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Abstract

Conventional Data Envelopment Analysis (DEA) models define returns to scale (RTS) based on
some local information about the proportional variation in outputs with respect to the proportional
variation in inputs. Generalized RTS has been introduced to compute the rate of variation in outputs
with respect to the variation in inputs up to the most productive scale size (MPSS) pattern. In this
paper, we address the generalized RTS in the multiplicative models and we propose an algorithm to
calculate the rate of variations in different intervals. We also demonstrate that the non-discretionary
factors can be easily taken into account in the algorithm.

Keywords : Data envelopment analysis; Generalized returns to scale; Most productive scale size;
Multiplicative models.

—————————————————————————————————–

1 Introduction

D
ata envelopment analysis has been recognized
as an efficient technique in evaluation of de-

cision making units (DMUs) with multiple inputs
and multiple outputs. Since its introduction by
Charnes et al. [11], many DEA models have been
proposed in literature (Banker et al. [6], Cooper
et al. [14]). Returns to scale (RTS) is one of the
important economic notion that has been inves-
tigated within the framework of DEA (Banker et
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al. [7]. It provides useful information about the
optimal size of DMUs and whether the expansion
or contraction of the units is beneficial.

Boussemart et al. [10] deriving a notion of
alphaup-returns to scale, proposed a specification
of strictly increasing and decreasing returns to
scale in multi-output technologies. Allahyar and
Rostami- Malkhalifeh [1] determine the type of
the right and left RTS for each efficient DMU
particularly. Yang et al. [30] analyzed the di-
rectional RTS of national biological institutes in
China. Ding et al. [15] provided a radial mea-
surements of efficiency and a procedure that is
unaffected by multiple optima for estimating re-
turns to scale for the production process possess-
ing multi-components.

Sahoo et al. [26] attempting to resolve the short-
coming of [2], proposed a general non-radial DEA
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model to determine both the most productive
scale size and the returns to scale characteriza-
tions of production units in the presence of neg-
ative data. Taleb et al. [28] discussed the RTS
for an output oriented integer-valued DEAmodel.
Mirbolouki and Allahyar [18] proposed a parame-
ter free procedure for detecting the right and left
RTS classification and to determine the value of
the right and left RTS of efficient DMUs.

RTS studies mainly focus on the qualitative as-
pects, including whether RTS are “increasing,”
“decreasing,” or “constant.” The quantitive as-
pect of RTS is related to elasticity. It is the rate
of the proportional variation of outputs with re-
spect to the proportional variation of inputs in a
local sense; i.e., in a sufficiently small interval of
variations (Cooper et al. [14], Banker et al. [7]
and Hadjicostas and Soteriou [17]). There is a lit-
erature which is directed to elasticities in DEA.
Examples are the treatment of scale elasticities
in Banker et al. [7], Podinovski [22] and Banker
et al. [8]. Podinovski et al. [21] expressed the
idea of elasticity measures as directional deriva-
tives of the optimal value in linear programs and
used it for the case of scale elasticity in VRS tech-
nology. Atici and Podinovski [3] extended the ap-
proach proposed by [22], analyzing and calculat-
ing a class of mixed partial elasticity measures in
variable returns-to-scale (VRS) production tech-
nologies, to the constant returns-to-scale (CRS).
Zelenyuk [34] noticed the scale elasticity measure-
ment based on directional distance function for
multi-output–multi-input technologies, and used
directional distance function via the DEA esti-
mator to get an estimation of the scale elastic-
ity. Noticing the directional RTS as a generaliza-
tion of traditional RTS by considering the non-
proportional changes of inputs and outputs, Yang
& Liu [29] proposed the definitions of directional
scale elasticity and directional RTS in the DEA
framework and estimates the directional RTS us-
ing DEA models. There are another researches
on scale elasticities and RTS characterization in
within the DEA context (e.g., [16], [23], [24], and
[20]).

There are problems in using the standard DEA
models, to obtain scale elasticity estimates which
is related to the piecewise linear character of the
frontiers for these models. There is yet another

class of models referred to as “multiplicative mod-
els,” which were introduced by this name into the
DEA literature in Charnes et al. [13]– see also
Banker et al. [5] – and extended in Charnes et
al. [12]. Although not used very much in appli-
cations in DEA, these multiplicative models can
provide advantages for extending the range of po-
tential uses for DEA. For instance, they are not
confined to efficiency frontiers that are concave.
They can be formulated to allow the efficiency
frontiers to be concave in some regions and non-
concave elsewhere. See Banker and Maindiratta
[8]. They can also be used to obtain “exact” es-
timates of elasticities.

The elasticity measure shows the rate of varia-
tion only in a neighborhood of inputs, and it may
be insufficient for a decision being made by the
manager. Zarepisheh and Soleimani-damaneh
[32] introduced the generalized RTS to overcome
this issue. They introduced an algorithm which is
capable of determining the rate of variation until
reaching the most productive scale size (MPSS)
unit which is the best position from the man-
ager’s point of view. The rate of variation tells
manager how beneficial is the expansion or con-
traction of the units in different intervals until
reaching their optimal size. Having these infor-
mation available will help the manager to make
a better decision. For example, the manager may
decide to expand/contact a unit up to the cer-
tain level when expansion/contraction is benefi-
cial enough rather than up to the MPSS pattern.
To the best of our knowledge, so far no study has
been conducted to develop the concept of gener-
alized RTS for multiplicative models. One of our
goal in this paper is expanding the global elastic-
ity notion to the multiplicative models where the
production possibility set (PPS) is non-convex.
The ordinary convexity postulate is replaced by
geometric convexity in multiplicative models that
implies the piece-wise linear frontiers usually em-
ployed in DEA are replaced by a frontier that is
piece-wise Cobb-Douglas(= log linear) (Banker
and Maindiratta [8]). If in an empirical appli-
cation there are a priori reasons to believe that
marginal products are increasing in some regions,
then the log-linear model is the appropriate DEA
model for the analysis. Banker and Maindiratta
[8] introduced a model to determine MPSS pat-
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tern and after that, Banker et al. [7], presented
a two-stage method to identify the RTS situa-
tion. Recently, Zarepisheh et al. [33] proved that
both RTS situation and MPSS pattern can be
identified by solving a single optimization model.
However, as stated before, the RTS is just a local
notion which can be misleading, and in section 2
of this paper we want to provide a global informa-
tion about the rate of variation in outputs with
respect to the variation in inputs in multiplicative
models.

Another aim of this paper is demonstrating
that the generalized RTS algorithm can be modi-
fied in order to take care of the non-discretionary
factors. Standard data envelopment analysis im-
plicitly assumes that all inputs and outputs are
discretionary, i.e., can be controlled by the man-
agement of each DMU and varied at its dis-
cretion. However, there may exist exogenously
fixed or non-discretionary (ND) inputs or outputs
that are beyond the control of a DMUs manage-
ment, which also need to be considered (Ruggiero
[25], Syrjanen [27] and Muniz et al. [19]). In-
stances from the DEA literature include snowfall
or weather forecast in evaluating the efficiency of
maintenance units, soil characteristics and topog-
raphy in different farms, number of competitors
in the branches of a restaurant chain, etc.

So, our contribution is twofold: first, Given the
importance of multivariate models (linear loga-
rithmic, Cub Douglas) in the theory of produc-
tion functions, and the ability to properly esti-
mate scale elasticity, we combine [32] and [33] in
order to attain generalized RTS and MPSS pat-
tern by solving a single optimization model; sec-
ond, given that in many applied studies of DEA,
we may encounter non-discretionary data, the de-
velopment of a proposed method for this type of
data will also be considered.

The structure of the article is as follows. In sec-
tion 2 the multiplicative models are reviewed and
then an approach to determine RTS will be in-
troduced. Moreover, we will show that the global
rate of variation can be calculated in the existence
of non-discretionary factors. Section 3 includes
an example to clarify the approach. Section 4
concludes the article.

2 Preliminaries

Consider n DMUs where each DMUj (j =
1, . . . , n), produces s outputs yrj (r = 1, . . . , s),
using m inputs xij (i = 1, . . . ,m). Define xj =
(x1j , x2j , . . . , xmj)

T and yj = (y1j , y2j , . . . , ysj)
T

as input and output vectors of DMUj , respec-
tively. Also X = [x1, x2, . . . , xn] and Y =
[y1, y2, . . . , yn] are m × n and s × n matrices of
inputs and outputs, respectively. The production
possibility set T is represented as

T = {(x, y) ∈ Rm+s
+ | y can be produced by x}

Banker, Charnes and Cooper [6] defined the fol-
lowing PPS based on some postulates. This set is
denoted by Tv, regarding the prevalence of vari-
able returns to scale assumption of the produc-
tion technology.

Tv = {(x, y) ∈ Rm+s
+ | Xλ ≤ x, Y λ ≥ y,

eλ = 1, λ ≥ 0},

where e is a vector with all components equal to
one. Banker and Maindiratta [8] replaced the (or-
dinary) convexity postulate of BCC by geometric
convexity, and introduced the following PPS.

Tm = {(x, y) ∈ Rm+s
+ |

∏
j∈J

x
λj

ij ≤ xi,

i = 1, ...,m,
∏
j∈J

y
λj

rj ≥ yr, r = 1, ..., s,

∑
j∈J

λj = 1, λj ≥ 0, j ∈ J}, (2.1)

where J = {1, 2, ..., n}. PPS has a key role in
DEA, and most of the concepts, such as RTS, are
defined based on that. Increasing returns to scale
(IRS) prevail at (xo, yo) if there exists a neighbor-
hood around xo(in T ) such that in this neighbor-
hood a proportional increase in all inputs leads
to a greater proportional increase in all outputs.
In this case, a (possible) reduction in all inputs
leads to a greater reduction in all outputs (see
Zarepisheh et al. [33]). Decreasing returns to
scale (DRS) prevail at (xo, yo) if there exists a
neighborhood around xo(in T ) such that in this
neighborhood a proportional decrease in all in-
puts leads to a smaller proportional decrease in
all outputs. It can be proved that an increase in
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all inputs leads to a smaller increase in all outputs
for DRS units (see Zarepisheh et al. [33]). Con-
stant returns to scale (CRS) prevail at (xo, yo) if
neither IRS nor DRS prevail at this point.

3 Generalized RTS for Multi-
plicative Models

The aforementioned definition of RTS can be ex-
pressed from the mathematical viewpoint by the
aid of function α(β) = max{α | (βxo, αyo) ∈ T}.
If β > 1, then α(β) defines the maximum
proportional increase in outputs when the inputs
are increased proportionally by factor β. In
this case, if α(β) > β for all β in the right
neighborhood of 1, then proportional increase in
inputs is beneficial and so IRS prevail at DMUo.
For β < 1, α(β) is the minimum proportional
decrease in outputs when the inputs are de-
creased proportionally by factor β. In this case,
if α(β) > β for all β in the left neighborhood of 1,
then proportional decrease in inputs is beneficial
and hence DRS prevail at DMUo. For IRS (DRS)
unit, the so-called elasticity measure which is
the rate of proportional increase (decrease) in
outputs to the proportional increase (decrease)

in inputs, defined by E = Lim
β→1

α(β)−1
β−1 , reveals

how beneficial is the expansion (contraction) of
DMUo in the local sense. For a global point of
view, we refer to ρ = α(β)−1

β−1 as the rate of benefit.
In traditional DEA models, the RTS situation
is determined based on the local information.
Then, the DMU is expanded/contracted until
it reaches its optimal size (MPSS pattern).
Zarepisheh et al. [31] introduced an algorithm to
calculate the global rate of variation in outputs
to the variation in inputs in Tv. In fact, these
information show that how beneficial is the
expansion/contraction of the unit in different
intervals until reaching its optimal size. So, the
manager may decide to expand/contract the unit
until a certain level, when it is beneficial enough,
rather than until reaching the MPSS pattern.
Extending the same concept for geometrical
production possibility set, consider a set of
DMUs: {DMUA,...,DMUE} each DMU utilizing
one input to produce one output, as depicted in
Fig. 1 (which data can seen in Table 1).

If we examine these DMUs with the method
introduced by Zarepisheh et al. [33], then IRS
prevail at A and B, CRS prevail at C and D, and
DRS prevail at E. As an example, we consider
the relation between the increase in outputs with
respect to the increase in inputs for DMUA in a
non-local viewpoint. DMUs A and B are efficient,
and the geometrical convex of them (curve AB)
is also efficient. For each (x,y) on AB we have,{

x = xλA.x
1−λ
B ⇒ x = 1λA.2

1−λ = 21−λ

y = yλA.y
1−λ
B ⇒ y = 1λA.5

1−λ = 51−λ

⇒ (x, y) = (21−λ, 51−λ), for λ ∈ [0, 1].
Rewriting 1− λ as λ, the parametric equation of
AB curve is (2λ, 5λ). According the definition of
α(β), for β ∈ [1, 2], (βxA, α(β)yA) = (β, α(β)) is
on curve AB. So, there is a λ ∈ [0, 1] in which
β = 2λand α(β) = 5λ. From β = 2λwe have
λ = Lnβ/Ln 2. Substituting λ in α(β) = 5λ, we
have,

α(β) = 5Lnβ/Ln2 ⇒ Ln(α(β)) =
Lnβ/Ln2Ln5 = (Ln5/Ln2)Lnβ =
LnβLn5/Ln2 ⇒ α(β) = βLn5/Ln2

Since (Ln 5/Ln 2)>1 and β ∈ [1, 2], we have
α(β) > β, i.e., the proportional increase in inputs
from DMUA to DMUB is beneficial with the rate

of benefit ρ = β
ln 5
ln 2−1
β−1 . Let us assume that we

increased the inputs and we reached DMUB. At

this position, α(β) = β
ln 2
ln 1.5 for β ∈ [1, 1.5], and

so, the rate of benefit is ρ = β
ln 2
ln 1.5−1
β−1 which is less

that the rate of benefit in the previous step. That
means, the proportional increase in inputs from
DMUB to DMUC is still beneficial, but not as
beneficial as the increase from DMUA to DMUB.
At DMUC , α(β) = 1 for β ∈ [1, 2], meaning, the
increase in inputs is not beneficial anymore and
DMUC and DMUD are CRS. DMUC and DMUD

are considered as the MPSS patterns for DMUA.
Finding the rate of benefit in different intervals

in the multiple-input, multiple-output case is not
a simple task. In the sequel, we deal with this
issue. Hereafter, we aim at introducing an algo-
rithm which is capable of calculating the global
RTS for multiplicative models. We also concur
with Banker et al. [4] who claim that RTS has an
unambiguous meaning only if a DMU is on the
efficient frontier, and define RTS only for points
on the efficient frontier.
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Table 1: Data for 5 DMUs

A B C D E

Input 1 2 3 6 7

Output 1 5 10 20 22

Table 2: Optimal simplex table of Problem (4.5)

z λ1 λ2 λ3 λ4 λ5 α R.H.S

z 1 0 0 0.24 1.16 1.42 0 0
λ1 0 1 0 -0.58 -1.58 -1.80 0 1
λ2 0 0 1 1.58 2.58 2.8 0 0
α 0 0 0 0.24 1.16 1.42 1 0

Table 3: Table 3 after updating R.H.S

z λ1 λ2 λ3 λ4 λ5 α R.H.S

z 1 0 0 0.24 1.16 1.42 0 1.16
λ1 0 1 0 -0.58 -1.58 -1.80 0 0
λ2 0 0 1 1.58 2.58 2.8 0 1
α 0 0 0 0.24 1.16 1.42 1 1.16

Table 4: Table 3 after dual simplex pivoting

z λ1 λ2 λ3 λ4 λ5 α R.H.S

z 1 0.42 0 0 0.49 0.66 0 1.7
λ3 0 -1.7 0 1 2.7 3.08 0 0
λ2 0 2.7 1 0 -1.7 -2.08 0 1
α 0 0.42 0 0 0.49 0.66 1 1.16

Table 5: Table 4 after updating R.H.S. and performing dual simplex pivoting

z λ1 λ2 λ3 λ4 λ5 α R.H.S

z 1 1.2 0.28 0 0 0.05 0 2.3
λ3 0 2.58 1.58 1 0 -0.22 0 1
λ4 0 -1.58 -0.58 0 1 1.22 0 0
α 0 1.2 0.28 0 0 0.05 1 2.3

In order to calculate α(β) for (xo, yo) in Tm,
we should solve the following model with β as a
parameter.

α(β) = maxα (3.2)

s.t.∏
j∈J

x
λj

ij ≤ βxio, i = 1, ...,m,

∏
j∈J

y
λj

rj ≥ αyro, r = 1, ..., s,

∑
j∈J

λj = 1, λj ≥ 0 ∀j ∈ J.

where J = {1, 2, ..., n}. This non-linear optimiza-
tion model can be easily converted to the follow-
ing equivalent linear problem by exploiting the ln
function.

ᾱ(β̄) = max ᾱ (3.3)
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Figure 1: The Production Possibility Set
for Multiplicative Model

s.t.∑
j∈J

λj x̄ij ≤ β̄ + x̄io, i = 1, ...,m,

∑
j∈J

λj ȳrj ≥ ᾱ+ ȳro, r = 1, ..., s,

∑
j∈J

λj = 1, λj ≥ 0 ∀j ∈ J.

where ”-” denotes the ln function and J =
{1, 2, ..., n}. We start to compute ᾱ(β̄) for β̄ ≥ 0.
First, we solve Problem (3.3) for β̄ = 0. Since
(xo, yo) is an efficient unit, the optimal objective
value is equal to zero. Then, we do parametric
analysis by perturbing the right hand side vector

in the direction of

(
1m×1

0(s+1)×1

)
for non-negative

parameters (see Bazaraa et al. [9] for details
about parametric analysis). It gives us the op-
timal value of ᾱ(β̄) as a linear function of param-
eter β̄ on different intervals. Here, we just need
the first interval and let us denote the slope of the
linear function and the length of the first interval
by m+

1 and β̄+
1 respectively. Since ᾱ(0) = 0, we

have ᾱ(β̄) = m+
1 β̄ for β̄ ∈ [0, β̄+

1 ]. By taking into
consideration that β̄ = ln(β) and ᾱ = ln(α), we

have α(β) = βm+
1 for β ∈ [1, exp(β̄+

1 )] = [1, β+
1 ].

If m+
1 = 1, then as it can be seen later as a con-

clusion of Theorem 3.1, CRS prevail (xo, yo). If
m+

1 > 1, then the proportional increase of the in-
puts from xo to β+

1 xo is beneficial and m+
1 shows

how beneficial it is. By increasing the inputs
to β+

1 xo, we reach the point (β+
1 xo, α(β

+
1 )yo) in

PPS. To investigate the rate of benefit for fur-
ther increase in inputs, we just need to replace

(xo, yo) by (β+
1 xo, α(β

+
1 )yo) and repeat the afore-

mentioned process. In this case, we do not need
to solve Problem (3.3) from the scratch. Instead,
we update the right hand side of the previous op-
timal simplex table accordingly and perform the
dual simplex algorithm to get the optimal simplex
table corresponding to (β+

1 xo, α(β
+
1 )yo) (see nu-

merical example in Section 3). If the case m+
1 < 1

occurs, that means the proportional increase in
inputs is not favorable. In this case, we should
examine the proportional decrease in inputs.
To investigate the proportional decrease in in-
puts (when m+

1 < 1), we should compute ᾱ(β̄)
for β̄ < 0. To this end, after solving Problem
(3.3) for β̄ = 0, we perform the parametric anal-

ysis in the direction of

(
1m×1

0(s+1)×1

)
for nega-

tive parameters. Let suppose that ᾱ(β̄) = m−
1 β̄

for β̄ ∈ [β̄−
1 , 0]. It means that α(β) = βm−

1 for
β ∈ [exp(β̄−

1 ), 1] = [β−
1 , 1]. If m−

1 ≥ 1, then the
proportional decrease in the inputs is not benefi-
cial and since m+

1 < 1 the proportional increase
in the inputs is not beneficial as well and hence
CRS prevail at (xo, yo). If m

−
1 < 1, then the pro-

portional decrease in the inputs is beneficial and
DRS prevail at (xo, yo). Like the previous case, to
calculate the rate of benefit up to the MPSS, we
just need to replace (xo, yo) by (β−

1 xo, α(β
−
1 )yo)

and repeat the process.

Theorem 3.1. If (xo, yo) ∈ Tm is an efficient
unit and the proportional decrease in the inputs
is possible for that, then m+

1 ≤ m−
1 .

Proof. By definition of m+
1 and m−

1 , we have

(β1xo, β
m+

1
1 y0) ∈ Tm and (β2xo, β

m−
1

2 y0) ∈ Tm,
where β1 ∈ [1, β+

1 ] and β2 ∈ [β−
1 , 1]. Due to

the geometrical convexity property of Tm, we

have (βλ
1β

1−λ
2 xo, β

λm+
1

1 β
(1−λ)m−

1
2 y0) ∈ Tm for each

λ ∈ [0, 1]. We consider λ̃ = ln(β2)
ln(β2)−ln(β1)

for which

βλ̃
1β

1−λ̃
2 = 1. Since (xo, yo) is an efficient unit,

β
λ̃m+

1
1 β

(1−λ̃)m−
1

2 ≤ 1 which means m+
1 ≤ m−

1 .

According to the above theorem and what was
discussed before, if m+

1 = 1, then m−
1 ≥ 1 and so

CRS prevail at (xo, yo).
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3.1 Generalized RTS in the Existence
of Non-Discretionary Factors

Up to now, we implicitly assumed that all in-
puts and outputs are discretionary, i.e., can be
controlled by the management of each DMU and
varied at its discretion. Thus, we calculated the
proportional variation in all outputs with respect
to the proportional variation in all inputs. How-
ever, there may exist non-discretionary inputs or
outputs that are beyond the control of a DMU’s
management. In this case we should redefine the
generalized RTS as the proportional variation in
discretionary outputs with respect to the propor-
tional variation in discretionary inputs. In this
section, we aim to show that the proposed al-
gorithm can be easily modified to take care of
non-discretionary factors.

Suppose that the input and output variables
may each be partitioned into subsets of discre-
tionary (D) and non-discretionary (N) variables.
Thus,

I = {1, 2, ...,m} = ID
∪

IN with IN
∩

ID = ∅

and

O = {1, 2, ..., s} = OD

∪
ON with ON

∩
OD = ∅

where ID, OD and IN , ON refer to discretionary
(D) and non-discretionary (N) input, I, and out-
put, O, variables, respectively. Then, we modify
Problem (3.2) as follows:

α(β) = maxα

s.t.∏
j∈J

x
λj

ij ≤ βxio, i ∈ ID

∏
j∈J

x
λj

ij ≤ xio, i ∈ IN

∏
j∈J

y
λj

rj ≥ αyro, r ∈ OD (3.4)

∏
j∈J

y
λj

rj ≥ yro, r ∈ ON

∑
j∈J

λj = 1, λj ≥ 0 ∀j ∈ J,

Problem (3.3) should also be modified accord-
ingly. After solving the modified version of Prob-
lem (3.3), we only need to modify the direction

in which we perturb the right hand side vector.
In this case, we only perturb the right hand side
components corresponding to the discretionary
inputs. The other parts of the algorithm would
remain the same.

4 Numerical Example

To verify the proposed algorithm, we apply it to
example of the preceeding section.

Example 4.1. We consider DMUA as a unit un-
der assessment. Problem (3.3) corresponding to
this unit is:

max α (4.5)

λ2 ln 2 + λ3 ln 3 + λ4 ln 6 + λ5 ln 7 ≤ 0

λ2 ln 5 + λ3 ln 10 + λ4 ln 20 + λ5 ln 22 ≥ α

λ1 + λ2 + λ3 + λ4 + λ5 = 1

(λ1, λ2, λ3, λ4, λ5) ≥ 0

Table 2 illustrates the optimal simplex tableau of
Problem (4.5).
To do the parametric analysis in the direction of 1

0
0

, we should compute the maximum value

of β̄+
1 for which B−1(b+ β̄+

1 b
′) ≥ 0, where

B−1 =

 −1.44 0 1
1.44 0 0
2.32 − 1 0

 , B−1b =

 1
0
0

 ,

b′ =

 1
0
0

 .

It can be easily shown that β̄+
1 = 0.693. The

slope of the optimal objective function is equal
to m+

1 = (0 0 1)B−1b′ = 2.321. Therefore,

α(β) = βm+
1 = β2.321, ∀β ∈ [1, exp(β̄+

1 )]

= [1, 1.999].

It means that if we proportionally increase the
inputs by β ∈ [1, 1.999], then the outputs increase
proportionally by α(β) = β2.321. Since 1.999 ≈ 2
and 2.321 ≈ ln 5

ln 2 , these results coincide with what
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we obtained in previous section without using this
algorithm.

Now, we update the R.H.S. column by replac-
ing it with B−1(b + β̄+

1 b
′). Table 3 depicts the

next table.
According to dual simplex algorithm, λ1

leaves the basis and λ3 enters the basis. Table
4 represents the table after dual simplex pivoting.

We should again do the parametric analysis
with the data in Table 4. In this case, we have
β̄+
2 = 0.405 and m+

2 = 1.709. Thus,

α(β) = β1.709, ∀β ∈ [1, 1.499].

Since 1.499 ≈ 1.5 and 0.405 ≈ ln 2
ln 1.5 , the algo-

rithm’s result is consistent with what we obtained
before in Example 4.1.

The next step is updating the R.H.S. and im-
plementing the dual simplex algorithm. Dual
simplex makes λ2 leave the basis and λ4 enter
the basis. Table 5 is the Table 5.
Regarding Table 4, β̄+

3 = 0.693 and m+
3 = 1.

Hence, we reach the MPSS pattern at
(exp(β̄+

1 ) exp(β̄
+
2 )x0, α(exp(β̄

+
1 ))α(exp(β̄

+
2 ))yo)

= (3, 10), and algorithm terminates.

5 Conclusion

RTS has been introduced to provide useful in-
formation about the optimal size of units and
whether the expansion or contraction of each unit
is beneficial. However, the traditional DEA mod-
els provide these information based on some local
investigation about the proportional variation in
outputs with respect to the variation in inputs.
These local information may not be enough for
manager to make a good decision because they
do not tell how beneficial is the expansion or the
contraction of each unit. The generalized RTS
has been introduced to overcome this drawback,
and in this paper we proposed an algorithm to
provide global information about the rate of ben-
efit in multiplicative models. We also explained
how the algorithm can be modified in order to in-
clude the non-discretionary inputs and outputs.
There are several ways to develop the present
study. In the proposed models, only ordinary
data and non-dicretionary inputs were consid-
ered. Development of the model to include un-

desirable outputs, which play a significant role
in environmental data envelopment analysis stud-
ies, can be considered as a pathway for research.
Studying the Generalized return to scale for units
with network structures, developing this concept
for GDEA, paying attention to fuzzy, interval, in-
teger and negative data can also be a roadmap for
future studies.
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