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Abstract

In this paper, we study a new enlargement of abstract sub-differential for any IPH function. We know
that ϵ−abstract sub-differential of any IPH function is an enlargement of its abstract sub-differential
and any point from the graph of ϵ−abstract sub-differential can be approximated by a point from
the graph of abstract sub-differential. This nice property, apart from its theoretical importance, gives
also the possibility to use the enlargement of abstract sub-differential in finding approximate solutions
of inclusions determined by abstract sub-differentials. We define a new enlargement and observe, in
the case abstract sub-differential, the relation between this new enlargement and the ϵ−abstract
sub-differential.

Keywords : Abstract Sub-Differential; Abstract Monotone Operator; Enlargement; ϵ−Abstract Sub-
Differential.
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1 Introduction

S
everal approaches to the theory of mono-
tone operators have established links between

maximal monotone operators and convex func-
tions (See [[5], [6], [7], [9], [13], [15], [18], [28],
[29]]). The richness of the theory of monotone op-
erators has given rise to a great number of works
and the simplification of proof and theory that
has resulted from the use of convex analysis tech-
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niques justifies an interest in these links. Recently
many authors have explored the use of convex
representative function in the study of monotone
operators, e.g., [[5], [6], [7], [13], [15], [18]]. In-
deed, let X be a real Banach space and X∗ be
the dual space of X. Denote by ⟨., .⟩ the dual-
ity product between X and X∗. Rockafellar in
[20] proved that sub-differentials of proper lower
semi-continuous convex functions on X are max-
imal monotone. In general, maximal monotone
operators are not sub-differentials of convex func-
tions. Krauss in [9] managed to represent max-
imal monotone operators by sub-differentials of
saddle functions on X×X. After that, Fitzpatrick
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[7] proved that the family

H(A) := {h : X× X∗ −→ (−∞,∞] :

h is a lower serni- continuous convex function,

for every (x, x∗) ∈ X× X∗, h(x, x∗) ≥ ⟨x, x∗⟩,
(x, x∗) ∈ A ⇐⇒ h(x, x∗) = ⟨x, x∗⟩}.

is non-empty where A is an arbitrary maximal
monotone subset of X×X∗. He defined the func-
tion φA : X× X∗ −→ (−∞,∞] by

φA(x, x
∗) = sup(x,x∗)∈A(x− y, y∗ − x∗) +
⟨x, x∗⟩ ∀(x, x∗) ∈ X× X∗.

and showed that φA ∈ H(A). It is worth not-
ing that φA is called the Fitzpatrick function

and moreover φA represents A, that is, φA ∈
H(A). In a recent paper, Martinez-Leqaz and
Thera [15] rediscovered the Fitzpatrick function
associated to maximal monotone operators and
characterized the family

{φA : A ∈ X× X∗ is maximal monotone}.

In [5] Burachik and Svaiter also rediscovered
Fitzpatrick functions and studied the whole

family of lower semi-continuous convex functions
associated with a given maximal monotone oper-
ator A, that is, those functions h ∈ H(A). Re-
cently, Martinez- Legaz and Svaiter [13] extended
the representation of maximal monotone opera-
tors by lower semi-continuous convex functions
to a larger class of monotone operators. Roughly
speaking the study of monotone operators is re-
duced to the study of the convexification of the
coupling function, restricted to the monotone set.
However, convexity is sometimes a restrictive as-
sumption, and therefore the problem arises how
to generalize the theory of monotone operators
via abstract convexity. The theory of Fenchel’s
conjugation and subdifferentials plays a central
role in convex analysis. Fenchels theorem on the
second conjugate and duaity for sum of two con-
vex functions, and the Fenchel-Rockafellar’s the-
orem on the sum of the subdifferentails have sub-
stantially influenced the development of convex
analysis and is applications in various ways. For
instance, Fenchels duality theorem, which states
an equality between the minimization of a sum
of two convex functions and the maximization of

the sum of concave functions, using conjugates, is
fundamental to the study of convex optimization.

In 1970, Moreau [16] observed the Fenchel’s
conjucation and the second conjugation theorem
can be established in a very general setting, us-
ing two arbitrary sets and arbitrary copling func-
tions. The second conjugation theorem in this
setting, known as fenchel moreau theorem, has
given rise to the rich theory of abstract convex-
ity (See [[17], [21], [23], [27]]). Morever, exten-
sions of Fenchel’s duality theorem and Fenchel-
Rockafellar’s theorem, which have played key
roles in the application of convex analysis, have
been presented for abstract convex functions in
[8]. In fact, Generalized Fenchel’s conjugation
theorem [[8], Corollay 5.2] is fundamental to our
study of abstract monotonicity.

Abstract convexity has found many applica-
tions in study of problem of mathematical anal-
ysis and optimization. Also, it has found inter-
esting applications to the theory of inequalities.
Abstract convexity opens the way for extending
some main ideas and results from classical con-
vex analysis to much more general classes of func-
tions, mappings and sets. It is well-known that
every convex, proper and lower semi-continuous
function is the upper envelope of a set of affine
functions. Therefore, affine functions play a cru-
cial role in classical convex analysis. In abstract
convexity, the role of the set of affine functions
is taken by alternative set H of functions, and
their upper envelopes constitute the set of ab-
stract convex functions Different choices of the
set H generate variants of the classical concepts,
and have shown important applications in global
optimization (See [22], [23], [24], [25]). Moreover,
if family of functions is abstract convex for a spe-
cific choice of H, then we can use some key ideas
of convex analysis in order to gain new insight on
these functions. On the other hand, by using an
alternative set for affine functions, we indentify
those facts in classical convex analysis which de-
pend on the specific properties of affine functions.
Abstract convexity has mainly been used for the
study of point-to-point functions. Examples of its
use in the analysis of multifunctions can be found
in works of Levin [10, 11], who focused in the
study of abstract cyclical monotonicity, and also,
Penot [18] by using a framework of generalized
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convexity showed the existence of a convex rep-
resentation of a maximal monotone operator by
a convex function which is invariant with respect
to the Fenchel conjugacy. Recently, Burachik and
Rubinov [2] studied semi-continuity properties of
abstract monotone operators. In this paper, we
study a new anlaryement of abstract for any IPH
function. We define a new enlargement and ob-
serve, in the case abstract sub-differential, the
relation between this new enlargement and the
ϵ−abstract sub-differential.

2 Preliminaries and notations

Let X and Y be two sets. Recall (See [2]) that a
set valued mapping (multifunction) from X to Y
is a mapping F : X −→ 2Y, where 2Y represents
the collection of all subsets of Y. we define the
domain and graph of F by

domF := {x ∈ X : F (x) ̸= 0}.

and

G(F ) := {(x, y) ∈ X×Y : y ∈ F (x)}.

Respectively. Let X be a set and L be a set
of real valued fuctions l : X −→ R, which will
be called abstract liner. For each l ∈ L and
c ∈ R consider the shift hl,c of l on the con-
stant c, hl,c(x) = l(x) − c. The function hl,c is
called L−affine. Recall (See [16]) that the set
L is called a set of abstract linear functions if
hl,c ∈ L for all l ∈ L and all c ∈ R \ {0}. The
set of all L−affine functions will be denoted by
HL If L is a set of abstract linear functions, then
hl,c = hl0,c0 if and only if l = l0 and c = c0.
If L is a set of abstract linear functions, then
the mapping (l, c) −→ hl,c is a one-to-one cor-
respondence. In this case, we identify hl,c with
(l, c), in other words, we consider an element
(l, c) ∈ L× R as a function defined on X by
x −→ l(x) − c. A function f : X −→ (−∞,∞]
is called proper if domf ̸= 0 where domef is de-
fined by domf = {x ∈ X : f(x) < ∞}. Let F (X)
be the set of all function f : X −→ (−∞,∞]
and function −∞. Recall (See [17]) that a func-
tion f ∈ F (X) is called H−convex (H = L, or
H = HL ) if

f(x) = sup{h(x) : h ∈ supP (f,H)}.

where supP (f,H) = {h ∈ H : h ≤ f} is called
the support set of the functionf , and h ≤ f if and
only h(x) ≤ f(x) for every x ∈ X.

Example 2.1 Let X be a locally convex Haus-
dorff topological vector space. Let L be the set of
all real valued continuous liner functional defined
on X. Then, f : X −→ (−∞,∞] is an L−convex
function if and only if f is lower semi-continuous
and sublinear also, f is an HL−convex function
if and only if f is lower semi-continuous and
convex. Now, we consider the coupling function
⟨., .⟩ : X × L −→ R is defined by ⟨x, l⟩ = l(x)
for all x ∈ X and l ∈ L. For a function f ∈
F (X), define the Fenchel-Moreau L-conjugate f∗

L

of (See[[16], [21]]) by f∗
L(l) = supx∈X(l(x)−f(x)),

l ∈ L. The function f∗∗
L,X = (f∗

L)X∗ is called the
second conjugate (or biconjugate) of f , and by
definition we have f∗∗

L,X(x) = supl∈L(l(x)−f∗(l)).
The following property of the conjugate func-
tion follows directly from the definition Fenchel-
Youngs inequality: for a proper function f ∈
F (X) one has,

∀x ∈ X, ∀l ∈ L f(x) + f∗
L(x) ≥ l(x).

Let f : X −→ (−∞,∞] be a function and x0 ∈
domf . Recall (See [[16], [21]]) that an element
l ∈ L is called an L−subgradient of f at x0 if

∀x ∈ X f(x) ≥ f(x0) + l(x)− l(x0).

The set ∂Lf(x0) of all L−subgradinents of f at
x0 is called L−subdifferential of f at x0. The
sub-differential ∂Lf(x0) is non-empty (See [[16],
[21]]) if and only if x0 ∈ domf and f(x0) =
max{h(x0) : h ∈ supp(f,HL)}

In the following we gather some results which will
be used later.

Lemma 2.1 (See [[21], Theorem 7.1]) Let f ∈
F (X). Then f = f∗∗

L,X if and only if f is an
HL−convex function.

Lemma 2.2 (See [[21], Proposition 7.7]) Let
x0 ∈ X, f ∈ F (X) and l0 ∈ L. Then the fol-
lowing assertions are equiualent:

1. f(x0) + f∗
L(l0) = l0(x0) (Fenchel-Young’s

equality)
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2. l0 ∈ ∂Lf(x0).

In the sequel, let X be a topological vector space.
We assume that X is equipped with a closed con-
vex pointed cone S ⊂ X (the latter means that
S ∩ (−S) = {0}. We say x ≤ y or y ≥ x if
and only if y − x ∈ S. An extended real valued
function f : X −→ [−∞,∞] is called positively
homogenous (of degree one) if f(λx) = λf(x) for
all x ∈ X and all λ > 0. The function f is called
increasing if x ≥ y ⇒ f(x) ≥ f(y). Now, con-
sider the function l : X×X −→ [0,∞] defined by
l(x, y) = max{λ ≥ 0 : λy ≤ x}. The function l
has the following properties (See [[14], [16]]). In
fact, for every x, y, x′, y′ ∈ X and every ν > 0,
one has,

l(νx, y) = νl(x, y) (2.1)

l(x, νy) =
1

ν
l(x, y) (2.2)

l(x, y) = ∞ =⇒ y ∈ −S (2.3)

l(x, x) = 1 ⇐⇒ x /∈ −S (2.4)

x ∈ S, y ∈ −S =⇒ l(x, y) = +∞ (2.5)

x ≤ x′ =⇒ l(x, y) ≤ l(x′, y) (2.6)

y ≤ y′ =⇒ l(x, y) ≥ l(x, y′) (2.7)

Define LS = {ly : y ∈ X \ (−S)}, where
ly(x) = l(x, y) for all x, y ∈ X. Note that ly is
an increasing positively homogeneous (IPH) func-
tion for each y ∈ X. Therefore, LS is a set of
non-negative increasing positively homogeneous
(IPH) functions defined on X. The following re-
sults for non-negative IPH functions have been
proved in [13].

Lemma 2.3 Let f : X −→ [0,∞] be a function.
Then the following assertions are equiualent:

1. f is IPH.

2. ∀λ > 0 λy ≤ x =⇒ f(x) ≥ λf(y).

3. f(x) ≥ ly(x)f(y) for all x, y ∈
X with the conuention +∞× 0 = 0.

Lemma 2.4 Let f : X −→ [0,∞] be an IPH
function and f(x) ̸= 0,+∞. Then

∂LSf(x) = {ly ∈ LS : ly(x) = f(x), f(y) = 1}.

3 Abstract Monotone Opera-
tors

Assume that X is a set and L is a set of real valued
functions l : X −→ R , Which is called abstract
linear with the coupling function ⟨., .⟩ : X×L −→
R defined by ⟨x, l⟩ = l(x) for all x ∈ X and l ∈ L.
In the following, we present some definitions and
properties of abstract monotone operators (See
[2]).

Definition 3.1 A set value mapping T : X −→
2L is called L−monotone operator (or, abstract
monotone operator) if

l(x)− l(x′)− l′(x) + l′(x′) ≥ 0 (3.8)

for all x, x′ ∈ X, l ∈ Tx and l′ ∈ Tx′.

If X is a Banach space with the dual space X∗ and
L = X∗ Then T is called monotone opearator in
the classical case.

Definition 3.2 A set valued mapping T : X −→
2L is called maximal Lmonotone operator (or,
maximal abstract monotone operator) if T is
L−monotone and T = T ′ for any L−monotone
operator T ′ : X −→ 2L such that G(T ) ⊂ G(T ′).

Definition 3.3 A subset S of X × L is called
L−monotone (or, abstract monotone) if

∀(x, l), (x′, l′) ∈ S l(x)− l(x′)− l′(x)+ l′(x′) ≥ 0.

Definition 3.4 A subset S of X × L is called
maximal L−monotone (or, maximal abstract
monotone) if S is L−monotone and S = S′ for
any L−monotone set S′ such that S ⊂ S′.

Definition 3.5 Let T : X −→ 2L be a set valued
mapping. Correspondence to the mapping T de-
fine the L−fitzpatrick function (or, abstract Fitz-
patrick function) φT : X× L −→ R̄ by φT (x, l) =
supl′∈Tx′,x′∈X[l(x

′)+ l′(x)− l′(x′)− l(x)]+ l(x) For
all x ∈ X, l ∈ L
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Lemma 3.1 Let T : X −→ 2L be a maximal
L−monotone operator. Then φT (x, l) ≥ l(x) for
any x ∈ X and l ∈ L With equality holds if and
only if l ∈ Tx.

Proof. since T is maximal L−monotone opera-
tor, it follows that

supl′∈Tx′,x′∈X[l(x
′) + l′(x)− l′(x′)− l(x)] ≥ 0

Now we obtain φT (x, l) ≥ l(x). Since T is maxi-
mal L−monotone,

supl′∈Tx′,x′∈X[l(x
′) + l′(x)− l′(x′)− l(x)] = 0

If and only if l ∈ Tx. So φT (x, l) = l(x) if and
only if l ∈ Tx and hence the proof is complete.

Theorem 3.1 Let f : X −→ [0,∞] be an IPH
function and f(x) ̸= 0,∞. Then ∂LS(f) is a max-
imal LS−monotone operator.

4 Main Results

Enlargements

As it was seen from the definition of ϵ−abestract
subdifferential, for any IPH function and any
ϵ > 0, the ϵ−absestract subdifferential ∂Lϵ(f)
is an enlargement of the abstract subdifferen-
tial ∂L(f),i.e., ∂Lf(x) ⊂ ∂Lϵf(x). for maximal
.on the other hand, this enlargement is not for
enough from the initial operator, the well-known
Brondsted Rockafellar theorem [1], asserts that
any point for the graph of ∂ϵ(f) can be approxi-
mated (depending X) with a point from the graph
∂f . This nice property, a part from its theoret-
ical importance, give also the possibility to use
the enlargement of sub differential in finding so-
lutions of inclusions determined by sub differen-
tials. Motivated by the above. The search of pos-
sible enlargements of an arbitrary abstract (max-
imal) monotone operator has been done during
in recent years. attempts for such notions, and
pried by various properties of variational inequal-
ities, could be found in [[12], [19], [21]]. Given
a abstract monotone T : X −→ 2L, ϵ > 0 and
(x′, l′) ∈ Gr(T ). Let

T ϵ(x) = {l ∈ L : l′(x′)+ l(x)− l′(x)− l(x′) ≥ −ϵ}.

In case L = X∗ ,this definition was given in [14]
but the notion was not studied. Indepently, this
concept has been studied, first in finite dimensiors
in [2] with application to approximate solutions
of variational inequalities. And then in Hilbert
space in [3], with application to finding a zero
of maximal monoton operator, An approach with
families of enlargements was futher investiqated
in [26] in the case of abstract subdifferential,i.e.,
T = ∂f for a IPH function, one easily sees that
∂Lϵf ⊂ T ϵ for every ϵ > 0. First, for given a
(proper) convex function g : X×L −→ R∪{+∞},
let us define the following operator Tg : X −→
2L, Tg(x) = {l ∈ L : (l, x) ∈ ∂g(x, l)}. The
so-defined operator Tg is abstract monotone [[7],
Proposition 2.2]. Further, for a given abstract
monotone operator T : X −→ 2L Let us define
the following function φT : X× L −→ R ∪ {+∞}
by φT (x, l) = sup{l(x′) + l′(x) − l′(x′) : (x′, l′) ∈
Gr(T )}.

Theorem 4.1 (See [7]) T : X −→ 2L be abstract
monotone operator with DomT ̸= ϕ. Then

1. for any one has T (x) ⊂ TφT (x). If T is ab-
stract maximal monotone T = Tφ.

2. If T is abstract maximal monotone, then
φT (x, l) ≥ l(x) for every (x, l) ∈ X× L and
φT (x, l) = l(x) if and only if (x, l) ∈ Gr(T )
moreover, φT is the minimal convex function
on X× L with these two properties.

The above representation of a given abstract
monotone operator by abstract subdifferentials of
convex function in X×L is the transformation of
the representation of the abstract monoton oper-
ators by abstract sub-differentials of saddle func-
tions provided by krauss [9]. The Fitizpatrick ap-
proach was also studied in [6]. Now, let us use the
usual ϵ−abstract sub-differntials of the function
φT in order to define enlargement of a given ab-
stract monotone operator T : X −→ 2L for which
we will always assume that Dom(T ) ̸= ϕ. For
ϵ > 0, Let Tϵ(x) = {l ∈ L : (l, x) ∈ ∂ϵφT (x)}. Be-
cause of Theorem 4.1, this operator needs an en-
largements of T , i.e., T (x) ⊂ Tϵ(x) for any x ∈ X
Moreover, at the case L = X∗, it can be easily by
verified that Tϵ(x) is convex and since φT (x, .) is
lower semi continuous for the w∗-closed in X∗.
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Proposition 4.1 Let T : X −→ 2L be abstract
maximal monotone then Tϵ ⊂ T ϵ.

Proof. Let ϵ > 0 and l ∈ Tϵ(x) for x ∈ X. Then
, by definition, for every (x′, l′) ∈ X× L, we have

Proposition 4.2 Let T : X −→ 2L be abstract
maximal monotone then Tϵ ⊂ T ϵ.

Proof. Let ϵ > 0 and l ∈ Tϵ(x) for x ∈ X. then
, by definition, for every (x′, l′) ∈ X× L we have
φT (x

′, l′) − φT (x, l) ≥ ⟨(x′ − x, l′ − l), (l, x)⟩ − ϵ.
Since φT (x, l) ≥ l(x) and for (x′, l′) ∈ Gr(T ) one
by φT (x

′, l′) = l′(x′) for every (x′, l′) ∈ Gr(T ),
the latter inequality gives ⟨(x′−x, l′− l), (l, x)⟩ ≥
−ϵ. So l ∈ T ϵ(x).
Further, we wish to investigate the particular case
of abstract sub-differentals.. First we observe the
following simple estimation.

Lemma 4.1 Let T : X −→ 2L be abstract mono-
tone, ϵ > 0 and l ∈ T ϵ(x). Then φT (x, l) ≤
l(x) + ϵ.

Proof. The proof comes directly from the defini-
tions since l ∈ T ϵ(x) for every (x′, l′) ∈ Gr(T )
we have ⟨x′ − x, l′ − l⟩ ≥ −ϵ which for every
(x′, l′) ∈ Gr(T ),gives

l(x) + ϵ ≥ l(x′) + l′(x)− l′(x′) (4.9)

l(x)+ϵ ≥ sup
(x′,l′)∈Gr(T )

{l(x′)+l′(x)−l′(x′)}. (4.10)

φT (x, l) ≤ l(x) + ϵ (4.11)

Theorem 4.2 Let T = ∂f for some IPH func-
tion f : X −→ R ∪ {+∞} then for any ϵ > 0,
x ∈ domf , we have Tϵ(x) ⊂ ∂Lϵf(x).

Proof. Take x ∈ domf and l ∈ Tϵ(x). For every
(x′, l′) ∈ X× L, φT (x

′, l′)−φT (x, l) ≥ ⟨(x′−x, l′−
l), (l, x)⟩ − ϵ. As above, using φT (x, l) ≥ l(x), for
every (x′, l′) ∈ X× L, φT (x

′, l′) − l′(x) ≥ l(x′) −
l(x) − ϵ. Let us take an arbitrary x′ ∈ X, δ > 0.
take a l′δ ∈ ∂δf(x). By the last inequality we have
φT (x

′, l′δ)− l′δ(x) ≥ l(x′)− l(x)− ϵ. From f∗(l) =
supx∈X{l(x)−f(x)} , by the theorm 4.1, since l′δ ∈
∂δf(x), we know that f(x′) − f∗(l′δ) ≤ l′δ(x) + δ

which together with the previous inequality give
f(x′)− f(x)+ δ ≥ l(x′)− l(x)− ϵ. Passing to the
limit for δ we get f(x′) − f(x) ≥ l(x′) − l(x) − ϵ
and since x′ was arbitrary. We conclude that l ∈
∂δf(x).

5 Conclusion

Abstract convexity has mainly been used for the
study of point-to-point functions. Examples of its
use in the analysis of multifunctions can be found
in works. By using a framework of generalized
convexity showed the existence of a convex rep-
resentation of a maximal monotone operator by
a convex function which is invariant with respect
to the Fenchel conjugacy. Recently, Burachik and
Rubinov [2] studied semi-continuity properties of
abstract monotone operators. In this paper, we
studied a new enlargement of abstract for any
IPH function. We defined a new enlargement and
observe, in the case abstract sub-differential, the
relation between this new enlargement and the
ϵ−abstract sub-differential.
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