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Abstract

The primary goal of this work is to introduce two adaptive Steffensen-like methods with memory of
the highest efficiency indices. In the existing methods, to improve the convergence order applied to
memory concept, the focus has only been on the current and previous iteration. However, it is possible
to improve the accelerators, considering the time from the first to the current iterations. Therefore,
we achieve superior convergence orders and obtain as high efficiency indices as possible . These are
the main contributions of this work.
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Adaptive methods; R-order.
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1 Introduction

O
ne of the most important subjects in develop-
ing numerical algorithms is to establish op-

timal algorithms with economic complexity. For
example, developing iterative methods for ap-
proximating zero(s) of a given nonlinear equation
falls within this matter, and many studies have
been devoted to it [9, 12]. Inspired by this, we
will set up two adaptive Steffensen-like methods
with memory which are improvement of the ex-
isting methods[1, 5, 6, 12, 16, 22]. To our knowl-
edge, these kinds of adaptive methods have not
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been studied in the literature. Traub developed
the first method with memory from Steffensen’s
method [5] as following[11]:

wk = xk + γk f(xk),

xk+1 = xk − f(xk)
f [xk,wk]

, k = 0, 1, 2, · · · ,
γk+1 = − 1

N ′
1(xk+1)

,

(1.1)
where x0 and γ0 are given initially suitable val-
ues, and N1(t) = f(xk+1) + (t− xk+1)f [xk+1, xk]
is the linear Newton’s interpolation. The con-
vergence order of the with-memory method (1.1)
is 1 +

√
2 ≈ 2.414. Also, Džunnić and Petković

improved Traub’s idea, introducing a better ac-
celerator [12]:

wk = xk + γk f(xk),

xk+1 = xk − f(xk)
f [xk,wk]

, k = 0, 1, 2, · · · ,
γk+1 = − 1

N ′
2(xk+1)

,

(1.2)
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where x0 and γ0 are given initially
suitable values, and N2(t) is the Net-
won’s interpolation polynomial given by
N2(t) = f(xk+1) + (t− xk+1)f [xk+1, wk]+

(t− xk+1)(t− wk)f [xk+1, wk, xk].
The convergence order of the method with
memory (1.2) is 1 +

√
4 = 3. Moreover, Džunić

added another parameter to the Steffensen’s
method and obtained a more efficient method
with memory [9]:

xk+1 = xk − f(xk)
f [xk,wk]+λk f(wk)

,

γk+1 = − 1
N ′

2(xk+1)
, k = 0, 1, 2, · · · ,

wk+1 = xk+1 + γk+1 f(xk+1),

λk+1 =
−N ′′

3 (wk+1)
2N ′

3(wk+1)
,

(1.3)
where x0, γ0, and λ0 are given initially suitable
values. This method has the convergence order
3+

√
17

2 ≈ 3.56.

Remark 1.1 If γ and λ are constants, then
methods (1.2) and (1.3) are without memory
methods with convergence order two having the
following error equations, respectively:

ek+1 = c2(1 + γf ′(α))e2k +O(e3k), (1.4)

and

ek+1 = (c2 + λ)(1 + γf ′(α))e2k +O(e3k). (1.5)

In this work, we will attempt to carry out
two adaptive methods with memory regardless of
(1.2) and (1.3), which are superior [2, 14, 20, 24].
To achieve this end,first, the accelerator param-
eter γk is updated with the existing information
in the previous and current iterations. We prove
that this method has convergence order 3.4 us-
ing the same function evaluations as (1.2), so its
efficiency index is much better. Similarly, we de-
rive another adaptive method with memory for
(1.3) which acquires convergence order 3.9 using
the same functional evaluations. Therefore, this
method is better than both our adaptive method
with one accelerator and all the existing methods.

2 Developing adaptive with
memory methods

This section deals with two new adaptive meth-
ods with memory. To this end, we modify and ex-

tend methods (1.2) and (1.3) in such a way that
they consider all previous information to attain
as high as possible convergence order without any
new functional evaluation. In this manner, we use
the adaptive idea which has not been considered
to our best knowledge.

2.1 Mono accelerator adaptive with
memory method

In (1.2), to update accelerator γk in each itera-
tion, we only use the information from the current
and previous iterations and reach the convergence
order 3. However, the procedure goes ahead, the
old information of current and previous steps can
be used. In another words, we tend to apply the
adaptive idea to construct the new methods with
memory. Accordingly, we introduce the following
new adaptive method with memory

wk = xk + γk f(xk),

xk+1 = xk − f(xk)
f [xk,wk]

, k = 0, 1, 2, · · · ,
γk+1 = − 1

N ′
2k+2(xk+1)

,

(2.6)
where x0 and γ0 are given initially suitable
values, and N2k+2(t) is Netwon’s interpolation
polynomial of degree 2k + 2 at the points
xk+1, wk, xk, . . . , w0, x0. Referring to

Figure 1: Dynamical Planes for (2.6) for γ = 0.1.

the Error Equation (1.4), it is observed that if
1 + γf ′(α) = 0, then convergence order of the
method without memory (2.6),increases if for a
moment we supposed that γk is fixed [22]. Since
α is unknown, we cannot suppose γ = −1/f ′(α).



M. J. Lalehchini et al., /IJIM Vol. 11, No. 4 (2019) 337-345 339

Table 1: Test functions for γ = 0.1,λ = 0.1.

Example x0 α

f1(t) = e(t
2−4) + sin(t− 2)− t4 + 15 2.50 2.00

f2(t) =
1
t4 − t2 − 1

t + 1 2.00 1.00
f3(t) = (t− 2)(t10 + t+ 2)e−5t 2.40 2.00

f4(t) = e(t
2−3t) + sin(t) + log (t2 + 1) 0.45 0.00

Table 2: Test functions for γ = 0.1,λ = 0.1.

Function. |x1 − α| |x2 − α| |x3 − α| COC

f1 0.2371(0) 0.9503(-2) 0.1967(-7) 4.0683
f2 0.3417(-1) 0.9531(-3) 0.1021(-8) 3.8404
f3 0.2024(0) 0.2490(-2) 0.8749(-10) 3.9025
f4 0.2277(-1) 0.4709(-3) 0.3300(-9) 3.6537

Table 3: Results of (2.25) for different test functions.

Function. |x1 − α| |x2 − α| |x3 − α| COC

f1 0.2902(0) 0.1028(-1) 0.1581(-7) 4.0078
f2 0.9073(-1) 0.2554(-2) 0.2200(-8) 3.9115
f3 0.1681(0) 0.1006(-2) 0.1582(-11) 3.9603
f4 0.4153(-1) 0.4718(-3) 0.5529(-11) 4.0784

Figure 2: Dynamical Planes for (2.6) for γ =
−0.31093.

Even if we assumed that α was known, we could
not use it to evaluate f ′(α), since it increased
the functional evaluation, and optimality of the
methods would be destroyed. It is assumed that
the sequence {xk} converges to α. Moreover, f ′ is
at least continuous, so there is lim f ′(xk) = f ′(α)
as k → ∞. Thus, we can use N ′

2k+2(xk) instead
of f ′(xk) to our mission, i.e., γk = −1/N ′

2k+2(xk).

Figure 3: Dynamical Planes for (2.6) for γ =
−0.33330.

To discuss the convergence order of (2.6), we
need:

Lemma 2.1 If γk+1 = −1/N ′
2k+2(xk), and
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Figure 4: Dynamical Planes for (2.6) for γ = 0.1

Figure 5: Dynamical Planes for (2.6) for γ =
−0.21435

λk+1 =
−N ′′

2k+3(wk+1)

2N ′
2k+3(wk+1)

then

1 + γf ′(α) ∼
k∏

i=0

ew,iei, c2 + λ ∼
k∏

i=0

ew,iei,

(2.7)
where ei = xi − α and ew,i = wi − α.

Proof. According to Newton’s interpolation for-
mula for nodes t0, t1, ..., ts,we have

f(t)−Ns(t) =
f (s+1)(ξ)

(s+ 1)!

s∏
i=0

(t− ti). (2.8)

where s ∈ [min {t0, t1, ..., ts},max {t0, t1, ..., ts}]
and

γ = − 1

f ′(α)
≃ − 1

N ′
2k+2(xk)

= γk+1. (2.9)

Figure 6: Dynamical Planes for (2.6) for γ =
−0.24975

Figure 7: Dynamical Planes for (2.25) for γ =
0.1, λ = 0.1.

By differentiating (2.8) and setting t = xk+1 like
proving Lemma 1 in [12], we have

N ′
2k+2(xk+1) = f ′(xk+1)−

f (2k+3)(ξ)

(2k + 3)!
×

k∏
i=0

(xk+1 − xi)(xk+1 − wi)

∼ f ′(α)(1 + c2k+3

k∏
i=0

ew,iei).

(2.10)

Consequently,

1 + γk+1f
′(α) = 1− f ′(α)

N ′
2k+2(xk+1)

=

1− 1

1− c2k+3
∏k

i=0 ew,iei
∼

k∏
i=0

ew,iei.

(2.11)
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Figure 8: Dynamical Planes for (2.25) for γ =
−0.31336, λ = 0.99909.

Figure 9: Dynamical Planes for (2.25) for γ =
−0.33334, λ = 1.

To prove the second relation with respect to
(2.8),(2.10)and Lemma1 in [9] we have

c2 + λk+1 =
f ′′(α)

2f ′(α)
−

N ′′
2k+3(wk+1)

2N ′
2k+3(wk+1)

∼
k∏

i=0

ew,iei

(2.12)

Theorem 2.1 Let the initial approximation x0
be sufficiently close to the zero α of f . Also R and
p denote the convergence order of the sequences
{xk} and {wk}, respectively, as obtained in adap-
tive method with memory (2.6). Then, we will
have{

Rkp−Rk − (p+ 1)
∑k−1

i=0 Ri = 0,

Rk+1 −Rk − (p+ 1)
∑k−1

i=0 Ri = 0.
(2.13)

Figure 10: Dynamical Planes for (2.25) for γ =
0.1, λ = 0.1

Figure 11: Dynamical Planes for (2.25) for γ =
−0.21210, λ = −1.46997

Proof. We can assume

ek+1 ∼ eRk . (2.14)

Hence,
ek+1 ∼ (eRk−1)

R = eR
2

k−1. (2.15)

Inductively,

ek+1 ∼ eR
k+1

0 . (2.16)

Similarly, we have

ew,k ∼ epk = (eRk−1)
p = eRp

k−1. (2.17)

Thus,

ew,k ∼ eR
k p

0 . (2.18)

By (2.14) and (2.17), Lemma 2.1 results in

1 + γf ′(α) ∼ e
(p+1)

∑k−1
i=0 Ri

0 . (2.19)
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Figure 12: Dynamical Planes for (2.25) for γ =
−0.25005, λ = −1.49993

On the other hand, since ew,k ∼ (1 + γf ′(α))ek
and ek+1 ∼ (1 + γf ′(α))e2k, taking into account
(2.19), we have

ew,k ∼ e
Rk+(p+1)

∑k−1
i=0 Ri

0 , (2.20)

and

ek+1 ∼ e
2Rk+(p+1)

∑k−1
i=0 Ri

0 . (2.21)

From (2.18)-(2.20) and (2.16)-(2.21), we conclude
that

eR
k p

0 ∼ e
Rk+(p+1)

∑k−1
i=0 Ri

0 , (2.22)

eR
k+1

0 ∼ e
2Rk+(p+1)

∑k−1
i=0 Ri

0 . (2.23)

Consequently,{
Rkp−Rk − (p+ 1)

∑k−1
i=0 Ri = 0,

Rk+1 − 2Rk − (p+ 1)
∑k−1

i=0 Ri = 0.
(2.24)

2.2 Bi accelerators adaptive with
memory method

We now introduce bi accelerators adaptive with
memory method [7, 14, 19, 20, 21, 24]. Since most
of the details are similar to the descriptions of
(2.6), we confine ourselves to repeat them. We
consider the following two new accelerators adap-
tive with-memory method:

xk+1 = xk − f(xk)
f [xk,wk]+λk f(wk)

,

γk+1 = − 1
N ′

2k+2(xk+1)
, k = 0, 1, 2, · · · ,

wk+1 = xk+1 + γk+1 f(xk+1),

λk+1 =
−N ′′

2k+3(wk+1)

2N ′
2k+3(wk+1)

,

(2.25)

where x0, γ0 and λ0 are given suitably. Then, we
have

Theorem 2.2 Let the initial approximation x0
be sufficiently close to the zero α of f . Also R and
p denote the convergence order of the sequences
{xk} and {wk}, respectively, as obtained in adap-
tive method with memory (2.25). Then, we will
have{

Rkp−Rk − (p+ 1)
∑k−1

i=0 Ri = 0,

Rk+1 − 2Rk − 2(p+ 1)
∑k−1

i=0 Ri = 0.

(2.26)

Proof. We can assume

ek+1 ∼ eRk . (2.27)

Hence,
ek+1 ∼ (eRk−1)

R = eR
2

k−1. (2.28)

Inductively,

ek+1 ∼ eR
k+1

0 . (2.29)

Similarly, we have

ew,k ∼ epk = (eRk−1)
p = eRp

k−1. (2.30)

Thus,

ew,k ∼ eR
k p

0 . (2.31)

By (2.14) and (2.17), Lemma 2.1 results

(c2 + λ)(1 + γf ′(α)) ∼ e
2(p+1)

∑k−1
i=0 Ri

0 . (2.32)

By (1.5)and ew,k ∼ (1 + γf ′(α))ek , taking into
account (2.32), we have

ew,k ∼ e
Rk+(p+1)

∑k−1
i=0 Ri

0 , (2.33)

and

ek+1 ∼ e
2Rk+2(p+1)

∑k−1
i=0 Ri

0 . (2.34)

From (2.31)-(2.33) and (2.29)-(2.34), we conclude
that

eR
k p

0 ∼ e
Rk+(p+1)

∑k−1
i=0 Ri

0 , (2.35)

eR
k+1

0 ∼ e
2Rk+2(p+1)

∑k−1
i=0 Ri

0 . (2.36)

Consequently,{
Rkp−Rk − (p+ 1)

∑k−1
i=0 Ri = 0,

Rk+1 − 2Rk − 2(p+ 1)
∑k−1

i=0 Ri = 0.

(2.37)
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3 Numerical Computations

In this section, to show the efficiency of the new
adaptive methods with memory (2.6) and (2.25),
we report their numerical results. To this end,
among many tested problems, we confine to re-
port the results of four test functions (See Table
1). Moreover, the initial values are given in Ta-
bles 1. It should be noted that |xk−α| shows the
error in each iteration and a(b) stands for ab, and
the computational order of convergence (COC)
can been approximated by the following formula:

COC ≈
log

|xk+1−α|
|xk−α|

log |xk−α|
|xk−1−α|

.

Tables 2 and 3 report the numerical implemen-
tations of the adaptive methods with memory in
this work. Table 2 shows that the numerical re-
sults support the developed theory for method
(2.6). As can be seen in Table 3, the (COC) of
the tested functions using the method (2.25) is
very good, and has the highest amount. Indeed,
there is not any work in the literature that could
compete with method (2.25). On the other hand,
this is the highest and the best efficiency index
which comes from the point of the efficiency in-
dex. Let us discuss this contribution a little more.
It is well known that any general optimal multi-
point method without memory, using n+1 func-
tional evaluations has optimal convergence order
2n, so it could reach the optimal efficiency in-
dex E∗(n + 1, 2n) = limn→∞ 2

n
n+1 = 2. On the

other hand, we have proved that the new adaptive
method with memory (2.25) could reach the same
efficiency index with only two functional evalua-
tions (See Theorem 2.2). This means that this
method competes with any optimal multipoint
method without memory.

In what follows, we disclose the mathematica
code for the numerical implementations.

4 Dynamical Behavior

Here we focus on the stability behavior of the
adaptive methods with memory (2.6) and (2.25).
To this end, we utilize visual dynamical approach
[13, 15, 17, 19, 24]. Although we have tested
many examples, we have reached the same con-
clusion. Therefore, we only report the results for

the function p(z) = z3+1 and p(z) = z4− 1 . To
show the stability of the one-parameter (2.6)and
two-parameter (2.25) methods, we analyze their
dynamic properties and focus on the of dynamic
planes related to iterative methods. Mathematica
software can be used to do the analysis in which
the graphic planes are shown in a rectangle of
[−3, 3] × [−3, 3] dimension along with a 72-pixel
resolution. The dynamic planes illustrate the ab-
sorption area for polynomials p1(z) = z3 + 1 and
p2(z) = z4 − 1. p1(z) and p2(z) have the solution
of −1, 12(1 + i

√
3), 12(1− i

√
3) and −1, 1,−i, i, re-

spectively. Each solution is allocated a color. The
greater the dark areas, the greater the intensity
of unstability. In Figures 1, 2 and 3, the stabil-
ity of single parameter methods (2.6) is shown for
γ = 0.1,−031093 and −0.3333, in which p1(z) has
been used. Also, in Figures 4, 5 and 6, the stabil-
ity of single parameter method (2.6) is shown for
γ = 0.1,−0.31336 and −0.33334 in which p2(z) is
used. Comparing the figures shows that the sta-
bility has been reduced. For the two-parameter
method (2.25), in Figure 7, the absorption area
and stability are shown for γ and λ at 0.1 and 0.1
respectively, in Figure 8 for γ = −0.31336 and
λ = 0.99909 and in Figure 9 for γ = −0.33334
and λ = 1.00000, where p1(z) is used. Finally,
the two-parameter iterative method (2.25) has
been taken to compare absorption areas, using
p2(z) in Figures 10,11 and 12, for γ and λ at 0.1
and 0.1 in Figure 10, -0.21210 and -1.46997 in
Figure (11) and -0.25005, -1.49993 in Figure 12,
where p2(z) is used. comparing the figures, we
witness there is a reduction in stability showing
that, despite the increase of convergence order
in the two-parameter method (2.25), the stabil-
ity trend is satisfactory. Both developed meth-
ods with memory (2.6) and (2.25) show the same
instable behavior. Consequently, though devel-
oping methods with memory has the advantage
from the view of computational complexity, they
represent numerical chaos and numerical instabil-
ity.

5 Conclusion

In this work, we developed two new but very ef-
ficient methods with memory to solve a nonlin-
ear equation. We have shown that the methods
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could reach the highest possible efficiency indices
and can compete with any method with or with-
out memory in the literature. Convergence analy-
sis of the developed methods has been presented,
and we have tested some numerical examples to
show the practicality of the proposed methods.
Though both developed methods have the highest
possible efficiency as opposed to any other meth-
ods in the literature, we have seen that methods
with memory show instability in practice. There-
fore, they benefit from computational efficiency
and suffer from numerical stability. Finally, we
end the conclusion with the following research
question: how can a method with memory be de-
veloped to show the numerical stability behavior?
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