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Abstract

In this paper, the concepts of well-posednesses and Hadamard well-posedness for a family of mixed
variational inequalities are studied. Some metric characterizations of well-posednesses are presented.
Then, one relation between well-posedness and Hadamard well-posedness of the family of mixed
variational inequalities is studied. Finally, a relation between well-posedness for the family of mixed
variational inequalities and well-posedness for the family of inclusion problems is discussed.
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1 Introduction

L
et X be a topological space, H be a real
Hilbert space and K be a nonempty convex

closed subset of H. We suppose in what follows
that F (x, .) is a mapping from H to H, for any
x ∈ X and ϕ : H → R∪{+∞} is a proper, convex
and lower semicontinuous functional. Denote by
domϕ the domain of ϕ, i.e.,

domϕ := {u ∈ H : ϕ(u) < +∞}.

Now, let x ∈ X and we consider the following
parametric mixed variational inequality asso-
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ciated with (F, ϕ,K) :
MV I(F, ϕ,K)x: Find u ∈ K such that for all
ν ∈ K

⟨F (x, u), u− ν⟩+ ϕ(u)− ϕ(ν) ≤ 0.

When ϕ = δK , MV I(F, ϕ,K) reduces to the clas-
sical variational inequality V I(F,K), where δK
denotes the indicator function of K. Denote by
Sx(F, ϕ,K) the solutions set of MV I(F, ϕ,K)x.
When the operator F does not depend on
the parameter x, MV I(F, ϕ,K)x reduces to
MV I(F, ϕ,K) which has been studied intensively
(see, e.g. [1, 2, 4, 5, 7, 8, 11, 12, 21, 22, 24, 25,
29]). Recently, Chen et al. [3] proposed a general
inertial proximal point algorithm for the mixed
variational inequality problems and under certain
assumptions, they established the global conver-
gence and nonasymptotic convergence rate result
of the proposed general inertial proximal point
algorithm.
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There exist two main types of well-posedness for
optimization problems: Tykhonov well-posedness
[26] and Hadamard well-posedness [18]. In
Hadamard types of well-posedness, continuous
dependence of the solution on the data of such
a problem is important. While, Tykhonov
types of well-posedness such as Tykhonov well-
posedness and Levitin-Polyak well-posedness deal
the behavior of a class of approximating solu-
tion sequences. This concept of well-posedness
is inspired by the numerical methods produc-
ing minimizing sequence and it is important
in optimization problems. Lignola and Mor-
gan [17] introduced and studied various notions
of well-posedness for a family of variational in-
equalities and for an optimization problem with
constraints defined by variational inequalities.
Then, they obtained sufficient conditions for well-
posedness of these problems and gave an ap-
plication. There are various surveys focused
with directly on the types of Tykhonov well-
posedness and Hadamard well-posedness(see, e.g.
[6, 7, 9, 10, 13, 14, 19, 20, 23, 27, 28]). Some pa-
pers are devoted to relations between Hadamard
well-posedness and Tykhonov well-posedness for
different problems. Yang and Yu [28] presented
unified approaches to Hadamard and Tykhonov
well-posedness and as applications, they deduce
Tykhonov well-posedness for optimization prob-
lems, Nash equilibrium point problems and fixed
point problems. Afterward, Li and Xia [15] intro-
duced the concept of Hadamard well-posedness
for a generalized mixed variational inequality
problem in Banach spaces and studied rela-
tions between Levitin-Polyak well-posedness and
Hadamard well-posedness for this problem.
Motivated by the work of Li and Xia [15] and
Lignola and Morgan [17], we extend some no-
tions of Tykhonov well-posedness and Hahamard
well-posedness for a family of mixed variational
inequalities. The paper is organized as follows:
Section 2 contains some useful definitions and
preliminary results. Also, some metric charac-
terizations of mixed variational inequalities are
presented and some classes of well-posed mixed
variational inequalities are obtained. In section
3, the concept of Hadamard well-posedness for
the family of mixed variational inequalities is de-
fined. This section aims to show that paramet-

ric Hadamard well-posedness implies parametric
Tykhonov well-posedness for the family of mixed
variational inequalities. Finally, under suitable
conditions, some classes of Hadamard well-posed
mixed variational inequalities are obtained. In
Section 4, it is shown that the parametric weak
well-posedness for the family of mixed variational
inequalities implies the parametric weak well-
posedness for the family of inclusion problems.

2 Parametric well-posedness

Let x ∈ X be an arbitrary element. In this
section, we consider the parametric mixed vari-
ational inequality MV I(F, ϕ,K)x, that is to find
u ∈ K such that

⟨F (x, u), u− ν⟩+ ϕ(u)− ϕ(ν) ≤ 0, for all ν ∈ K

and we assume that, MV I(F, ϕ,K)x has a unique
solution. Denote by ∂ϕ the convex subdifferential
of ϕ, i.e.,

∂ϕ(u) = {u∗ ∈ H : ϕ(ν)− ϕ(u)

≥ ⟨u∗, ν − u⟩, for all ν ∈ H},

for all u ∈ domϕ.

Definition 2.1 Let F : X ×H → H be a map-
ping. F is said to be

1. monotone with respect to the second argu-
ment, if for any x ∈ X and u, ν ∈ H one
has

⟨F (x, u)− F (x, ν), u− ν⟩ ≥ 0;

2. strongly monotone with respect to the second
argument, if there exists α > 0 such that for
any x ∈ X and u, ν ∈ H one has

⟨F (x, u)− F (x, ν), u− ν⟩ ≥ α∥u− ν∥2.

Definition 2.2 Let F (x, .) : H → H be an oper-
ator from H to H. F (x, .) is said to be hemicon-
tinuous if, for any u, ν ∈ H, the function

λ 7→ ⟨F (x, u+ λν), ν⟩

from [0, 1] into (−∞,∞) is continuous at 0+.
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Definition 2.3 Let x ∈ X and {xn} be a se-
quence converging to x. A sequence {un} ⊂ H
is said to be an approximating sequence with re-
spect to {xn} for the parametric mixed variational
inequality MV I(F, ϕ,K)x, if un ∈ K for any
n ∈ N and there exists a positive sequence {ϵn}
with ϵn → 0 as n → ∞ such that

⟨F (xn, un), un − ν⟩+ ϕ(un)− ϕ(ν) ≤ ϵn,

for all ν ∈ K.

Now, Let us consider the family

(MV I(F, ϕ,K)) := {MV I(F, ϕ,K)x : x ∈ X}

and we present concept of parametric well-
posedness for mixed variational inequality
(MV I(F, ϕ,K)).

Definition 2.4 The family mixed variational in-
equalities (MV I(F, ϕ,K)) is said to be paramet-
rically (weak) well-posed if

1. there exists a unique solution ūx ∈ H to
MV I(F, ϕ,K)x, for all x ∈ X,

2. for all x ∈ X and for all {xn} converging
to x, every approximating sequence for the
problem MV I(F, ϕ,K)x with respect to {xn}
strongly(weakly) converges to ūx.

Remark 2.1 It is obvious that, for the family
(MV I(F, ϕ,K)), the parametric well-posedness
implies the parametric weak well-posedness, but
the converse is not true in general.

For any x ∈ X and ϵ > 0, we define the following
set:

Ω(x, ϵ) :={u ∈ K : ⟨F (x, u), u− ν⟩
+ ϕ(u)− ϕ(ν) ≤ ϵ, for all ν ∈ K}.

Proposition 2.1 Let the family
(MV I(F, ϕ,K)) be parametrically well-posed.
Then Ω(x, ϵ) ̸= ∅, for every x ∈ X and every
ϵ > 0, and limn→∞ diamΩ(xn, ϵn) = 0, for all
{xn} converging to x and all {ϵn} converging to
0.

Proof. The proof is similar to Proposition 2.3
in [17], hence it is omitted.

Lignola and Morgan in [16] investigated the
connection between the concept of parametric
well-posedness for the family (V I) and the
diameter of the set Ω(x, ϵ) in which continuity
properties have been studied. Then, they proved
in [17] that paremetric well-posedness for (V I)
implies that the diameter of Ω(x, ϵ) converges
to 0. In fact, they showed that in general
paremetric well-posedness is not equivalent to
the convergence of the diameter Ω(x, ϵ) to 0.
In The following Theorem, we give some condi-
tions under which paremetric well-posedness is
equivalent to the convergence of the diameter
Ω(x, ϵ) to 0. This Theorem extends and improves
Proposition 2.3 in [17].

Condition A: Let F : X × H → H. Then for
any u ∈ H, we have

⟨F (x, u)− F (y, u), ν − u⟩ ≤ ∥x− y∥∥ν − u∥,

for all x, y ∈ X and ν ∈ H.

Theorem 2.1 Let ϕ : H → R ∪ {+∞} is a
proper, convex and lower semicontinuous func-
tional. Suppose that F (x, .) be hemicontinuous
and monotone with respect to the second argu-
ment and F satisfies Condition A. Then the fam-
ily (MV I(F, ϕ,K)) is parametrically well-posed if
and only if Ω(x, ϵ) ̸= ∅, for any x ∈ X and ϵ > 0,
and limn→∞ diamΩ(xn, ϵn) = 0, for all {xn} con-
verging to x and {ϵn} converging to 0.

Proof. Obviously, the necessity follows immedi-
ately from Proposition 2.1. For sufficiency, let
x be an arbitrary element in X and {xn} ⊂
X be a sequence converging to x. Assume
that {un} is an approximating sequence for
MV I(F, ϕ,K)x(w.r.t. {xn}). Then there exists
a positive sequence {ϵn} such that ϵn → 0 and

⟨F (xn, un), un − ν⟩+ ϕ(un)− ϕ(ν) ≤ ϵn,

for all ν ∈ K, which implies that un ∈
Ω(xn, ϵn). Since limn→∞ diamΩ(xn, ϵn) = 0,
{un} is a Cauchy sequence and therefore un con-
verges strongly to some point ux ∈ K. Further-
more, since ϕ is lower semicontinuous, the map-
ping F (x, .) is monotone with respect to the sec-
ond argument and F satisfies Condition A, we
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obtain

⟨F (x, ν), ux − ν⟩+ ϕ(ux)− ϕ(ν)

≤ lim inf⟨F (x, ν), un − ν⟩+ ϕ(un)− ϕ(ν)

≤ lim inf⟨F (x, un), un − ν⟩+ ϕ(un)− ϕ(ν)

≤ lim inf⟨F (xn, un), un − ν⟩+ ϕ(un)− ϕ(ν)

+ ∥xn − x∥∥un − ν∥
≤ lim inf ϵn + ∥xn − x∥∥un − ν∥= 0,

for all ν ∈ K. For any u ∈ K and λ ∈ [0, 1],
letting ν = ux + λ(u − ux) in last inequality, we
have

⟨F (x, ux + λ(u− ux)), λ(ux − u)⟩+ ϕ(ux)−
ϕ(ux + λ(u− ux)) ≤ 0.

It follows from convexity of ϕ that

⟨F (x, ux + λ(u− ux)), ux − u⟩+ ϕ(ux)− ϕ(u)

≤ 0, (2.1)

for all u ∈ K. Taking the limit λ → 0+ in (2.1)
and using the hemicontinuity of mapping F , we
have

⟨F (x, ux), ux − u⟩+ ϕ(ux)− ϕ(u) ≤ 0,

for all u ∈ K. Hence, ux solves MV I(F, ϕ,K)x.

Example 2.1 Suppose that X = H = K = R.
Consider the single-valued function F : R× R →
R defined by F (x, u) = u − x and ϕ : R →
R ∪ {+∞} defined by ϕ(u) = 0, for all u ∈ R.
It is easy to check that the operator F is mono-
tone with respect to the second argument, hemi-
continuous and satisfies Condition A. Also, it
is obvious that the operator ϕ is proper, con-
vex and lower semicontinuous. We observe that
x ∈ Ω(x, ϵ), for all x ∈ R and ϵ > 0. Therefore,
Ω(x, ϵ) ̸= ∅, for all x ∈ R. It is easy to verify that
diamΩ(xn, ϵn) → 0, for all {xn} converging to x
and all {ϵn} converging to 0. Hence, all assump-
tions of Theorem 2.1 are fulfilled and therefore
(MV I(F, ϕ,K)) is parametrically well-posed.

Remark 2.2 Let F (x, .) be monotone and hemi-
continuous. Then, the following statements are
equivalent:

1. ux is a solution to the mixed variational in-
equality MV I(F, ϕ,K)x.

2. ux is a solution to the following associated
mixed variational inequality:
AMV I(F, ϕ,K)x: find ux ∈ K such that

⟨F (x, ν), ux − ν⟩+ ϕ(ux)− ϕ(ν) ≤ 0,

for all ν ∈ K.

In fact, we can easily prove this claim by using
a similar argument of the proof of Theorem 2.1.
Therefore, we omit it here.

Now, we obtain a class of mixed variational in-
equalities which they are parametrically well-
posed.

Theorem 2.2 Let F be a strongly monotone and
hemicontinuous with respect to the second ar-
gument on a bounded convex closed subset K,
ϕ : H → R∪{+∞} be a proper, convex and lower
semicontinuous functional and F (., u) be contin-
uous on X for all u ∈ K. Then (MV I(F, ϕ,K))
is parametrically well-posed.

Proof. The proof follows in the similar lines of
Proposition 2.9 in [17] and hence being omitted.

3 Hadamard well-posedness

Let U be the collection of all mapping P : X ×
H → K, and Γ(X,H) be the collection of all
mapping F : X × H → H such that there exist
P ∈ U and λ ∈ R, for all x ∈ X and u ∈ H

⟨F (x, u), u− ν⟩ = ⟨P (x, u), u− ν⟩+ λ,

for all ν ∈ K. For any F,G ∈ Γ(X,H), it follows
that

⟨F (x, u), u− ν⟩ = ⟨P1(x, u), u− ν⟩+ λ1

and

⟨G(x, u), u− ν⟩ = ⟨P2(x, u), u− ν⟩+ λ2,

for all ν ∈ K. By a similar way as that in [15],
we define

d1(F,G) =

{
|λ1 − λ2| if P1 = P2,
1 + |λ1 − λ2| if P1 ̸= P2.

It can be easily checked that (Γ(X,H), d1) is a
metric space.
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Let C(H) be the set of all nonempty closed
subsets of H endowed with the usual Hausdorff
distance H(., .). We say that Kn converges to
K in the Hausdorff metric iff H(Kn,K) → 0 as
n → ∞.

Let B(H) be the family of all real-valued func-
tions on H, we define

d′(ϕ1, ϕ2) = sup
u∈H

|ϕ1(u)− ϕ2(u)|,

where ϕ1, ϕ2 ∈ B(H). It can be easily checked
that (B(H), d′) is a metric space. Now, we define

M := {(F, ϕ,K) : F ∈ Γ(X,H), ϕ ∈ B(H),

K ∈ C(H)}

and for any (F1, ϕ1,K1), (F2, ϕ2,K2) ∈ M

ρ((F1, ϕ1,K1), (F2, ϕ2,K2)) := d1(F1, F2)

+ d′(ϕ1, ϕ2) +H(K1,K2).

Clearly, (M,ρ) is a metric space.

Definition 3.1 A general family
(MV I(F, ϕ,K)) determined by (F, ϕ,K) ∈ M is
called parametrically Hadamard well-posed if

1. there exists a unique solution ux to
MV I(F, ϕ,K)x, for all x ∈ X;

2. for all x ∈ X, all {xn} converging to x, every
sequence {(Fn, ϕn,Kn)} ⊂ M converging to
(F, ϕ,K), and every sequence {un} such that
un ∈ Sxn(Fn, ϕn,Kn), it follows that un →
ux.

Theorem 3.1 Let K be a nonempty, closed sub-
set of H and F : X × H → K be a mapping.
Suppose that ϕ : H → R ∪ {+∞} is a function
and the family (MV I(F, ϕ,K)) is parametrically
Hadamard well-posed. Then (MV I(F, ϕ,K)) is
parametrically well-posed.

Proof. Let x̄ ∈ X and ux̄ be the unique solu-
tion of MV I(F, ϕ,K)x̄. Suppose that {xn} ⊂ X
is a sequence converging to x̄ and {un} is an
approximating sequence (w.r. to {xn}) for the
MV I(F, ϕ,K)x̄. Then un ∈ K and one can find
a sequence {ϵn} converging to zero such that

⟨F (xn, un), un − ν⟩+ ϕ(un)− ϕ(ν) ≤ ϵn, (3.2)

for all ν ∈ K. Now, for each n ∈ N, x ∈ X and
u ∈ H, we construct a sequence {(Fn, ϕn,Kn)} ⊂
M as follows:

⟨Fn(x, u), u− ν⟩ = ⟨F (x, u), u− ν⟩ − ϵn, (3.3)

for all ν ∈ K. Notice that

ϕn(u) = ϕ(u)− ϵn (3.4)

and Kn = K. Therefore, d1(Fn, F ) = |ϵn|→ 0,
H(Kn,K) → 0 and d′(ϕn, ϕ) → 0. Thus

ρ((Fn, ϕn,Kn), (F, ϕ,K)) → 0.

Now, it sufficient to show that un ∈
Sxn(Fn, ϕn,Kn). It follows from (3.2), (3.3), (3.4)
and Kn = K that

⟨Fn(xn, un), un − ν⟩+ ϕn(un)− ϕn(ν) =
⟨F (xn, un), un − ν⟩+ ϕ(un)− ϕ(ν)− ϵn ≤ 0

and un ∈ Sxn(Fn, ϕn,Kn). From paramet-
ric Hadamard well-posedness for the family
(MV I(F, ϕ,K)), we can deduce that un → ux
and therefore (MV I(F, ϕ,K)) is parametrically
well-posed.

Now, we investigate a class of families that
are parametrically Hadamard well-posed in the
finite dimensional case. In the following theorem,
we assume that MV I(F, ϕ,K)x has a unique
solution, for all (F, ϕ,K) ∈ M and x ∈ X.

Theorem 3.2 Suppose that K is a nonempty,
closed and convex subset of H and F : X ×
H → K is a continuous and monotone map-
ping with respect to the second argument which
satisfies Condition A. Let ϕ : H → R ∪
{+∞} be proper, convex and uniformly contin-
uous. Then (MV I(F, ϕ,K)) is parametrically
Hadamard well-posed.

Proof. Arguing by contradiction, let us sup-
pose that (MV I(F, ϕ,K)) is not parametrically
Hadamard well-posed. Then there exist x ∈ X,
a unique solution ux for MV I(F, ϕ,K)x, a se-
quence {xn} ⊂ X converging to x, a sequence
{(Fn, ϕn,Kn)} converging to (F, ϕ,K) and un ∈
Sxn(Fn, ϕn,Kn) which does not converge to ux.
From un ∈ Sxn(Fn, ϕn,Kn), we have un ∈ Kn

and

⟨Fn(xn, un), un − ν⟩+ ϕn(un)− ϕn(ν) ≤ 0,
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for all ν ∈ Kn. Since d1(Fn, F ) → 0, we can
deduce that there exists 0 < ϵn → 0 such that

⟨Fn(x, u), u− ν⟩ = ⟨F (x, u), u− ν⟩+ ϵn, (3.5)

for all x ∈ X, ν ∈ K, and u ∈ H.
Since F satisfies Condition A and (3.5) holds,
we can deduce that Fn satisfies Condition A, for
all n ∈ N. It follows from H(Kn,K) → 0 that
d(un,K) → 0. Thus, there exists 0 < ϵn → 0, for
n sufficiently large

d(un,K) ≤ ϵn < ϵn +
1

n
.

Hence, there exists {wn} ⊂ K such that
∥un − wn∥< ϵn + 1

n → 0.

We claim that {un} is bounded on K. In
fact, if {un} is unbounded, then {wn} is an
unbounded sequence. we can suppose that
∥wn∥→ +∞. Set

tn :=
1

∥wn − ux∥

and
zn := ux + tn(wn − ux).

Without loss of generality, we can suppose that
tn ∈ (0, 1]. Since {zn} is a bounded sequence on
K, there exists z ∈ K such that zn ⇀ z and
clearly, z ̸= ux. Now, for all ν ∈ K,

⟨F (x, ν), z − ν⟩ = ⟨F (x, ν), z − zn⟩

+ ⟨F (x, ν), zn − ux⟩+ ⟨F (x, ν), ux − ν⟩

= ⟨F (x, ν), z − zn⟩+ tn⟨F (x, ν), wn − ν⟩

+ (1− tn)⟨F (x, ν), ux − ν⟩

= ⟨F (x, ν), z − zn⟩+ tn⟨F (x, ν), un − ν⟩

+ (1− tn)⟨F (x, ν), ux − ν⟩

+ tn⟨F (x, ν), wn − un⟩.

On the other hand, ux is the unique solution to
the mixed variational inequality MV I(F, ϕ,K)x,
F is monotone with respect to the second argu-
ment, F and Fn satisfy Condition A and ϕ is con-
vex function. Therefore, from the last equality we

have

⟨F (x, ν), z − ν⟩ ≤ ⟨F (x, ν), z − zn⟩
+ tn⟨F (x, un), un − ν⟩
+ (1− tn)⟨F (x, ν), ux − ν⟩
+ tn⟨F (x, ν), wn − un⟩
≤ ⟨F (x, ν), z − zn⟩+ tn⟨F (x, un), un − ν⟩
+ (1− tn)⟨F (x, ux), ux − ν⟩
+ tn⟨F (x, ν), wn − un⟩
≤ ⟨F (x, ν), z − zn⟩
+ tn⟨F (x, un), un − ν⟩
+ (1− tn)(ϕ(ν)− ϕ(ux))

+ tn⟨F (x, ν), wn − un⟩
≤ ⟨F (x, ν), z − zn⟩
+ tn(⟨Fn(x, un), un − ν⟩ − ϵn)

+ (1− tn)(ϕ(ν)− ϕ(ux))

+ tn⟨F (x, ν), wn − un⟩
≤ ⟨F (x, ν), z − zn⟩+ tn(⟨Fn(xn, un), un − ν⟩
+ ∥xn − x∥∥un − ν∥−ϵn)

+ (1− tn)(ϕ(ν)− ϕ(ux))

+ tn⟨F (x, ν), wn − un⟩.
≤ ⟨F (x, ν), z − zn⟩+ tn(ϕn(ν)− ϕn(un)

+ ∥xn − x∥∥un − ν∥−ϵn)

+ (1− tn)(ϕ(ν)− ϕ(ux))

+ tn⟨F (x, ν), wn − un⟩
≤ ⟨F (x, ν), z − zn⟩+ tn(ϕn(ν)− ϕn(un)

+ ∥xn − x∥∥un − ν∥−ϵn) + (1− tn)ϕ(ν)

+ tnϕ(wn)− ϕ(zn)

+ tn⟨F (x, ν), wn − un⟩
≤ ⟨F (x, ν), z − zn⟩+ ϕ(ν)− ϕ(zn)

+ tn(ϕn(ν)− ϕ(ν))

− [tn(ϕn(un)− ϕ(un)) + tn(ϕ(un)− ϕ(wn))]

− tnϵn + tn∥xn − x∥∥un − ν∥
+ tn⟨F (x, ν), wn − un⟩.

By using the uniform continuity of ϕ and the last
inequality, we obtain

⟨F (x, ν), z − ν⟩ ≤ lim inf {⟨F (x, ν), z − zn⟩
+ ϕ(ν)− ϕ(zn) + tn(ϕn(ν)− ϕ(ν))

− [tn(ϕn(un)− ϕ(un)) + tn(ϕ(un)− ϕ(wn))]

− tnϵn + tn∥xn − x∥∥un − ν∥
+ tn⟨F (x, ν), wn − un⟩} = ϕ(ν)− ϕ(z),

for all ν ∈ K. Now, Remark 2.2 implies that
z solves MV I(F, ϕ,K)x which is a contradiction.
Hence, {un} is bounded and there exists a subse-
quence {unk

} of {un} such that unk
→ ū. Since ϕ
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is uniformly continuous, F is monotone with re-
spect to the second argument and satisfies Con-
ditio A, we have

⟨F (x, ν), ū− ν⟩+ ϕ(ū)− ϕ(ν)

≤ lim inf⟨F (x, ν), unk
− ν⟩+ ϕ(unk

)− ϕ(ν)

≤ lim inf⟨F (x, unk
), unk

− ν⟩+ ϕ(unk
)− ϕ(ν)

≤ lim inf⟨F (xnk
, unk

), unk
− ν⟩+ ϕ(unk

)− ϕ(ν)

− ∥xnk
− x∥∥unk

− ν∥
≤ lim inf⟨Fnk

(xnk
, unk

), unk
− ν⟩ − ϵnk

+ ϕ(unk
)

− ϕ(ν)− ∥xnk
− x∥∥unk

− ν∥
≤ lim inf {ϕnk

(ν)− ϕnk
(unk

)− ϵnk

+ ϕ(unk
)− ϕ(ν)} = 0,

for all ν ∈ K. Therefore ū solves MV I(F, ϕ,K)x
and un → ū, which is a contradiction. This com-
plete the proof.

4 Mixed variational inequalities
and inclusion problems

In this section, we present the concept of para-
metric well-posedness for inclusion problems and
investigate the relationships between the para-
metric well-posedness of mixed variational in-
equality and the parametric well-posedness of in-
clusion problem. Let x ∈ X and Fx := F (x, .) :
H ⇒ H be a set-valued mapping from the real
Hilbert space H to H. The inclusion problem as-
sociated with mapping Fx is denoted by IP (Fx)
and defined by:
IP(Fx): Find u ∈ H such that 0 ∈ Fx(u).

Definition 4.1 Let x ∈ X and {xn} be a se-
quence converging to x. A sequence {un} ⊂ H is
called an approximating sequence (w.r. to {xn})
for inclusion problem IP (Fx) if d(0, Fxn(un)) →
0, or equivalently, there exists a sequence νn ∈
Fxn(un) such that ∥νn∥→ 0 as n → ∞.

Now, we define

(IP (F )) := {IP (Fx) : x ∈ X}.

Definition 4.2 The family (IP (F )) is paramet-
rically strong (weak) well-posed if

1. there exists a unique solution ūx ∈ H to
IP (Fx), for all x ∈ X,

2. for all x ∈ X and for all {xn} converg-
ing to x, every approximating sequence for
the problem IP (Fx) with respect to {xn}
strongly(weakly) converges to ūx.

Theorem 4.1 Let x ∈ X, Fx : H → H
be a mapping such that Fx(u) = F (x, u) and
ϕ : H → R ∪ {+∞} be a proper, convex and
lower semicontinuous functional. Then ux ∈ K
solves MV I(F, ϕ,K)x if and only if ux solves
IP (Fx + ∂ϕ).

Proof. Let x ∈ X and ux ∈ K be a solution to
the mixed variational inequality MV I(F, ϕ,K)x,
which means

⟨F (x, ux), ux − ν⟩+ ϕ(ux)− ϕ(ν) ≤ 0, (4.6)

for all ν ∈ K. For any w ∈ K and λ ∈ [0, 1],
letting ν = ux + λ(w − ux) in the (4.6) yields

⟨F (x, ux), −λ(w − ux)⟩+ ϕ(ux)
− ϕ(ux + λ(w − ux)) ≤ 0,

for all w ∈ K. From convexity of ϕ and above
inequality, we can deduce that

⟨F (x, ux),−λ(w − ux)⟩+ λ(ϕ(ux)− ϕ(w)) ≤ 0.

Hence

⟨−Fx(ux), (w − ux)⟩ ≤ ϕ(w)− ϕ(ux),

for all w ∈ K. Now, definition of convex subdif-
ferential implies that −Fx(ux) ∈ ∂ϕ(ux).
Conversely, suppose that ux ∈ K be a solution to
the inclusion problem IP (Fx+∂ϕ), which means
that 0 ∈ F (x, ux) + ∂ϕ(ux). Thus, there exists
u∗ ∈ ∂ϕ(ux) such that 0 = F (x, ux) + u∗ and

⟨u∗, ν − ux)⟩ ≤ ϕ(ν)− ϕ(ux),

for all ν ∈ K. Therefore

0 = ⟨F (x, ux) + u∗, ν − ux⟩
≤ ⟨F (x, ux), ν − ux⟩+ ϕ(ν)− (ux),

for all ν ∈ K. Hence,

⟨F (x, ux), ux − ν⟩+ ϕ(ux)− (ν) ≤ 0,

for all ν ∈ K, which implies that ux is a
solution to the mixed variational inequality
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MV I(F, ϕ,K)x. This completes the proof.

The following theorem establish the relation
between parametric weak well-posedness of
family (MV I(F, ϕ,K)) and parametric weak
well-posedness of family inclusion problems.

Theorem 4.2 Let F : X × H → H be hemi-
continuous, monotone with respect to the sec-
ond argument. Suppose that F satisfies Con-
dition A and ϕ : H → R ∪ {+∞} is proper,
convex and lower semicontinuous. If the fam-
ily (MV I(F, ϕ,K)) is parametrically weak well-
posed, then the family (IP (F + ∂ϕ)) is paramet-
rically weak well-posed.

Proof. Suppose that (MV I(F, ϕ,K)) is para-
metrically weak well-posed. Assume that x is an
arbitrary element in X and ux is the unique so-
lution for MV I(F, ϕ,K)x. From Theorem 4.1,
ux is also the unique solution of IP (Fx + ∂ϕ).
Now, suppose that {xn} ⊂ X converges to x and
{un} is an approximating sequence for IP (Fx +
∂ϕ)(w.r. to {xn}). Hence, it suffices to show that
un ⇀ ux. Since {un} is approximating sequence,
there exists u∗n ∈ F (xn, un) + ∂ϕ(un) such that
∥u∗n∥→ 0. Hence,

⟨u∗n − F (xn, un), ν − un⟩
≤ ϕ(ν)− ϕ(un),

for all ν ∈ K and therefore,

⟨F (xn, un), un−ν⟩ ≤ ⟨u∗n, un−ν⟩+ϕ(ν)−ϕ(un),
(4.7)

for all ν ∈ K. We claim that the approximating
sequence {un} is bounded on K. In fact, if {un}
is unbounded, we can suppose that ∥un∥→ +∞.
Let

tn :=
1

∥un − ux∥
, zn := ux + tn(un − ux).

Without loss of generality, we can suppose that
tn ∈ (0, 1]. Since {zn} is a bounded sequence on
K, there exists z ∈ K such that zn ⇀ z and
clearly, z ̸= ux. Now, for all ν ∈ K

⟨F (x, ν), z − ν⟩ = ⟨F (x, ν), z − zn⟩
+ ⟨F (x, ν), zn − ux⟩+ ⟨F (x, ν), ux − ν⟩
= ⟨F (x, ν), z − zn⟩+ tn⟨F (x, ν), un − ν⟩
+ (1− tn)⟨F (x, ν), ux − ν⟩.

On the other hand, ux is the unique solution to
the mixed variational inequality MV I(F, ϕ,K)x,
F is monotone with respect to the second argu-
ment and satisfies Condition A. Therefore, from
last equality we have

⟨F (x, ν), z − ν⟩ ≤ ⟨F (x, ν), z − zn⟩
+ tn⟨F (x, ν), un − ν⟩
+ (1− tn)⟨F (x, ux), ux − ν⟩
≤ ⟨F (x, ν), z − zn⟩+ tn⟨F (x, ν), un − ν⟩
+ (1− tn)(ϕ(ν)− ϕ(ux))

≤ ⟨F (x, ν), z − zn⟩+ tn⟨F (x, un), un − ν⟩
+ (1− tn)(ϕ(ν)− ϕ(ux))

≤ ⟨F (x, ν), z − zn⟩+ tn⟨F (xn, un), un − ν⟩
+ tn∥xn − x∥∥ν − un∥+(1− tn)(ϕ(ν)− ϕ(ux))

≤ ⟨F (x, ν), z − zn⟩+ tn⟨u∗
n, un − ν⟩

+ tn(ϕ(ν)− ϕ(un)) + tn∥xn − x∥∥ν − un∥
+ (1− tn)(ϕ(ν)− ϕ(ux))

= ⟨F (x, ν), z − zn⟩+
⟨u∗

n, un − ν⟩
∥un − ux∥

+ ϕ(ν)− [tnϕ(un) + (1− tn)ϕ(ux)]

+ tn∥xn − x∥∥ν − un∥

From convexity of ϕ and above inequality, we
obtain

⟨F (x, ν), z − ν⟩ ≤ ⟨F (x, ν), z − zn⟩

+
⟨u∗n, un − ν⟩
∥un − ux∥

+ ϕ(ν)− ϕ(zn)

+ tn∥xn − x∥∥ν − un∥

Therefore,

⟨F (x, ν), z − ν⟩ ≤ lim inf{⟨F (x, ν), z − zn⟩

+
⟨u∗

n, un − ν⟩
∥un − ux∥

+ ϕ(ν)− ϕ(zn)

+ tn∥xn − x∥∥ν − un∥} = ϕ(ν)− ϕ(z).

Hence,

⟨F (x, ν), z − ν⟩+ ϕ(z)− ϕ(ν) ≤ 0

which implies that z is a solution to the mixed
variational inequality MV I(F, ϕ,K)x. From
uniqueness of solution forMV I(F, ϕ,K)x, we can
deduce that z = ux which is contradiction. Thus,
the approximating sequence {un} is bounded on
K. Since H is reflexive and {un} is bounded,
there exists subsequence {unk

} such that unk
⇀ û

as k → ∞. Therefore, from (4.7), we have

⟨F (xnk
, unk

), unk
− ν⟩+ ϕ(unk

)− ϕ(ν)
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≤ ⟨u∗nk, unk
− ν⟩, (4.8)

for all ν ∈ K. Since ϕ is lower semicontinuous, F
is monotone with respect to the second argument,
satisfies Condition A and (4.8), we have

⟨F (x, ν), ū− ν⟩+ ϕ(ū)− ϕ(ν)

≤ lim inf⟨F (x, ν), unk
− ν⟩+ ϕ(unk

)− ϕ(ν)

≤ lim inf⟨F (x, unk
), unk

− ν⟩+ ϕ(unk
)− ϕ(ν)

≤ lim inf⟨F (xnk
, unk

), unk
− ν⟩+ ϕ(unk

)− ϕ(ν)

+ ∥xnk
− x∥∥ν − unk

∥
≤ lim inf⟨u∗

nk, unk
− ν⟩+ ∥xnk

− x∥∥ν − unk
∥

= 0,

for all ν ∈ K. Therefore, ū is solution
to the associated mixed variational inequality
AMV I(F, ϕ,K)x. Now, by using Remark 2.2,
ū also solves the mixed variational inequality
MV I(F, ϕ,K)x and so we have ū = ux in terms
of the uniqueness of solution to the mixed varia-
tional inequality MV I(F, ϕ,K)x. This complete
the proof.

Remark 4.1 Theorem 4.2, generalize [7, Theo-
rem 4.1] for a family of mixed variational inequal-
ities.
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