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Abstract

In this paper, a novel and practical approach is proposed to solve the fuzzy optimal control (FOC) us-
ing an improved multi-layer perceptron (IMLP) network along with the Pontryagin minimum principle
(PMP).
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1 Introduction

O
ptimal control issues appear widely in various
sciences [21, 27]. The numerical solution of

these issues is of great importance. As such, sev-
eral methods have been proposed to solve such
problems such as [2, 4, 5, 9, 10, 11, 12, 19, 23, 25]
which are often, based on PMP [14], Hamilton-
Jacobi-Bellman (HJB), partial differential equa-
tion (PDE) [14, 17], and the optimization con-
trol problems (OCP). On the other hand, the
MLP network is a powerful tool to estimate many
functions [3, 6]. Effati and Pakdaman (2013) uti-
lized the neural networks to approximate the so-
lution for a OCP [6]. In many systems, uncer-
tainty is common while the fuzzy sets are useful
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to handle this uncertainty [15]. In the past few
decades, the concept of the fuzzy set [28] has re-
cently expanded in various research fields such
as optimization, differential equations, and OCP.
Therefore, fuzzy optimal control theory gener-
ates a suitable condition to formulate the real
world problems under uncertainty [11]. The inter-
ested readers can refer to some applications of the
fuzzy control systems. In [12] authors described
the Nowak-May model using fuzzy variables and
then proposed the fuzzy control model to max-
imize the uninfected cells of HIV disease. Zarei
et al. [29] developed a fuzzy mathematical model
of HIV infection including the linear fuzzy differ-
ential equations. Mazandarani, and Kamyad [23]
provided a fuzzy model of diabetes mellitus type
2. Although the notion of fuzzy sets is widely
spread for several control optimization problems,
establishing necessary optimality conditions for
fuzzy optimal control problems is seldom avail-
able in literature [15, 16, 22, 24, 26].
In this research, a novel and practical method is
developed based on the fuzzy multi-layer percep-
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tion (FMLP) network to solve the fuzzy optimal
control problems (FOCP). The current research
consists of following sections: In Section 2, the
basic and required concepts are expressed. In Sec-
tion 3, the estimate of control optimization prob-
lems has been stated using FMLP network. In
Section 4, the numerical examples are presented.
Finally, in Section 5, the conclusion is presented.

2 Definitions and required the-
orems

In this section we introduce notations, definitions,
some preliminary notions, and required theorems,
which is used to propose the model.

Definition 2.1 The fuzzy number
ã : R → [0, 1] is a mapping with the properties:

(i) ã is normal, i.e. there exists x ∈ R such that
ã(x) = 1.

(ii) ã is a convex, i.e.

∀x, y ∈ R and λ ∈ [0, 1],
ã(λx+ (1− λ)y) ≥ min{ã(x), ã(y)}.

(iii) ã is upper semi continuous.

(iv) cl{s ∈ R | u(s) > 0}. is compact in x ∈ R.

The α-level set of a fuzzy number u ∈ E1, 0 ≤
α ≤ 1, denoted by uα, is defined as:

|ã|α=

{
{s ∈ R | ã(s) ≥ α} 0 < α ≤ 1

cl{s ∈ R | u(s) > 0} α = 0

(2.1)
If ã : R → [0, 1], then ã is fuzzy convex, so [ã]α is
closed and bounded in R, i.e. [ã]α = [a(α), a(α)],
where a(α) = inf{x ∈ R : ã(x) ≥ α} > −∞ and
a(α) = sup{x ∈ R : ã(x) ≥ α} < ∞. For more
detail see [3].

Lemma 2.1 (see [20]) Denote I = [0; 1]. As-
sumed that a : I → R and a : I → R satisfy the
following conditions:

(1) a : I → R is a bounded increasing function;

(2) a : I → R is a bounded decreasing function;

(3) a(1) ≤ a(1),

(4) for 0 < k ≤ 1, lim
α→k−

a(α) = a(k) and

lim
α→k−

a(α) = a(k)

(5) lim
α→0+

a(α) = a(0) and lim
α→0+

a(α) = a(0).

Then ã : [0, 1] → R characterized by ã(x) =
sup{α : a(α) ≤ x ≤ a(α)} is a fuzzy number.
Also if ã : R → [0, 1] is a fuzzy number with
[ã]α = [a(α), a(α)], then functions a(α) and a(α)
satisfy conditions (1)− (5) in Lemma (2.1).

Definition 2.2 If A and B be fuzzy numbers
with [A]α = [a(α), a(α)], [B̃]α = [b(α), b(α)] and
α ∈ [0, 1], then fuzzy operation between them are
defined as follows [30].

[A+B]α = [a(α) + b(α), a(α) + b(α)],

[−A]α = [−a(α),−a(α)],

[A−B]α = [a(α)− b(α), a(α)− b(α)],

[λA]α = [λa(α), λa(α)], λ > 0,

[λA]α = [λa(α), λa(α)], λ < 0.

So, the fuzzy number ã is triangular if a(1) =
a(1), a(α) = a(1) − (1 − α)(a(1) − a(0)) and
a(α) = a(1) + (1 − α)(a(0) − a(1)). The tri-
angular fuzzy number ã is generally denoted by
ã = ⟨a(0), a(1), a(0)⟩.

Definition 2.3 Let ã, b̃ ∈ F . We write [8]

1) ã ≤ b̃ if a(α) ≤ b(α) and a(α) ≤ b(α) for all
α ∈ [0, 1],

2) ã < b̃ if ã ≤ b̃ and there exists an α ∈ [0, 1] so
that a(α) ≤ b(α) and a(α) ≤ b(α),

3) ã = b̃ if ã ≤ b̃ and ã ≥ b̃. In the other words,
ã = b̃, if ã(α) = b̃(α) for all α ∈ [0, 1],

4) ã, b̃ ∈ F are comparable if either ã ≤ b̃ or
ã ≥ b̃, and non-comparable otherwise.

Definition 2.4 Let x̃ : T → F (R) is Hukuhara
differentiable at t0 ∈ T ⊆ R if for some h0 > 0 the
Hukuhara difference x̃(t0+△t) ∼h x̃(t0), x̃(t0) ∼h

x̃(t0 +△t), exist in E for all 0 < △ < h0 and if
there exist an element ˜̇x(t0) ∈ F (R) such that

lim
△t→0+

d∞

( x̃(t0 +△t) ∼h x̃(t0)

△t
, ˜̇x(t0)

)
= 0.

(2.2)
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And

lim
△t→0+

d∞

( x̃(t0) ∼h x̃(t0 +△t)

△t
, ˜̇x(t0)

)
= 0.

(2.3)
The fuzzy set ˜̇x(t0) is called the Hukuhara deriva-
tive of x̃ at t0 [1]. Recall that U ∼h V = W are
defined on level sets, where [U ]α ∼h [V ]α = [W ]α
for all 0 ≤ α ≤ 1. By consideration of definition
of the metric d∞, all the level set mappings [x̃(.)]α
are Hukuhara differentiable at t0 with Hukuhara
derivatives [˜̇x(t0)]α for each 0 ≤ α ≤ 1, when
x̃ : T → F (R) is Hukuhara differentiable at with
Hukuhara derivative [˜̇x(t0)]α.

Definition 2.5 A mapping x̃ : T → F (R) is
called a fuzzy process. We denote

[x̃(t)]α = [xα(t), xα(t)], t ∈ I, α ∈ (0, 1]. (2.4)

The Seikkala derivative x′(t) of a fuzzy process y
is defined by

[˜̇x(t)]α = [ẋα(t), ẋα(t)], α ∈ (0, 1]. (2.5)

Provided the equation defines a fuzzy number
ẋ(t) ∈ F (R).

Definition 2.6 (see [13]). Let f̃ be a function
defined by f̃ : V → F (R), where V is a real vec-
tor space. Then f̃ is called fuzzy-valued function
on V . For any x ∈ V, f̃(x), is a fuzzy number
(since f̃(x) ∈ F (R)). Defined two real-valued
functions f(α) and f(α) on V for each α ∈ [0, 1].
Therefore, Obtained the real numbers f(x, α) and

f(x, α) for each α ∈ [0, 1]. When writed

f(x, α) =
(
f(x)

)
andf(x, α) =

(
f(x)

)
. (2.6)

Therefore, the fuzzy valued function f̃ defined on
the real vector space V can induce a family of
real-valued functions f(x, α) and f(x, α) for each
α ∈ [0, 1] which are given in equation (2.7). Also
it holds f(x, α) ≤ f(x, α) for any α ∈ [0, 1].

Definition 2.7 (see [8]) We say that f̃ : V ⊆
R → F is continuous at x ∈ V , if both f(x, α)

and f(x, α) are continuous functions of x ∈ V ,
for all α ∈ [0, 1].

Definition 2.8 (see [8]) Suppose that f̃ : V ⊆
R → F is fuzzy-valued function with [f̃(x)]α =

(f(x, α), f(x, α)). If the partial derivatives of

f(x, α) and f(x, α) with respect to x ∈ R exist

and the interval (f ′(x, α), f ′(x, α)) defines the α-
level set of a fuzzy number for x ∈ R, α ∈ [0, 1].
Then For x ∈ R, α ∈ [0, 1] is called differentiable
and we write

f̃ ′(x, α) =
(
f ′(x, α), f ′(x, α)

)
. (2.7)

Definition 2.9 If
(∂f(x, α)

∂xi
,
∂f(x, α)

∂xi

)
, i =

1, 2, . . . n. Then f̃ : V ⊆ Rn → F is the gradient
of fuzzy-valued function. Defines the α-level set
of a fuzzy number, then the gradient of f̃ at x is

▽[f̃(x)]α =
(∂[f̃(x)]α

∂x1
,
∂[f̃(x)]α

∂x2
, . . . ,

∂[f̃(x)]α
∂xn

)
.

(2.8)

Usind Lemma (2.1), the sufficient conditions that
the gradient of f̃ at x exist are: For α ∈ [0, 1]
the partial derivatives of f(x, α) and f(x, α) exist
with respect to xi, [8].
∂[f(x)]α

∂xi
is a continuous increasing function of α

(it provide condition (1)),
∂[f(x)]α

∂xi
is a continuous decreasing function of

(it provide condition (2)),
∂[f(x)]α

∂xi
≤ ∂[f(x)]α

∂xi
provide condition (3).

Definition 2.10 (see [8]) Suppose that f̃ : V ⊆
R → F is integrable with respect to x, if
both f(x, α) and f(x, α) are Lebesgue integrable
functions of x ∈ R, for all α ∈ [0, 1] and
(
∫
f(x, α)dx,

∫
f(x, α)dx), defines the α-level set

of a fuzzy number. Denoted the integral of fuzzy
function f̃ with respect to for α ∈ [0, 1] by∫

[f̃(x)]αdx =

∫
f(x, α)dx,

∫
f(x, α)dx. (2.9)

Using Lemma (2.1), the suffcient conditions
that

∫
f(x, α)dx and

∫
f(x, α)dx provide condi-

tion (1) and condition (2), respectively. Also∫
f(x, 1)dx ≤

∫
∂f(x, 1)dx provide condition (3).

Definition 2.11 (Distance measure between
fuzzy functions [8]). Suppose that f̃ : V ⊆ R → F
and g̃ : V ⊆ R → F are two fuzzy functions. The
distance measure between f̃ and g̃ is defined by
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DF (f̃ , g̃) = sup
0≤α≤1

H([f̃(x)]α, [g̃(x)]α)

= max
{

sup
z∈[f̃(x)]α)

H(z, [g̃(x)]α)),

sup
y∈[g̃(x)]α)

H([f̃(x)]α), y)
}

(2.10)

where H is the well-known Hausdorff metric on
the family of all nonempty compact subsets of
R, and d(a,B) = infb∈B d(a, b). For notational
convenience, defined for any f̃ : V ⊆ R → F

∥f̃(x)∥2F= DF (f̃(x), f̃(x)), ∀x ∈ S. (2.11)

Definition 2.12 Let x̃(.) and x̃(.)+δx̃(.) be fuzzy
functions for which the fuzzy functional J̃ is
efined. The increment of J̃ , denoted by △J̃ , is
defined as △J̃ := J̃(x̃ + δx̃) ⊖ J̃(x̃), where δx̃(.)
is known as the variation of δx̃(.). In order to
emphasize that the increment △J̃ depends on the
fuzzy functions x̃ and δx̃, we may denote △J̃ by
△J̃(x̃, δx̃) [8].

Definition 2.13 Let the increment of J̃ can be
written as [8]

△ J̃(x̃, δx̃) := δJ̃(x̃, δx̃)+ η(x̃, δx̃).∥δx̃∥F (2.12)

where δJ̃ is linear in δx̃. If for any ϵ > 0,

DF (η(x̃, δx̃), 0̃) < ϵ, as ∥δx̃∥F→ 0. (2.13)

Then, we say that J̃ is differentiable on x̃.

Definition 2.14 A fuzzy functional J̃ with do-
main C̃[t0, tf ], the class of all fuzzy continuous
functions on C̃[t0, tf ], has a fuzzy relative mini-
mizer x̃∗ = x̃∗(t), if the increment of J̃ is fuzzy
non-negative, that is, J̃(x̃) ≥ J̃(x̃∗) for all fuzzy
functions x̃ in C̃[t0, tf ]. Notice that the The
above-mentioned inequality holds if and only if
x̃, α ≥ x̃∗, α and x̃, α ≥ x̃∗, α for all α ∈ [0, 1].

Theorem 2.1 (Fuzzy fundamental theorem)
Suppose that x̃, δx̃ ∈ C̃[t0, tf ] are fuzzy functions
of t ∈ [t0, tf ] and J̃(x) is differentiable fuzzy
functional of x̃. If x̃∗ is a fuzzy minimizer of
J̃ , then the variation of J̃ regardless of any
boundary conditions must vanish on x̃∗, that is,

δJ̃(x̃, δx̃) = 0̃, (2.14)

for all admissible δx̃ having the property
x̃, δx̃ ∈ C̃[t0, tf ].

Proof. See [8].

Now we consider the fuzzy initial value problem

˜̇x(t) = f̃(t, x̃(t)), x̃(0) = 0 (2.15)

where f̃ : [0, T ] × F (R) is obtained by Zadeh’s
extension principle from a continuous function
f̃ : [0, T ] × R → R Note that f̃ is continu-
ous because f is continuous (see [24]), and if
f : R × R → R is a continuous function then
according to Zadehs extension principle one can
extend f to f̃ : F(R)×F(R) → F(R) by the equa-
tion f̃(ũ, ṽ)(z) = supz=f(s,t)min(µ̃(s), ṽ(t)). It is

well known that [f̃(ũ, ṽ)]α = f̃([ũ]α, [ṽ]α), α ∈
[0, 1], µ̃ ∈ F (R), ṽ ∈ F (R) we have [f̃(t, x̃)]α =
f̃(t, [x̃]α) where f(t, A) = {f(t, a) | a ∈ A}. Asso-
ciated with (2.15) we can consider the following
crisp differential equation

ẋ(t) = f(t, x(t)), x(0) = x0 (2.16)

where ẋ(t) is the derivative of a crisp function
x : [0, T ] → R.

Theorem 2.2 (see [7]) let x̃ ∈ F(R). Suppose
that f is a continuous function and for each x0 ∈
R there exists a unique solution x(., x0) for (2.16)
and that x(t, .) is continuous in R for each t ∈
[0, T ]. Then: If f̃ is nondecreasing with respect
to the second argument, then the fuzzy solution of
(2.15) and the solution of (2.16).

2.1 Multi-layer perceptron Network
and it training

A multi-layer perceptron (MLP) is a class of feed
forward artificial neural network. An MLP con-
sists of at least three layers of nodes. Except
for the input nodes, each node is a neuron that
uses a nonlinear activation function. MLP uti-
lizes a supervised learning technique called back
propagation for training. Its multiple layers and
non-linear activation distinguish MLP from a lin-
ear perceptron. It can distinguish data that is
not linearly separable. Multi-layer networks use
a variety of learning techniques, the most popular
being back-propagation (BP), which is based on
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The error correction learning rule. So, to calcu-
late sensitivities for the different layers of neurons
in the MLP network the Derivative of conversion
neurons functions is required. So functions used
that have derivative. One of these functions is the
sigmoid function defined. it is A real, bounded,
and derivative function. The sigmoid function
has a positive derivative, and has the following

general relationship S(n) =
1

1− e−n
.

Theorem 2.3 (The World approximation
Builder) The multi-layer perceptron network
with one hidden layer with a sigmoid function
in the middle layer and linear transformation
functions in output layer are able to approximate
All functions in any degree of the integral of the
square (see [12]).

2.2 Quasi-Newton BFGS method

For compute the value of some predefined error-
function the output values are compared with the
correct answer. which it by various techniques,
the error is then fed back through the network.
Using this information, the algorithm adjusts the
weights of each connection in order to reduce the
value of the error function by some small amount.
After repeating this process for a sufficiently large
number of training cycles, the network will usu-
ally converge to some state where the error of
the calculations is small. In this case, one would
say that the network has learned a certain target
function. To adjust weights properly, must min-
imize unconstrained optimization problem. For
that purpose, minimization techniques such as
the steepest descent method and the conjugate
gradient or Quasi-Newton methods can be em-
ployed. The Newton method is one of the impor-
tant algorithms in nonlinear optimization. The
main disadvantage of the Newton method is that
it is necessary to evaluate the second derivative
matrix (Hessian matrix). Quasi-Newton meth-
ods were originally proposed by Davidon in 1959
and were later developed by Fletcher and Pow-
ell (1963). The most fundamental idea in quasi-
Newton methods is the requirement to calculate
an approximation of the Hessian matrix. Here the
Quasi-Newton BFGS (Broyden Fletcher Goldfarb
Shanno) method is used. This method is quadrat-
ically (see [18]).

3 Solution of Fuzzy optimiza-
tion control problem (FOCP)
using Artificial Neural Net-
work

In this paper, the following type of FOCP is con-
sidered as follows:

Minimize J̃(ũ) :

∫ tf

t0

g̃(x̃(t), ũ(t), t)dt

subject to ˜̇x(t) = h̃(x̃(t), ũ(t), t), (3.17)

x̃(t0) = x̃0, x̃(tf ) = x̃f .

Where g̃ and h̃ assign a fuzzy number to the fuzzy
point (x̃(t), ũ(t), t) ∈ F2×R, where the fuzzy state
x̃(t) and the fuzzy control ũ(t) are fuzzy functions
of belonging to the specified interval [t0, tf ]. As-
suming that the integrand g̃ and fuzzy function
h̃ have continuous first and second partial deriva-
tives with respect to all of their arguments. Sup-
pose x̃ = x̃(t) is admissible, if it satisfies the end-
points conditions and also is twice continuously
differentiable with respect to t ∈ [t0, tf ]. Also an
admissible fuzzy control ũ = ũ(t) is that is not
bounded.
In order to model this problem, the fuzzy La-
grange multiplier is adopted. To begin with, the
fuzzy augmented functional is formulated as fol-
lows:

J̃a(ũ) =

∫ tf

t0

g̃a(x̃(t), ũ(t), P̃ (t), ˜̇x(t), t)dt. (3.18)

Where

g̃a(x̃(t),ũ(t), P̃ (t), ˜̇x(t), t) := g̃(x̃(t), ũ(t), t)

+ P̃ (t)h̃(x̃(t), ũ(t), t)⊖ ˜̇x(t). (3.19)

In order to simplify the result presentations, the
special case is stated in the following assumption.

Remark 3.1 To simplify the variation equa-
tions, it is assumed that Jα(ũ) or Jα(ũ) is stated
in terms containing only x(t, α) and x(t, α) or
(x(t, α) and ẋ(t, α)). In this case, Jα(u, α) and
Jα(u, α) are considered instead of Jα(ũ, α) and
Jα(ũ, α), respectively.
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On the ũ∗, the variation of J̃α must be zero. That
is, δJ̃α(ũ

∗) = 0̃. This admits for all α ∈ [0, 1],

δJα(u
∗, α) = 0̃, (3.20)

and

δJα(u
∗, α) = 0̃. (3.21)

Originally, for relation (3.20), the following for-
mulation is considered:

δJα(u
∗, α) =

∫ tf

t0

{[∂g
α

∂x
(x∗(t), u∗(t)

, P ∗(t), ẋ∗(t), t, α)

− d

dt

(∂g
α

∂ẋ
(x∗(t), u∗(t), P ∗(t), ẋ∗(t), t, α

)]
δx

+
[∂g

α

∂x
(x∗(t), u∗(t), P ∗(t), ẋ∗(t), t, α)

]
δu

+
[∂g

α

∂x
(x∗(t), u∗(t), P ∗(t), ẋ∗(t), t, α)

]}
δPdt

(3.22)

= 0

Regarding the fuzzy augmented integrand func-
tion g̃α defined in (3.19), the latter equation can
be written as follows:∫ tf

t0

{[∂g
α

∂x
(x∗(t), u∗(t), P ∗(t), ẋ∗(t), t, α)

+ P ∗(t, α)
(∂g

α

∂x
(x∗(t), u∗(t), t, α

)
−

d

dt
(−P ∗(t, α))

]
δx+

[∂g
α

∂x
(x∗(t), u∗(t), t, α)

+ P ∗(t, α)
(∂g

α

∂x
(x∗(t), u∗(t), t, α

)]
δu+

h[h(x∗(t), u∗(t), t, α)− ẋ∗(t, α)]δP}dt = 0
(3.23)

As this constraint must be satisfied by the ex-
tremal ũ∗, it is found out that

ẋ∗(t, α) = h(h(x∗(t), u∗(t), t) (3.24)

and hence the coefficient of δP in (3.23) is zero.
Moreover, the arbitrary fuzzy Lagrange multi-
plier P ∗ can be chosen such that the coefficient of

δx does not appear in the above integral. Thus:

P ∗(t, α) =
[∂g

α

∂x
(x∗(t), u∗(t), P ∗(t), ẋ∗(t), t, α)

+ P ∗(t, α)
(∂g

α

∂x
(x∗(t), u∗(t), t, α

)]
.

(3.25)

There exists nevertheless a term inside the inte-
gral (3.23) to deal with. As the equality (3.23)
must be satisfied, it is obtained that:

∂g
α

∂x
(x∗(t), u∗(t), P ∗(t), ẋ∗(t), t, α) + P ∗(t, α)(∂g

α

∂x
(x∗(t), u∗(t), t, α

)
= 0. (3.26)

As such, the well-known Hamiltonian function is
constructed as follows:

H(x̃(t), ũ(t), P̃ (t), t) :=

g̃(x̃(t), ũ(t), t) + P̃ (t), h̃(x̃(t), ũ(t), t) (3.27)

where P̃ is the so-called fuzzy Lagrange multiplier
with the α-level set

H(x̃(t), ũ(t), P̃ (t), t)[α] =
(

H(x(t), u(t), P (t), t, α), H(x(t), u(t), P (t), t, α)
)

(3.28)

where

H(x(t), u(t), P (t), t, α) =

g(x(t), u(t), t, α) + P (t), h(x(t), u(t), t, α) (3.29)

H(x(t), u(t), P (t), t, α) =

g(x(t), u(t), t) + P (t), h(x(t), u(t), t, α) (3.30)

Using the left-hand Hamiltonian function
H(x(t), u(t), P (t), t, α) defined in (3.29), the
equations (3.24)-(3.26) can be written more
compactly as follows:

ẋ∗(t) =
∂H(x∗(t), u∗(t), P (t)∗, t)

∂P ∗ (3.31)

Ṗ
∗
(t) = −∂H(x∗(t), u∗(t), P (t)∗, t)

∂x∗
(3.32)

0 =
∂H(x∗(t), u∗(t), P (t)∗, t)

∂u∗
(3.33)

for all α ∈ [0, 1], t ∈ [t0, tf ]. According to the
above, it can be said that:
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Theorem 3.1 Let x∗α = x∗(t, α) be an admissi-
ble fuzzy function, i.e., it is twice continuously
differentiable fuzzy function. Then, in order that
x∗α give a relative (local) minimum to the fuzzy
functional Jα in (FOCP), it is necessary that for
all α ∈ [0, 1], t ∈ [t0, tf ].

Again, following the scheme of obtaining (3.31)-
(3.33) and adapting it to the case under consid-
eration involving (3.21), one may show that for
all α ∈ [0, 1], t ∈ [t0, tf ].

ẋ
∗
(t) =

∂H(x∗(t), u∗(t), P (t)∗, t)

∂P
∗ (3.34)

Ṗ
∗
(t) = −∂H(x∗(t), u∗(t), P (t)∗, t)

∂x∗
(3.35)

0 =
∂H(x∗(t), u∗(t), P (t)∗, t)

∂u∗
(3.36)

Theorem 3.2 Let x∗α = x∗(t, α) be an admissi-
ble fuzzy function, i.e. it is twice continuously
differentiable fuzzy function. Then, in order that
x∗α give a relative (local) minimum to the fuzzy
functional Jα in (FOCP), it is necessary that for
all α ∈ [0, 1], t ∈ [t0, tf ].

Now, using Theorem (3.1) and Theorem (3.2),
let x̃∗α = x̃∗(t, α) be an admissible fuzzy func-
tion, i.e. it is twice continuously differentiable
fuzzy function. Then, in order that x̃∗α give a rel-
ative (local) minimum to the fuzzy functional J̃α
in (FOCP), it is necessary that for all α ∈ [0, 1],
t ∈ [t0, tf ]. Indeed, for the Hamiltonian function
in (3.27) and using (3.28) necessary conditions
for the binary (x∗α, x

∗
α) the optimal solution of

(3.17) is the existence of a costate vector func-
tion (u∗α, u

∗
α) that satisfies the following differen-

tial equations (3.31)-(3.36), where (x∗α, x
∗
α) is the

same as x̃∗α while (u∗α, u
∗
α) is the same as ũ∗α.

Now, it is tried to develop an approximation
method to solve the equations arising in PMP.
This proposed method is a three-equation system
with initial conditions and boundary conditions.
The proposed equation system is defined as fol-
lows:

x̃T = f1(t) + f2(t, Ñetx(t, α, φ̃x))

p̃T = f3(t)Ñetp(t, α, φ̃p)

ũT = Ñetu(t, α, φ̃u)

(3.37)

Where, ∀i = 1, 2, 3, fi(t), is an arbitrary function
in terms of the variable t, so that the conditions
of the issue are true. includes all weights of re-
lation (3.37). Three fuzzy neural networks are
introduced for each equation mentioned above as
follows:

Ñetx(t, α, φ̃x) =

k∑
i=1

ṽix

1 + e−w̃1ixt−w̃2ixα−b̃ix

(3.38)

Ñetp(t, α, φ̃p) =
k∑

i=1

ṽip

1 + e−w̃1ipt−w̃2ipα−b̃ip

(3.39)

Ñetu(t, α, φ̃u) =

k∑
i=1

ṽiu

1 + e−w̃1iut−w̃2iuα−b̃iu
.

(3.40)
By replacing the approximate solutions into
the fuzzy Hamiltonian function, an approximate
fuzzy Hamiltonian H̃T is defined where the func-
tions x̃, p̃ and ũ are replaced by their correspond-
ing approximate format

H̃(x̃T (t), ũT (t), p̃T (t), t)[α] = (H(xT (t), uT (t)

, p
T
(t), t, α),H(xT (t), uT (t), pT (t), t, α)) (3.41)

with the α-level set, we have, x̃T = (xT , xT ), p̃T =
(p

T
, pT ), ũT = (uT , uT ) where



xT = f1(t) + f2(t)Netx(t, α, φx
)

p
T
= f(t)Netp(t, α, φp

)

uT = Netu(t, α, φp
)

xT = f1(t) + f2(t)Netx(t, α, φx)

pT = f(t)Netp(t, α, φp)

uT = Netu(t, α, φp)

(3.42)

Also, with the α-level set, we have, Ñetx =
(Netx, Netx), Ñetp = (Netp, Netp), Ñetu =
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(Netu, Netu), where



Netx(t, α, φx
) =

∑k
i=1

vix
1 + e−w1ixt−w2ixα−bix

Netp(t, α, φp
) =

∑k
i=1

vip

1 + e−w1ipt−w2ipα−bip

Netu(t, α, φu
) =

∑k
i=1

viu
1 + e−w1iut−w2iuα−biu

Netx(t, α, φx) =
∑k

i=1

vix

1 + e−w1ixt−w2ixα−bix

Netp(t, α, φp) =
∑k

i=1

vip

1 + e−w1ipt−w2ipα−bip

Netu(t, α, φu) =
∑k

i=1

viu

1 + e−w1iut−w2iuα−biu

(3.43)
On the other hand the trial solutions (3.42) must
satisfy conditions (3.34)-(3.36), so we replace
them in (3.34)-(3.36):

˜̇PT (t) +
∂H̃(x̃T (t), ũT (t), p̃T (t), t)

∂x̃T
= 0 (3.44)

˜̇xT (t)−
∂H̃(x̃T (t), ũT (t), p̃T (t), t)

∂p̃T
= 0 (3.45)

∂H̃(x̃T (t), ũT (t), p̃T (t), t)

∂ũT
= 0 (3.46)

To solve the equations (3.44)-(3.46), three error
functions are considered corresponding to each
equation as follows:

ẽ1(φ, t) =
[
˜̇PT (t) +

∂H̃(x̃T (t), ũT (t), p̃T (t), t)

∂x̃T

]2
(3.47)

ẽ2(φ, t) =
[
˜̇xT (t)−

∂H̃(x̃T (t), ũT (t), p̃T (t), t)

∂p̃T

]2
(3.48)

ẽ3(φ, t) =
[∂H̃(x̃T (t), ũT (t), p̃T (t), t)

∂ũT

]2
(3.49)

Where φ is a vector containing all weights of there
MLP networks (3.43). Note that φ contains all
weights ṽx, w̃1x, w̃2x, ṽp, w̃1p, w̃2p, ṽu, w̃1u and w̃2u.
With the α-level set, for relations (3.47)-(3.49)
and by deriving the functions contained in rela-
tion (3.42) the following equation is obtained as

follows:

e1(φ, t) =
k∑

i=1

[(
f ′
3(t)Netp + f3(t)

∂Netp
∂t

)
+
∂H(xT (t), uT (t), pT (t), t, α)

∂xT

]2
e2(φ, t) =

k∑
i=1

[(
f ′
1(t) + f ′

2(t)Netx + f2(t)

∂Netx
∂t

)
−

∂H(xT (t), uT (t), pT (t), t, α)

∂p
T

]2
e3(φ, t) =

k∑
i=1

[∂H(xT (t), uT (t), pT (t), t, α)

∂uT

]2
e1(φ, t) =

k∑
i=1

[(
f ′
3(t)Netp + f3(t)

∂Netp
∂t

)
+
∂H(xT (t), uT (t), pT (t), t, α)

∂xT

]2
e2(φ, t) =

k∑
i=1

[(
f ′
1(t) + f ′

2(t)Netx + f2(t)

∂Netx
∂t

)
− ∂H(xT (t), uT (t), pT (t), t, α)

∂pT

]2
e3(φ, t) =

k∑
i=1

[∂H(xT (t), uT (t), pT (t), t, α)

∂uT

]2
(3.50)

Finally, a total error function e(φ, t) = e1(φ, t) +
e2(φ, t) + e3(φ, t) + e1(φ, t) + e2(φ, t) + e3(φ, t) is
obtained.
So, instead of solving equations (3.44), (3.45) and
(3.46), the interval [t0, tf ] (by m points) is dis-
credited and then solved using following uncon-
strained fuzzy optimization problem:

E(p) = min

m∑
j=1

e(φ, tj) (3.51)

In this work, the relation (3.51) is minimized us-
ing the BFGS Quasi-Newton method (see [15] for
more details).

4 Numerical Examples

In this section, two examples that illustrate the
efficiency, simplicity and precision of the pro-
posed method are presented.

Example 4.1 Find the fuzzy control that mini-
mize

J̃(ũ) =

∫ 1

0
ũ2(t)dt, (4.52)
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subject to

˜̇x(ũ) = ũ(t)− (0, 1, 3)x̃(t), t ∈ [0, 1],

with boundary conditions

x̃(0) = 1 = (1, 1, 1), x̃(1) = 0 = (0, 0, 0).

In First step we must construct the Hamiltonian
function

H̃(x̃(t), ũ(t), P̃ (t), t, α) :=

ũ2(t) + P̃ (t)[ũ(t)− (0, 1, 3)x̃(t)] (4.53)

and hence the α-level set of H̃ is characterized by

H(x(t), u(t), P (t), t, α) = u2(t, α)

+ p(t, α)[u(t, α)− (3− 2α)u(t, α)] (4.54)

H(x(t), u(t), P (t), t, α) = u2(t, α)

+ p(t, α)[u(t, α)− (3− 2α)u(t, α)] (4.55)

According to (3.31)-(3.33), we must have:

ẋ(t, α) = u(t, α)− (3− 2α)x(t, α)

ẋ(t, α) = u(t, α)− (α)x(t, α)

ṗ(t, α) = (3− 2α)p(t, α)

ṗ(t, α) = (α)p(t, α)

0 = 2u(t, α) + p(t, α)

0 = 2u(t, α) + p(t, α)

(4.56)

We can select the approximate solution according
to the initial conditions x(0) = 1 = (1, 1, 1) and
x(1) = 0 = (0, 0, 0), as follows:

x̃T = (1− t)(1 + tÑetx(t, α, φ̃x))

p̃T = Ñetx(t, α, φ̃p))

ũT = Ñetu(t, α, φ̃u))

(4.57)

In this example, error function for two neurons
units with sigmoid function in the hidden layer
and for m = 50 equally spaced points inside the
interval [0, 1] is trained. The control and state
functions and Lagrange multipliers are shown for
each α-cut in Fig. 1.
E(P ) = 1.618451668844628e− 04

Example 4.2 Find the fuzzy control that mini-
mize

Figure 1: The control and state functions and
Lagrange multipliers for Example 4.1

J̃(ũ) =

∫ 1

0
[(2− x̃(x))2 + ũ2(t)]dt, (4.58)

subject to

˜̇x(ũ) = −(0, 0.25, 0.5)x̃(t) + ũ(t), t ∈ [0, 1],

with boundary conditions

x̃(0) = 0 = (0, 0, 0), x̃(1) = 2 = (2, 2, 2).

In First step we must construct the Hamiltonian
function

H̃(x̃(t), ũ(t), p̃(t), t) := [(2− x̃(t))2ũ2(t)]

+ P̃ (t)[−(0, 0.25, 0.5)x̃(t) + ũ(t)] (4.59)

and hence the α-level set of H̃ is characterized by

H(x(t), u(t), p(t), t, α) := [(2− x(t, α))2

+ u2(t, α)] + p(t, α)[−(0.5− 0.25α)x(t, α)

+ u(t, α)] (4.60)

H(x(t), u(t), p(t), t, α) := [(2− x(t, α))2

+ u2(t, α)] + p(t, α)[−(0.25α)x(t, α)

+ u(t, α)] (4.61)

According to (3.31)-(3.33), we must have:

ẋ(t, α) = −(0.5− 0.25α)x(t, α) + u(t, α)

ẋ(t, α) = −(0.25α)x(t, α) + u(t, α)

ṗ(t, α) = −2(2− x(t, α)) + p(t, α)

(−(0.5− 0.25α))

ṗ(t, α) = −2(2− x(t, α)) + p(t, α)(−0.25α)

0 = 2u(t, α) + p(t, α)

0 = 2u(t, α) + p(t, α)

(4.62)
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We can select the approximate solution according
to the initial conditions x(0) = 0 = (0, 0, 0) and
x(1) = 2 = (2, 2, 2), as follows:

x̃T = 2t+ t(t− 1)Ñetx(t, α, φ̃x)

p̃T = Ñetx(t, α, φ̃p)

ũT = Ñetu(t, α, φ̃u)

(4.63)

In this example, error function for two neurons
units with sigmoid function in the hidden layer
and for m = 50 equally spaced points inside the
interval [0, 1] is trained. The state function is
shown for each α-cut in Fig. 2 The control func-
tion is shown for each α-cut in Fig. 3.
E(P ) = 0.005391814261496

Figure 2: State function for Example 4.2

Figure 3: Control function for Example 4.2

5 Conclusion

In this paper, it is tried to provide an approx-
imate solution to FOCP. This approach allows
transforming a fuzzy problem to a set of crisp
problems via cut- , that can be solved with MLP

network method. The MLP network training is
based on minimizing the sum of squares errors
of all Crisp problems. One of the advantages of
the proposed method is that it provides a general
form of algorithms that can be designed based on
the neural network to approximate the solution
of FHJB equation and also for problems arising
in calculus of variations, formula of each of the
functions used in this method is determined by
the type of problem. Another advantage of the
proposed method is that as it obtains more so-
lutions that are precise, the number of hidden
layers and training points can be set depending
on the type of problem. In some cases, it can be
seen that the number of points or hidden layer of
the neural network can increased while in some
cases, they can be decreased. The proposed solu-
tion is an appropriate function for state, co-state,
and control functions. Using some examples, the
main novelties of this paper are highlighted by
solving some examples.
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