∫
R Ã(x)dx

. (2.2)

Lemma 2.1. Assume that Ã is an FN.

1) If {Ij}kj=1 is a sequence of disjoint intervals

on R such that ∪k
j=1Ij = R then

∑k
j=1 d(Ã ∈

Ij) = 1.

2) For I ⊆ R d(Ã ∈ I) = 1 if and only if
supp(Ã) ⊆ I.

Proof. If {Ij}kj=1 is a sequence of disjoint intervals
on R then:

k∑
j=1

d(Ã ∈ Ij) =
k∑

j=1

∫
Ik
Ã(x)dx∫

R Ã(x)dx

=

∫
∪k
j=1Ij

Ã(x)dx∫
R Ã(x)dx

=

∫
R Ã(x)dx∫
R Ã(x)dx

= 1.

Also, d(Ã ∈ I) = 1 if and only if
∫
I Ã(x)dx∫

supp(Ã)
Ã(x)dx

=

1 if and only if supp(Ã) ⊆ I.

Remark 2.1. It is worth noting that d(Ã ∈ I)
may be interpreted as the probability that Ã be-
longs to I. Moreover, based on a given sequence
of disjoint intervals {Ij}kj=1, from the aforemen-

tioned lemma, it can be concluded that Ã ∈ Ij∗
if d(Ã ∈ Ij∗) = maxkj=1 d(Ã ∈ Ij). The possible
interpretations of the proposed belonging degree d
are listed in Table 1.
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Figure 1: Membership functions of C̃F s for
heavy metals in Example.
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Table 1

No. range of d interpretation

1 d ∈ [0.0, 0.05) Ã is completely out of I

2 d ∈ [0.05, 0.15) Ã is absolutely out of I

3 d ∈ [0.15, 0.25) Ã is strongly out of I

4 d ∈ [0.25, 0.35) Ã is more or less out of I

5 d ∈ [0.35, 0.45) Ã is weakly out of I
6 d ∈ [0.45, 0.55] is not decisive

7 d ∈ (0.55, 0.65] Ã weakly belongs to I

8 d ∈ (0.65, 0.75] Ã more or less belongs to I

9 d ∈ (0.75, 0.85] Ã strongly belongs to I

10 d ∈ (0.85, 0.95] Ã absolutely belongs to I

11 d ∈ (0.95, 1] Ã completely belongs to I

Table 2: Degrees to which C̃F (A) belongs to Ii, i = 1, 2, 3, 4 in Example.

I1 = (−∞, 1) I2 = [1, 3) I3 = [3, 6) I4 = [6,∞)

d(C̃F (Zn) ∈ Ij) 0 0.995 0.005 0

d(C̃F (Pb) ∈ Ij) 0 1 0 0

d(C̃F (Cd) ∈ Ij) 0 0.66 0.34 0

d(C̃F (Cu) ∈ Ij) 0 1 0 0

Table 3: Degrees to which Ĩgeo(A) belongs to Ii, i = 1, 2, . . . , 7 in Example.

I1 = (−∞, 0) I2 = [0, 1) I3 = [1, 2) I4 = [2, 3) I5 = [3, 4) I6 = [4, 5) I7 = [5,∞)

d(Ĩgeo(Zn) ∈ Ij) 0 0.91 0.09 0 0 0 0

d(Ĩgeo(Pb) ∈ Ij) 0.1 0.90 0 0 0 0 0

d(Ĩgeo(Cd) ∈ Ij) 0 0.74 0.26 0 0 0 0

d(Ĩgeo(Cu) ∈ Ij) 0.27 0.73 0 0 0 0 0

Table 4: Degrees to which P̃LI belongs to Ii, i = 1, 2, 3, 4 in Example.

I1 = (−∞, 0) I2 = [0, 0.5) I3 = [0.5, 1) I4 = [1,∞)

d(P̃LI ∈ Ij) 0 0.03 0.97 0

Table 5: Degrees to which M̃CF belongs to Ii, i = 1, 2, 3, 4 in Example.

I1 = (−∞, 1) I2 = [1, 3) I3 = [3, 6) I4 = [6,∞)

d(M̃CF ∈ Ij) 0 1 0 0

3 Pollution criteria based on
fuzzy information

To evaluate heavy metal enrichment and degree
of contamination in soils, the fuzzy set theory

was used for fuzzy pollution criteria aiming to
derive contamination degree in this section. In
this regard, this paper is focused on the most
commonly used indices including enrichment fac-
tor, geo-accumulation index, and pollution load
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Figure 2: Membership functions of Ĩgeos for
heavy metals in Example.

index. For this purpose, we suggest a method
inspired by Buckley [6]. He introduced a fuzzy
method based on the confidence interval for esti-
mating the mean of a population. In this paper,
instead of obtaining a fuzzy-valued estimation of
a mean or a median, we define a triangular fuzzy
number using the standard confidence interval for
mean or median at a given significance level. The
procedure is illustrated by the following defini-
tions.

Definition 3.1. Let xA = (xA1 , x
A
2 , . . . , x

A
n ) and

xAB = (xAB
1 , xAB

2 , . . . , xAB
m ) be two random sam-

ples of concentrations of located sites and their
background soil of heavy metal of A. The fuzzy
enrichment factor of a heavy metal A (FEF(A))
is defined to be a fuzzy number with the following
α-cuts:

ẼF (A)[α] = [(ẼF (A))Lα, (ẼF (A))Uα ],

where
(ẼF (A))Lα =

inf
(cA,cAB

M ,cAB
MAD)∈KAB [α]

cA

(cAB
M + 2cAB

MAD)
,

0.4 0.5 0.6 0.7 0.8 0.9 1
PLI

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

g
r
e

e
 
o

f
 
m

e
m

b
e

r
s
h

ip

P̃LI

Figure 3: Membership function of P̃LI in
Example.

(ẼF (A))Uα =

sup
(cA,cAB

M ,cAB
MAD)∈KAB [α]

cA

(cAB
M + 2cAB

MAD)
,

in which

1. KAB[α] = c̃A[α]× c̃AB
M [α]× c̃AB

MAD[α],

2.
c̃A = (xA; t0.025,n−1
SA
√
n
)T if n is small,

(xA; z0.025
SA
√
n
)T if n is large,

where xA = 1
n

∑n
i=1 x

A
i , SA =√

1
n−1

∑n
i=1(x

A
i − xA)2 is the fuzzy sample

mean concentration (SFC) of a given metal
at contaminated sites. zα is also the αth

percentile of the standard normal distribu-
tion, and tν,α stands for αth percentile of the
t-distribution with ν degrees of freedom.

3. c̃AB
M = (MxAB ; 1.57

IQRxAB√
m

)T is the fuzzy

sample median concentration (SFMC) of an
element in the background soil sample,

4. c̃AB
MAD = (MyAB ; 1.57

IQRyAB√
m

)T is the fuzzy

sample median absolute deviation (SF-
MAD) from the median of an element A in
the background soil sample,
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Figure 4: Membership function of M̃CF in
Example.

in which

a) MxAB is the sample median based on the ran-
dom sample of xAB,

b) yAB = (|xAB
1 − MyAB |, |xAB

2 −
MyAB |, . . . , |xAB

m −MyAB |),

c) MyAB is the sample median based on the ran-

dom sample of yAB,

d) IQRxAB and IQRyAB denote the interquar-

tile range based on the random sample xAB

and yAB, respectively.

Definition 3.2. Let xA = (xA1 , x
A
2 , . . . , x

A
n ) and

xAB = (xAB
1 , xAB

2 , . . . , xAB
m ) be two random sam-

ples of concentrations of located sites and their
background soil of heavy metal of A. The
fuzzy contamination factor of a heavy metal A
(FCF(A)) is defined to be a fuzzy number with
the following α-cuts:

C̃F (A)[α] = [(C̃F (A))Lα, (C̃F (A))Uα ], (3.3)

where

(C̃F (A))Lα = inf
(cA,cAB

M )∈KAB [α]

cA

cAB
M

,

(C̃F (A))Uα = sup
(cA,cAB

M )∈KAB [α]

cA

cAB
M

,

in which KAB[α] = c̃A[α] × c̃AB
M [α] and c̃A, c̃AB

M

are defined in Definition 3.4.

Definition 3.3. Let xA = (xA1 , x
A
2 , . . . , x

A
n ) and

xAB = (xAB
1 , xAB

2 , . . . , xAB
m ) be two random sam-

ples of concentrations of located sites and their
background soil of heavy metal of A. The fuzzy
geo-accumulation index of a heavy metal A (FI-
GEO(A)) is defined to be a fuzzy number Ĩgeo
with the following α-cuts:

Ĩgeo(A)[α] = [(Ĩgeo(A))
L
α, (Ĩgeo(A))

U
α ], (3.4)

where

(Ĩgeo(A))
L
α = inf

(cA,cAB
M )∈KAB [α]

log2(
cA

1.5cAB
M

),

(Ĩgeo(A))
U
α = sup

(cA,cAB
M )∈KAB [α]

log2(
cA

1.5cAB
M

),

in which KAB[α] = c̃A[α]× c̃AB
M [α].

Definition 3.4. The fuzzy mean contamination
in soil (FMCF) by all metals A1, A2, . . . , Ak is

defined to be a fuzzy number as M̃CF = 1
k ⊕k

l=1

C̃F (Al). Furthermore, the fuzzy pollution load
index (FPLI) is defined as a fuzzy number:

P̃LI = (⊗k
l=1C̃F (Al))

1
k . (3.5)

It is also noticeable that, based on the arith-
metic operations on α-cuts of fuzzy numbers, the
α-cuts of FMCF and FPLI can be evaluated as
follows:

M̃CF [α] =

[
1

k

k∑
l=1

(C̃F (Al))
L
α,

1

k

k∑
l=1

(C̃F (Al))
U
α ], (3.6)

and

F̃PLI[α] =

[(

k∏
l=1

(C̃F (Al))
L
α)

1
k , (

k∏
l=1

(C̃F (Al))
U
α )

1
k ]. (3.7)

In the following, the feasibility and effective-
ness of the extended fuzzy pollution criteria are
examined via a numerical example presented by
Grzebisz et al. [11].
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Example 3.1. This example considers the city of
Poznan (Poland) to identify its dangerous heavy
metals load and define areas of their environmen-
tal impact. In this regard, four heavy metals of
Pb, Cd, Zn, and Cu were studied in 350 sites
to assess heavy metals contamination. The de-
scriptive statistics of basic surface soil properties
in the surface horizon are listed in Table 1, pp.
495 of [11]. Soil samples were collected from the
depth of 0-20 cm. The proposed fuzzy pollution
indices were applied in this study to discover pos-
sible sources that might influence the different dis-
tribution of elements over the study area.

Note that the random sample of background
values corresponding to each heavy metal Pb, Cd,
Zn, and Cu are not given in the Grzebisz et
al.’s paper. However, they evaluated the back-
ground mean values Pb, Cd, Zn, and Cu as
16.8, 0.3, 31.7, and 10, respectively. As dis-
cussed in the Introduction section, to evaluate
heavy metals pollution of urban soils, it is bet-
ter to model such quantities as fuzzy numbers
instead of exact values. In this regard, with-
out the loos of generality, the artificial back-
ground values are provided as symmetric TFNs
including: c̃PbB

M = (16.8; 4)T , c̃
CdB
M = (0.3; 0.1)T ,

c̃ZnB
M = (31.7; 5)T , and c̃CuB

M = (10; 3)T . Based
on the proposed method, the fuzzy contamination
corresponding to each heavy metal are then evalu-
ated as symmetric TFNs as c̃Pb = (30.58; 2.74)T ,
c̃Cd = (0.755; 0.086)T , c̃

Zn = (72.98; 5.92)T , and
c̃Cu = (16.41; 1.16)T . The FCF of the studied
heavy metals (Pb, Cd, Zn, and Cu) are plot-

ted in Fig. 1. Moreover, d(C̃F ∈ Ij) values of
the aforementioned metals are listed in Table 2
for each corresponding contaminated level. As
can be, d(C̃F (A) ∈ I1) = max4i=1 d(C̃F (A) ∈ Ij)
for each heavy metal (A = Cu, Pb, Cd, Zn). Ac-
cording to Definition 2.1, it can be said that the
CF-values for all heavy metals fall in the class
I2 which indicates the moderate contamination
of the soil. Simultaneously, we may conclude
that the Poznan soil is 1) moderately polluted
by Zn and Pb, 2) polluted more or less mod-
erately by Cu and Cd. Based on FCFs listed
in Table 2, the concentration of heavy metals in
the soil varied in the following increasing trend:
Cu > Pb > Zn > Cd. This suggests that Cu
and Pb pollution is relatively serious compared to

other metals. Based on FIGEO-values in Table
3, it can be also concluded that the Poznan soil is
moderately polluted with these metals. The plot
of FIGEOs for all heavy metals (Cu, Pb, Cd,
Cr, and Ni) are also depicted in Fig. 2. Fur-
thermore, the results indicated that the Parzen
soil is moderately polluted by Pb, Cd, Zn, and
Cu. In this regard, the Poznan soil is 1) polluted
fully moderately by Zn and Pb, 2) polluted more
or less moderately by Cu and Cd. According to
the proposed FIGEO, the heavy metal contam-
ination of the soil declined in the following or-
der: Zn > Pb > Cu > Cd. Moreover, the plots
of FPLI and FMCF for mentioned metals are
shown in Figures 3 and 4, respectively. The de-
grees to which FIGEOs of the underlying heavy
metals belong to each contaminated levels I1− I4
are also presented in Table 4. The results sug-
gest the need for more detailed study to monitor
the Poznan soil. Moreover, from Table 5, it can
be concluded that Poznan soil is moderately pol-
luted by Pb, Cd, Zn, and Cu.

4 Conclusion

Pollution criteria plays a crucial role in monitor-
ing heavy metal contamination in real applica-
tions. The classical procedures exploit exact in-
dices to describe the degree of pollution with a
heavy metal in the environment. However, the
heavy metals contamination is often a non-exact
value due to different reasons such as soil’s fea-
tures. Regarding the nature of such quantities, it
is better to model the heavy metals contamina-
tion by fuzzy sets. This paper extends some com-
mon pollution criteria based on the fuzzy contam-
ination of heavy metals. For this purpose, the α-
cuts approaches were employed to construct fuzzy
pollution indices. A criterion is also suggested
to evaluate the degree to which a fuzzy pollu-
tion index belongs to its relevant pollution levels.
The possible effectiveness and advantages of the
proposed method are also illustrated using a real
data set. Results show that the proposed method
performs quite well in providing fuzzy pollution
indices in real-world applications. However, the
proposed method is general and should be ex-
plored for other pollution indices.
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