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Abstract

In this paper, we introduce the concepts of n-fold obstinate pseudo-hoop and n-fold obstinate filter
in pseudo-hoops. Then we investigated these notions and proved some properties of them. Also, we
discussed the relationship between n-fold obstinate pseudo-hoop and n-fold obstinate filter and other
types of n-fold pseudo-hoops and n-fold filters such as n-fold(positive) implicative filter and n-fold
fantastic filter in pseudo-hoops. For example, we proved that any n-fold obstinate filter is a maximal
filter. Finally, we obtain a characterization of n-fold obstinate filters in terms of congruences and we
show that any n-fold obstinate pseudo-hoop is an n-fold fantastic, n-fold positive implicative, n-fold
implicative pseudo-hoop and simple pseudo-hoop.
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1 Introduction

N
aturally ordered commutative residuated in-
tegral monoids (hoop) introduced by B. Bos-

bach in [5, 6], then studied by J. R. Büchi et al. in
[7], a paper never published. Also G. Georgescu,
L. Leustean et al. study the pseudo-hoops in
[8]. It is well-known that in various logical sys-
tems, filters play a fundamental role, filters cor-
respond to sets of provable formulas closed with
respect to Modus Ponnen. In [10, 12, 14, 16, 17]
the authors investigated the notation folding the-
ory to residuated lattices, n-folding fantastic fil-
ters and obstinate filters in BL-algebras, general-
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ization of integral filters and n-fold integral BL-
algebras and n-fold filters of MTL-algebras. In
[2], R. A. Borzooei et al., survey the notion of n-
fold(implicative, positive implicative and fantas-
tic filters) of pseudo-hoops. They show that if F
is an n-fold(implicative, positive implicative and
fantastic)filter, then A/F is an n-fold (implica-
tive, positive implicative and fantastic)pseudo-
hoops. Also in [15], A. Namdar et al., proposed
the obstinate filter in hoops.
In this disquisition, we define and study the no-
tion of n-fold obstinate pseudo-hoop and n-fold
obstinate filters in pseudo-hoops and generaliza-
tion of the corresponding notion in the crisp case.
Several properties of n-fold obstinate pseudo-
hoop and n-fold obstinate filters are given. We
show that F is an n-fold obstinate filter of A if
and only if A/F is an n-fold obstinate pseudo-
hoop. On the other hands if F is an n-fold obsti-
nate filter of A, then A/F is a local and simple
pseudo-hoop. Also, we show that F is an n-fold
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obstinate filter if and only if F is a maximal and
n-fold positive implicative filter.

2 Preliminaries

In this section, we recollect some definitions and
results which will be used in this paper.

Definition 2.1 [8] A pseudo-hoop algebra or
pseudo-hoop is an algebra (A,⊙,→,⇝, 1) of type
(2, 2, 2, 0) such that, for all x, y, z ∈ A:
(PH1) x⊙ 1 = 1⊙ x = x,
(PH2) x → x = x⇝ x = 1,
(PH3) (x⊙ y) → z = x → (y → z),
(PH4) (x⊙ y)⇝ z = y ⇝ (x⇝ z),
(PH5) (x → y) ⊙ x = (y → x) ⊙ y = x ⊙ (x ⇝
y) = y ⊙ (y ⇝ x).

On pseudo-hoop A, we define x ≤ y if and only
if x → y = x⇝ y = 1. It is easy to see that ≤ is
a partial order relation on A. If ⊙ is commuta-
tive(or equivalently →=⇝), then A is said to be
a hoop. A pseudo-hoop A is bounded if there is
an element 0 ∈ A such that 0 ≤ x, for all x ∈ A.
For any x ∈ A, we consider x− = x → 0 and
x∼ = x ⇝ 0. An element x ∈ A is called atom if
it is a minimal among elements in bounded hoop
A\{0}. Also, element x ∈ A is called idempotent
if x2 = x. The order of 1 ̸= x ∈ A, in symbols
ord(x) is the smallest n ∈ N such that xn = 0. If
no such n exists, then ord(x) = ∞. (See [8])

Definition 2.2 [8] For pseudo-hoop A and for
any x, y ∈ A, we define x ∨ y = ((x → y)⇝ y) ∧
((y → x)⇝ x) = ((x⇝ y) → y)∧((y ⇝ x) → x).
If ∨ is the join operation on A, then A is called
a pseudo ∨-hoop.

Proposition 2.1 [8] In any pseudo-hoop A, the
following properties hold, for all x, y, z ∈ A:

(i) (A,≤) is a meet-semilattice with x∧y = (x →
y)⊙ x = x⊙ (x⇝ y),
(ii) 1 → x = x, 1⇝ x = x, x⇝ x = 1,
(iii) y ≤ x → y and y ≤ x⇝ y,
(iv) if x ≤ y, then y ⇝ z ≤ x⇝ z and y → z ≤
x → z,
(v) x⊙ y ≤ x, y and xn ≤ x, for any n ∈ N,
(vi) if ∨ exists, then (x∨y)⇝ z = (x⇝ z)∧(y ⇝
z), (x ∨ y) → z = (x → z) ∧ (y → z).

Proposition 2.2 [8] Let A be a bounded pseudo-
hoop. Then the following properties hold, for all
x, y, z ∈ A:

(i) if x ≤ y, then y∼ ≤ x∼ and y− ≤ x−,
(ii) (xn)− ≤ (xn+1)− and (xn)∼ ≤ (xn+1)∼,
(iii) 0− = 0∼ = 1 and 1− = 1∼ = 0,
(iv) x ≤ (x−)∼ and x ≤ (x∼)−,
(v) x⊙ x− = x⊙ x∼ = 0,
(vi) x− ≤ x → y and x∼ ≤ x⇝ y.

Definition 2.3 [8] Let A be a pseudo-hoop. A
non-empty subset F of A is called a filter of A if,

(F1) x ∈ F and x ≤ y, then y ∈ F , for any
x, y ∈ A,
(F2) x⊙ y ∈ F , for any x, y ∈ F .
Clearly, 1 ∈ F , for all filters of A. A filter F of
A is called a proper filter if F ̸= A. It is easy to
see that, if A is a bounded pseudo-hoop, then a
filter is proper if and only if it is not containing
0. The set of all filters of A denoted by F(A).

Proposition 2.3 [8] Let A be a pseudo-hoop. If
F is a non-empty subset of pseudo-hoop A such
that 1 ∈ F , then the following statements are
equivalent, for any x, y ∈ A:

(i) F is a filter,
(ii) if x, x → y ∈ F , then y ∈ F ,
(iii) if x, x⇝ y ∈ F , then y ∈ F .
Notation: It is easy to see that the intersection
of all filters of pseudo-hoop A is a filter. Hence,
for any B ⊆ A,

∩
B⊆F∈F(A) F is a filter and de-

noted by [B) and we called generated filter by B.

Theorem 2.1 [8] Let x ∈ A. Then [x) = {a ∈
A | xn ≤ a, for some n ≥ 1}, F (x) = [F ∪
{x}) = {t | t ≥ f ⊙ xn for f ∈ F, n ∈ N} and
[F ∪G) = {a ∈ A | a ≥ f ⊙ g for f ∈ F, g ∈ G},
for any F,G ∈ F(A).

Definition 2.4 [8] A filter F of pseudo-hoop A
is called a normal filter if x → y ∈ F if and only
if x⇝ y ∈ F , for all x, y ∈ A.

Definition 2.5 [8] A proper filter F of a pseudo
∨-hoop A is called a prime filter of A if x∨y ∈ F ,
then x ∈ F or y ∈ F , for any x, y ∈ A.
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A maximal filter of pseudo-hoop A is a proper
filter M of A that is not included in any other
proper filters of A. Max(A) is the set of all max-
imal filters of A.

Proposition 2.4 [8] Let A be a pseudo-hoop
and F be a non-empty subset of pseudo-hoop A.
Then the following conditions are equivalent, for
any x ∈ A:

(i) F is a maximal filter,
(ii) x /∈ F if and only if (xn)−, (xn)∼ ∈ F , for
some n ∈ N.

Proposition 2.5 [3] Let A be a bounded ∨-
hoop. Then every maximal filter of A is a prime
filter.

Definition 2.6 [2] Let F be a subset of A such
that 1 ∈ F . Then for any x, y, z ∈ A:

(i) F is called an n-fold positive implicative filter
of A, if xn → (y → z) ∈ F and xn ⇝ y ∈ F , then
xn → z ∈ F . Also, if xn ⇝ (y ⇝ z) ∈ F and
xn → y ∈ F , then xn ⇝ z ∈ F .
(ii) F is called an n-fold implicative filter of A, if
x → ((yn → z)⇝ y) ∈ F and x ∈ F , then y ∈ F .
Also, if x ⇝ ((yn ⇝ z) → y) ∈ F and x ∈ F ,
then y ∈ F .
(iii) F is called an n-fold fantastic filter of A, if
z → (y → x) ∈ F and z ∈ F , then ((xn → y) ⇝
y) → x ∈ F . Also, if z ⇝ (y ⇝ x) ∈ F and
z ∈ F , then ((xn ⇝ y) → y)⇝ x ∈ F .

Definition 2.7 [8] Let A and B be two bounded
pseudo-hoops. A map f : A → B is called a
pseudo-hoop homomorphism if and only if for all
x, y ∈ A, f(0) = 0, f(1) = 1, f(x⊙ y) = f(x)⊙
f(y), f(x → y) = f(x) → f(y) and f(x ⇝ y) =
f(x)⇝ f(y).

The set of all pseudo-hoop homomorphism
from A to B is shown by Hom(A,B).

Definition 2.8 [8] Let A be a pseudo-hoop.
Then A is called:

(i) n-fold positive implicative pseudo-hoop, if
xn+1 = xn, for all x ∈ A.
(ii) n-fold implicative pseudo-hoop, if
(xn → 0)⇝ x = x and (xn ⇝ 0) → x = x, for all

x ∈ A.
(iii) n-fold fantastic pseudo-hoop, if
((xn → y) ⇝ y) → x = y → x and
((xn ⇝ y) → y) ⇝ x = y ⇝ x, for all
x, y ∈ A.
(iv) local pseudo-hoop, if ord(x) < ∞ or
ord(x−) < ∞ or ord(x∼) < ∞, for all x ∈ A.
(v) simple pseudo-hoop, if A is non-trivial and
{1} is its only proper filter.
(vi) cancellative pseudo-hoop, if the monoid
(A,⊙, 1) is cancellative if and only if
b → (a ⊙ b) = a and b ⇝ (a ⊙ b) = a if and
only if c⊙a = c⊙b, then a = b, for any a, b, c ∈ A.

Notation: From now one, we let (A,⊙,→,⇝
, 0, 1) or A be a bounded pseudo-hoop, unless oth-
erwise state.

3 n-fold obstinate pseudo-hoops
and n-fold obstinate filters in
pseudo-hoops

In this section, we introduce the notion of n-fold
obstinate pseudo-hoop and n-fold obstinate filter
in pseudo-hoop and investigate some properties
of them.

Definition 3.1 A is called an n-fold obstinate
pseudo-hoop if, for all x ̸= 1, xn = 0.

Example 3.1 (i) Let (A = {0, a, b, 1},≤) be a
chain that is 0 < a < b < 1. Define the operations
⊙,→ and ⇝ on A as follows:

→,⇝ 0 a b 1

0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1

⊙ 0 a b 1

0 0 0 0 0
a 0 0 0 a
b 0 0 a b
1 0 a b 1

Then (A,⊙,→,⇝, 1, 0) is a bounded pseudo-
hoop and A is an 3-fold obstinate pseudo-hoop.
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But it is not an 2-fold obstinate pseudo-hoop, be-
cause b2 ̸= 0.
(ii) [9]. Let NS[0, 1], (non-standard interval
[0, 1]) be the ordered set whose elements are pairs
(a, b) such that a = 0 and 0 ≤ b or 0 < a < 1 and
b arbitrary or a = 1 and b ≤ 0 (b running on real
set). The ordering is lexicographic: (a, b) ≤ (c, d)
if and only if a < c or (a = c and b ≤ d). The or-
dered set NS[0, 1] endowed with the operations:
(a, b)⊙ (c, d) =

max

(
(0, 0), (

1

2
(a+ c− 1 + ac),

b(c+ 1)

2
)

)
If (a, b) ≤ (c, d), then (a, b) → (c, d) = 1,

otherwise (a, b) → (c, d) =
(
2c−a+1
1+a , 2d−2b

1+a

)
.

Also, if (a, b) ≤ (c, d), then (a, b) ⇝ (c, d) = 1,

otherwise (a, b)⇝ (c, d) =
(
2c−a+1
1+a , −b(c+1)

1+a + d
)
.

Then (NS[0, 1],⊙,→,⇝, 0, 1) is a bounded
pseudo-hoop. But it is not an n-fold ob-
stinate pseudo-hoop, because (1, b) ⊙ (1, b) =
max((0, 0), (1, b)) = (1, b), for b ≤ 0.
(iii) [1] Let A = [0, 12 ]∪ {1} and operations ⊙,→
and ,⇝ are defind by, x⊙ y = max(0, x+ y − 1),
and if x ≤ y, then x → y = 1, otherwise
x → y = min(1− x+ y, 1).

Then (A,⊙,→, 1, 0) is an 2-fold obstinate
pseudo-hoop.

Proposition 3.1 If A is an n-fold obstinate
pseudo-hoop, then A is an (n + 1)-fold obstinate
pseudo-hoop.

Proof. Let A be an n-fold obstinate pseudo-
hoop. Then xn = 0, for any x ∈ A\{1}. By
Proposition 2.1(v), xn+1 ≤ xn. Hence, xn+1 = 0,
for any x ∈ A\{1} and so A is an (n + 1)-fold
obstinate pseudo-hoop.

Corollary 3.1 Any n-fold obstinate pseudo-
hoop is an (n+k)-fold obstinate pseudo-hoop, for
all k ≥ 1.

Proposition 3.2 If A is an n-fold obstinate
pseudo-hoop, then A is not a cancellative pseudo-
hoop.

Proof. Let A be a cancellative pseudo-hoop, by
the contrary. Then xn+1 = xn = 0. Hence xn ⊙

x = xn ⊙ 1 = 0. Thus x = 1 = 0, which is a
contradiction. Therefore, A is not a cancellative
pseudo-hoop.

Proposition 3.3 If A does not have idempo-
tent element except {0, 1} and A(M) is the set
of all atoms of A, then A(M) ∪ {1} is an n-fold
obstinate pseudo-hoop.

Proof. If x ∈ A(M), then x is an atom and is
not idempotent element of A. Thus x2 ̸= x. By
Proposition 2.1(v), xn = x2 = 0.

Proposition 3.4 If A is an n-fold obstinate
pseudo-hoop, then A does not have idempotent el-
ement except 0,1.

Proof. Let 0 ̸= x be an idempotent element
of A. Then x2 = x. Since A is an n-fold
obstinate pseudo-hoop, 0 = xn = x, which is a
contradiction.

Notation: For any x ∈ A, we consider
mx = ord(x)− 1, so xmx ̸= 0.

Proposition 3.5 Let A be an n-fold obstinate
pseudo-hoop. Then xmx is an atom for any 0, 1 ̸=
x ∈ A and mx ∈ N.

Proof. Let x ∈ A. Then xn = 0 and 0 = xn ≤
xn−1 ≤ xn−2 ≤ ... ≤ x. If t = ord(x), then
xt−1 ̸= 0. So for mx = t− 1, xmx is an atom.

Definition 3.2 A proper filter F of A is called
an n-fold obstinate filter if for all x, y /∈ F , then
xn → y, yn → x ∈ F and xn ⇝ y, yn ⇝ x ∈ F ,
for n ∈ N.

Example 3.2 In Example 3.1(i), F = {1} is an
3-fold obstinate filter but since b2 → 0 = a → 0 =
b /∈ F , F is not an 2-fold obstinate filter of A.

Proposition 3.6 Let F be a proper filter of A.
Then the following statements are equivalent:
(i) F is an n-fold obstinate filter of A,
(ii) x ∈ F or (xn)−, (xn)∼ ∈ F , for all x ∈ A.

Proof. (i) ⇒ (ii) Suppose F is an n-fold obsti-
nate filter and x /∈ F . Since F is a proper filter
and A is bounded, 0 /∈ F . Then (xn)− = xn →
0 ∈ F and (xn)∼ = xn ⇝ 0 ∈ F .
(ii) ⇒ (i) Let x, y /∈ F . Then by assump-
tion, (xn)−, (xn)∼, (yn)−, (yn)∼ ∈ F . Thus,
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by Proposition 2.2(vi), (xn)− ≤ xn → y and
(yn)− ≤ yn → x. Since F is a filter, by (F1),
xn → y ∈ F and yn → x ∈ F . The proof of
other case is similar. Therefore, F is an n-fold
obstinate filter of A.

Corollary 3.2 F is an n-fold obstinate fil-
ter of A if and only if x /∈ F implies
((xn)−)m, ((xn)∼)m ∈ F , for all m ∈ N and
x ∈ A.

Proposition 3.7 Let F be an n-fold obstinate
filter of A. Then the following conditions hold:

(i) for all 0, 1 ̸= x ∈ A, xn → (xn)−, xn →
(xn)∼ ∈ F or (xn)− → xn, (xn)∼ → xn ∈ F ,
(ii) for all x ∈ A, ((xn)−)∼ → xn, ((xn)∼)− ⇝
xn ∈ F ,
(iii) for all x /∈ F , and for any y ≤ xn, then
y−, y∼ ∈ F ,
(iv) for all x ∈ A, xn → x2n, xn ⇝ x2n ∈ F .

Proof. (i) Let x ∈ F . Then by Proposi-
tion 2.1(iii), xn ≤ (xn)− → xn. Since F is a
filter, by (F1), (xn)− → xn ∈ F . If x /∈ F ,
then by Proposition 3.6(ii), (xn)− ∈ F . By
Proposition 2.1(iii), (xn)− ≤ xn → (xn)−, and
so xn → (xn)− ∈ F . The proof of other cases is
similar.
(ii) We consider the following cases:
Case 1: If x ∈ F , then by Proposition 2.1(iii),
xn ≤ ((xn)−)∼ → xn. Since F is a filter, by
(F1), ((xn)−)∼ → xn ∈ F .
Case 2: If x /∈ F , then by Proposition 3.6(ii),
(xn)− ∈ F . By Proposition 2.2(iv) and (vi),
(xn)− ≤ (((xn)−)∼)− ≤ ((xn)−)∼ → x, and so
by (F1), ((xn)−)∼ → x ∈ F . The proof of other
cases is similar, too.
(iii) Let x /∈ F and y ≤ xn. Then by Proposition
2.2(i), (xn)− ≤ y−. Since F is an n-fold obstinate
filter, by Proposition 3.6(ii), (xn)− ∈ F and by
(F1), y− ∈ F .
(iv) We consider the following cases:
Case 1: If x ∈ F , then by Proposition 2.1(iii),
x2n ≤ xn → x2n. Since F is a filter, by (F1),
xn → x2n ∈ F .
Case 2: If x /∈ F , then by Proposition 3.6(ii),
(xn)− ∈ F . By Proposition 2.2(iv) and (vi),
(xn)− ≤ (((xn)−)∼)− ≤ ((xn)−)∼ → x2n. Also,
by Proposition 2.2(iv) and Proposition 2.1(iv),

xn ≤ ((xn)−)∼ and ((xn)−)∼ → x2n ≤ xn → x2n.
Therefore, by (F1), xn → x2n ∈ F .

Proposition 3.8 If F is an n-fold obstinate fil-
ter of A, then F is an (n+k)-fold obstinate filter
of A, for any k ∈ N.

Proof. Let x /∈ F . Then by Proposition 3.6(ii),
(xn)− ∈ F . By Proposition 2.2(ii), (xn)− ≤
(xn+1)− and so by (F1), (xn+1)− ∈ F . The proof
of other case is similar.

Let F ∈ F(A). Define x ≡F y if and
only if x → y ∈ F, y → x ∈ F , and
x ⇝ y ∈ F, y ⇝ x ∈ F for any x, y ∈ A.
Then we can see that ≡F is a congruence relation
on A. The set of all congruence classes is
denoted by A/F , it means A/F = {[x] | x ∈ A},
where [x] = {y ∈ A | x ≡F y}. Define
the operations ⊙,→ and ⇝ on A/F by
[x] ⊙ [y] = [x ⊙ y], [x] → [y] = [x → y]
and [x] ⇝ [y] = [x ⇝ y]. Therefore,
(A/F,⊙,→,⇝, [1], [0]) is a bounded pseudo-
hoop with respect to F and [x] ≤ [y] if and only
if x → y, x⇝ y ∈ F . (See [8])

Notation: It is easy to show that every obsti-
nate filter of A is an n-fold obstinate filter of A
and every 1-fold obstinate filter of A is an obsti-
nate filter of A.

Theorem 3.1 Let F be an 1-fold obstinate filter
of A. Then A/F is a Boolean algebra.

Proof. Let x ∈ A. Since F is an 1-fold ob-
stinate filter, by Proposition 3.6(ii), x ∈ F or
x−, x∼ ∈ F . Then, [x] = [1] or [x−] = [x∼] = [1].
Hence, [x] = [1] or [(x−)∼] = [0]. If [(x−)∼] = [0],
since [x] ≤ [(x−)∼], then [x] = [0]. Therefore,
A/F is a Boolean algebra.

Theorem 3.2 F is an n-fold obstinate filter of A
if and only if A/F is an n-fold obstinate pseudo-
hoop.

Proof. (⇒) Let F be an n-fold obstinate filter
and x /∈ F . Then x/F ̸= 1/F . By Proposition
3.6(ii), (xn)− ∈ F , thus (xn)−/F = 1/F . By
Proposition 2.2(ii) and (iii), xn/F = 0/F .
(⇐) Let A/F be an n-fold obstinate pseudo-hoop
and x /∈ F . Then xn/F = 0/F and by Proposi-
tion 2.2(iii), (xn)−/F = 1/F . Hence (xn)− ∈ F .
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By Proposition 3.6(ii), F is an n-fold obstinate
filter of A.

Proposition 3.9 Let F and G be two filters of
A such that F ⊆ G. If F is an n-fold obstinate
filter of A, then G is an n-fold obstinate filter,
too.

Proof. Let F and G be two filters of A such
that F ⊆ G and F be an n-fold obstinate filter
of A. Suppose x /∈ G. Then x /∈ F . Since F is
an n-fold obstinate filter, by Proposition 3.6(ii),
(xn)−, (xn)∼ ∈ F . Hence (xn)−, (xn)∼ ∈ G and
G is an n-fold obstinate filter of A.

Proposition 3.10 Let F be an n-fold obstinate
filter of A. Then:

(i) (x⊙y)− ∈ F , implies (xn)− ∈ F or (yn)− ∈ F .
(ii) (x⊙ y)∼ ∈ F , implies (xn)∼ ∈ F or (yn)∼ ∈
F .
Proof. (i) Let F be an n-fold obstinate filter of
A and (x ⊙ y)− ∈ F . Since F is a proper filter,
x ⊙ y /∈ F . Then by (F2), x /∈ F or y /∈ F . By
Proposition 3.6(ii), (xn)− ∈ F and (yn)− ∈ F .
(ii) The proof is similar to (i).

Lemma 3.1 (i) Let φ ∈ Hom(A,B) and G be
an n-fold obstinate filter of B. Then the inverse
image of G is an n-fold obstinate filter of A.
(ii) Let φ : A → B be a pseudo-hoop isomor-
phism and F ∈ F(A) be an n-fold obstinate filter.
Then φ(F ) is an n-fold obstinate filter of B.
(iii) Let φ : A → B be a pseudo-hoop surjective
and A be an n-fold obstinate pseudo-hoop. Then
B is an n-fold obstinate pseudo-hoop.

Proof. (i) Let G be an n-fold obstinate
filter of B and x ∈ A but x /∈ φ−1(G).
Then φ(x) /∈ G, and so by Proposition 3.6(ii),
((φ(x))n)−, ((φ(x))n)∼ ∈ G. By Definition
2.7, we have φ((xn)−), φ((xn)∼) ∈ G. Then
(xn)−, (xn)∼ ∈ φ−1(G). Therefore, φ−1(G) is
an n-fold obstinate filter of A.
(ii) It is easy to see that, if F ∈ F(A), since φ is
a pseudo-hoop isomorphism, then φ(F ) ∈ F(B).
Now, let y1, y2 /∈ φ(F ). Then φ−1(y1), φ

−1(y2) /∈
F . Since F is an n-fold obstinate filter, then
φ−1((y1)

n → y2) = (φ−1(y1))
n → φ−1(y2) ∈ F

and so (y1)
n → y2 ∈ φ(F ). By the similar way,

we can get that (y2)
n → y1, (y1)

n ⇝ y2, (y2)
n ⇝

y1 ∈ φ(F ). Therefore, φ(F ) is an n-fold obstinate
filter of B.
(iii) Let y ∈ B. Then there exists x ∈ A such
that y = φ(x) and so yn = φ(xn) = φ(0) = 0.
Therefore, B is an n-fold obstinate pseudo-hoop.

Theorem 3.3 The following conditions are
equivalent:

(i) any filter F ∈ F(A) is an n-fold obstinate
filter of A,
(ii) {1} is an n-fold obstinate filter of A,
(iii) A is an n-fold obstinate pseudo-hoop.

Proof. (i) ⇒ (ii) The proof is clear.
(ii) ⇒ (i) By Proposition 3.9, the proof is clear.
(ii) ⇒ (iii) Since A ∼= A/{1} and {1} is an n-fold
obstinate filter, then by Theorem 3.2 and Lemma
3.1(iii), A is an n-fold obstinate pseudo-hoop.
(iii) ⇒ (ii) Let A be an n-fold obstinate pseudo-
hoop and 1 ̸= x ∈ A. Since, xn = 0, by Propo-
sition 2.2(iii), (xn)− = (xn)∼ = 1 ∈ {1}. Then
by Proposition 3.6(ii), {1} is an n-fold obstinate
filter of A.

Proposition 3.11 Let F be an n-fold obstinate
filter of A. Then the following conditions are
hold:

(i) [F ∪G) is an n-fold obstinate filter of A, for
any G ∈ F(A).
(ii) F (x) is an n-fold obstinate filter of A, for
all x ∈ A.

Proof. (i) Let x /∈ [F ∪G). Then x /∈ F and
x /∈ G. By Proposition 3.6(ii), (xn)− ∈ F . Thus
(xn)− ∈ [F ∪G). By Proposition 3.6(ii), [F ∪G)
is an n-fold obstinate filter of A.
(ii) We consider the following cases:
Case 1: If x ∈ F , then F (x) = F .
Case 2: If x /∈ F and y /∈ F (x), y ̸= x, then y /∈
F and by Proposition 3.6(ii), (yn)− ∈ F . Hence
(yn)− ∈ F (x). By Proposition 3.6(ii), F (x) is an
n-fold obstinate filter of A.

4 Relation between n-fold fil-
ters in pseudo-hoops

In this section, we investigate the relationship be-
tween n-fold obstinate filters and other filters and
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n-fold filters in pseudo-hoops.

Theorem 4.1 Every n-fold obstinate filter of A
is a maximal filter of A.

Proof. Let F be an n-fold obstinate filter of
A which is not a maximal filter of A. Then there
exists a proper filter G of A such that F ⊆ G.
Let x ∈ G\F . Since F is an n-fold obstinate
filter, by Proposition 3.6(ii), (xn)− ∈ F . Since
(xn)− ∈ G and xn ∈ G, by Proposition 2.2(v),
xn ⊙ (xn)− = 0 ∈ G, which is a contradiction.
Therefore, F is a maximal filter.

The next example shows that the converse of
Theorem 4.1, is not true, in general.

Example 4.1 Let (A = {0, a, b, c, d, 1},≤) be a
poset. Define operations ⊙,⇝ and → on A as
follows,

→, ⇝ 0 a b c d 1

0 1 1 1 1 1 1
a c 1 b c b 1
b d a 1 b a 1
c a a 1 1 a 1
d b 1 1 b 1 1
1 0 a b c d 1

⊙ 0 a b c d 1

0 0 0 0 0 0 0
a 0 a d 0 d a
b 0 d c c 0 b
c 0 0 c c 0 c
d 0 d 0 0 0 d
1 0 a b c d 1

By routine calculations, we can see that (A,⊙,→
,⇝, 0, 1) is a bounded pseudo-hoop. It is clear
that F = {1, a} is a maximal filter but it is not
an 1-fold obstinate filter. Because b /∈ F and
b− = d /∈ F .

Corollary 4.1 Every n-fold obstinate filter of
pseudo ∨-hoop A is a prime filter of A.

Proof. By Theorem 4.1 and Proposition 2.5,
the proof is clear.

Proposition 4.1 Any 1-fold obstinate filter F
is a normal filter of A.

Proof. Let F be an 1-fold obstinate filter and
x → y ∈ F . We consider the following cases:
Case 1: If y ∈ F , then by Proposition 2.1(iii),
y ≤ x⇝ y. By (F1), x⇝ y ∈ F .
Case 2: If x, y /∈ F , then by assumption, x ⇝
y ∈ F .
Case 3: If x ∈ F , then by Proposition 2.1(v),
(x → y) ⊙ x ≤ y. By (F1) and (F2), y ∈ F .
Hence by Case 1, x⇝ y ∈ F .
Therefore, F is a normal filter of A.

In the following example we show that the con-
verse of Proposition 4.1, is not true, in general.

Example 4.2 In Example 4.1, F = {1}, is a
normal filter but it is not an n-fold obstinate fil-
ter. Because, an → b = b and bn → a = a /∈ F .

Theorem 4.2 Let F be an n-fold obstinate filter
of A. Then F is an n-fold implicative filter.

Proof. Assume that F is not an n-fold im-
plicative filter. Then there exist x, y ∈ A, such
that 1 → ((xn → y) ⇝ x) ∈ F but x /∈ F . By
Proposition 2.3(ii), (xn → y) ⇝ x ∈ F . We con-
sider two cases:
Case 1: If y ∈ F , then since y ≤ xn → y, so by
(F1), xn → y ∈ F . By Proposition 2.3(iii), since
(xn → y) ⇝ x ∈ F and xn → y ∈ F , we get,
x ∈ F , which is a contradiction.
Case 2: If y /∈ F , then since F is an n-fold obsti-
nate filter, xn → y ∈ F . By Proposition 2.3(iii),
since (xn → y) ⇝ x ∈ F and xn → y ∈ F , we
get, x ∈ F , which is a contradiction.
Therefore, F is an n-fold implicative filter of A.

Lemma 4.1 Any filter F of A is an n-fold pos-
itive implicative filter if and only if for all x ∈
A, Fx = {y ∈ A | xn → y and xn ⇝ y ∈ F} is a
filter of A.

Proof. Let F be an n-fold positive implicative
filter of A. Since xn → 1 = 1 ∈ F , we have
1 ∈ Fx. Let y, z ∈ A such that y, y → z ∈ Fx.
Then xn ⇝ y ∈ F and xn → (y → z) ∈ F . Thus
xn → z ∈ F , and so z ∈ Fx. Therefore, Fx is a
filter of A.
Conversely, suppose Fx is a filter of A, for all x ∈
A. Let x, y, z ∈ A such that xn → (y → z) ∈ F
and xn ⇝ y ∈ F . Then y, y → z ∈ Fx. Thus
z ∈ Fx, and so xn → z ∈ F . The proof of other
cases is similar, too.
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Theorem 4.3 If F is a maximal and n-fold pos-
itive implicative filter of A, then F is an n-fold
obstinate filter of A.

Proof. Let F be a maximal and n-fold positive
implicative filter of A and x, y ∈ A\F . Then by
Lemma 4.1, Fx = {b ∈ A | xn → b and xn ⇝ b ∈
F} and Fy = {b ∈ A | yn → b, yn ⇝ b ∈ F} are
filters of A .
Let z ∈ F . Then by Proposition 2.1(iii), z ≤
xn → z and by (F1), xn → z ∈ F . Thus, z ∈ Fx

and so F ⊆ Fx. On the other hand, xn → x =
1 ∈ F , so x ∈ Fx. By assumption, x /∈ F . Hence
F ⊊ Fx ⊆ A. Since F is a maximal filter of A,
Fx = A. Hence y ∈ Fx or equivalently xn → y ∈
F . Similarly xn ⇝ y ∈ F, yn → x ∈ F and
yn ⇝ x ∈ F .

Proposition 4.2 [2] Let F be a normal filter
of A.

(i) If for all x ∈ A, xn → x2n ∈ F or
xn ⇝ x2n ∈ F , then F is an n-fold positive
implicative filter of A.
(ii) If F is an n-fold implicative filter of A, then
F is an n-fold fantastic filter of A.
(iii) {1} is an n-fold fantastic filter, if and only
if A is an n-fold fantastic pseudo-hoop.

Theorem 4.4 Let A be a pseudo ∨-hoop. Then
F is an n-fold obstinate filter if and only if F is
a prime and n-fold implicative filter.

Proof. If F is an n-fold obstinate filter, then
by Corollary 4.1 and Theorem 4.2, the proof is
clear.
Conversely, assume that F is a prime filter and n-
fold implicative filter of A such that x ∈ A\F . We
show that x ∨ (xn)− ∈ F and x ∨ (xn)∼ ∈ F , for
all x ∈ A. Since F is an n-fold implicative filter,
if (xn)∼ → x ∈ F then x ∈ F . Also (xn)− ⇝
x ∈ F implies x ∈ F . Now, we must show that
t = x ∨ (xn)− ∈ F . Since x ≤ t, we have xn ≤ tn

and then by Proposition 2.2(i), (tn)− ≤ (xn)− ≤
(xn)− ∨ x = t. So (tn)− ⇝ t = 1 ∈ F . Hence,
we get that t ∈ F . The other case is similar.
Thus x∨ (xn)− ∈ F . Since F is a prime filter and
x /∈ F , we have (xn)− ∈ F . Therefore, F is an
n-fold obstinate filter of A.

Proposition 4.3 Let F be a normal n-fold ob-
stinate filter of A. Then:
(i) F is an n-fold positive implicative filter,
(ii) F is an n-fold fantastic filter.

Proof. (i) We consider two cases:
Case 1: Let x ∈ F . Then by (F2), x2n ∈ F
and by Proposition 2.1(iii), x2n ≤ xn → x2n. By
(F1), xn → x2n ∈ F .
Case 2: Let x /∈ F . Then by assume (xn)− ∈ F .
By Proposition 2.2(vi), (xn)− ≤ xn → x2n and by
(F1), xn → x2n ∈ F . Therefore, by Proposition
4.2(i), F is an n-fold positive implicative filter of
A.
(ii) By Theorems 4.2 and 4.2(ii), F is an n-fold
fantastic filter of A.

Theorem 4.5 (i) If F is an n-fold fantas-
tic filter of A, then ((xn)−)∼ → x ∈ F and
((xn)∼)− → x ∈ F .
(ii) If De(A) = {x ∈ A | x− = x∼ = 0} =
A\{0}, then every n-fold fantastic filter is an n-
fold obstinate filter of A.
(iii) Let F be an n-fold fantastic filter and for
all x, y ∈ A, if (xn ⊙ yn)− ∈ F , then (xn)− ∈ F
or (yn)− ∈ F . Also, (xn ⊙ yn)∼ ∈ F implies
(xn)∼ ∈ F or (yn)∼ ∈ F . Then F is an n-fold
obstinate filter of A.

Proof. (i) Since 0 → x = 0⇝ x = 1 ∈ F and
F is an n-fold fantastic filter, then ((xn)−)∼ →
x ∈ F and ((xn)∼)− → x ∈ F .
(ii) Let F be a proper n-fold fantastic filter of
A. Then 0 /∈ F , and so (xn)−, (xn)∼ /∈ F , for
any 0 ̸= x ∈ A and n ≥ 1. By assumption and
(i), ((xn → 0) ⇝ 0) → x = (0 ⇝ 0) → x = 1 →
x = x ∈ F . Hence, by Proposition 3.6(ii), F is
an n-fold obstinate filter.
(iii) Assume F is an n-fold fantastic filter of
A such that x /∈ F . It is enough to prove
that (xn)−, (xn)∼ ∈ F . Let (xn)− /∈ F , by
the contrary. Then by Proposition 2.2(v), (xn ⊙
(xn)−)∼ = 0∼ = 1 ∈ F . By assumption
((xn)−)∼ ∈ F . Since F is an n-fold fantastic
filter, by (i), ((xn)−)∼ → x ∈ F . By Propo-
sition 2.3(ii), x ∈ F , which is a contradiction.
Hence, (xn)∼ ∈ F . By the similar way, we get
that (xn)− ∈ F . Therefore, F is an n-fold obsti-
nate filter of A.

Proposition 4.4 Let A be an n-fold fantastic
pseudo-hoop and if for all x, y ∈ A, xn ⊙ yn = 0
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implies xn = 0 or yn = 0. Then A is an n-fold
obstinate pseudo-hoop.

Proof. If A is an n-fold fantastic pseudo-hoop,
then by Proposition 4.2(iii), {1} is an n-fold fan-
tastic filter of A. By hypothesis and Theorem
4.5(iii), {1} is an n-fold obstinate filter of A and
so by Theorem 3.3(iii), A is an n-fold obstinate
pseudo-hoop.

Proposition 4.5 Let A be a bounded simple
pseudo-hoop. Then A is an n-fold obstinate
pseudo-hoop, for some n ∈ N.

Proof. If 1 ̸= x ∈ A, then [x) = A and so
0 ∈ [x). Hence for some m ∈ N, xm = 0. Let n =
max{m | x ∈ A}. Then A is an n-fold obstinate
pseudo-hoop.

Theorem 4.6 Let F be an n-fold obstinate filter
of A. Then A/F is a local and simple pseudo-
hoop.

Proof. Let F be an n-fold obstinate filter of
A. Then by Theorem 4.1, F is a maximal filter of
A and so A/F is a local and simple pseudo-hoop.

Notation: A partially ordered set (P,≤) is
called to be of the finite length if the length of all
chains in P are finite.

Theorem 4.7 Let A be a pseudo-hoop of finite
length. Then there exists n ∈ N such that every
maximal filter of A is an n-fold obstinate filters
of A.

Proof. Let n be the length of the greatest
chain in A. Then by Theorem 4.1, every n-fold
obstinate filter of A is a maximal one. Now, let
F ∈ Max(A). Then, we show that F is an n-
fold obstinate filter. Assume x /∈ F . Since F is
a maximal filter of A, by Proposition 2.4, then
(xt)− ∈ F , for some t ∈ N. If t ≤ n, then by
Proposition 2.1(v), xn ≤ xt, so by Proposition
2.2(i), (xt)− ≤ (xn)−. By (F1), (xn)− ∈ F . Let
n < t. Since 0 ≤ xn ≤ xn−1 ≤ ... ≤ x2 ≤ x ≤ 1
and A is finite length. Then by assumption, there
is a s ∈ {1, 2, ..., n} such that xs = xs+1, so xn =
xt. It follows that (xn)− ∈ F . Therefore, F is an
n-fold obstinate of A.

Theorem 4.8 Let A be an n-fold obstinate
pseudo-hoop. Then the following conditions are
hold:

(i) A is an n-fold fantastic pseudo-hoop,
(ii) A is an n-fold positive implicative pseudo-
hoop,
(iii) A is an n-fold implicative pseudo-hoop,
(iv) A is a local pseudo-hoop,
(v) A is a simple pseudo-hoop.

Proof. (i) Let A be an n-fold obstinate
pseudo-hoop. Then by Theorem 3.3(ii), {1} is
an n-fold obstinate filter of A. By Proposition
4.3(ii), {1} is an n-fold fantastic filter of A. then
by Proposition 4.2(iii), A is an n-fold fantastic
pseudo-hoop.
(ii) Let A be an n-fold obstinate pseudo-hoop.
Then xn = 0, and so xn+1 = xn. Hence, A is an
n-fold positive implicative pseudo-hoop.
(iii) Let A be an n-fold obstinate pseudo-hoop.
Then by Proposition 2.1(ii), (xn → 0) ⇝ x =
1 ⇝ x = x and (xn ⇝ 0) → x = 1 → x = x.
Therefore, A is an n-fold implicative pseudo-
hoop.
(iv) Since for any 1 ̸= x ∈ A, xn = 0, then
ord(x) < ∞. Hence, A is a local pseudo-hoop.
(v) Let A be an n-fold obstinate pseudo-hoop
and 1 ̸= x ∈ F . Then by (F2), 0 = xn ∈ F .
Therefore, A is a simple pseudo-hoop.

In the following diagram, we show the relation-
ship between n-fold obstinate filter and other fil-
ters of pseudo-hoop, where the condition (∗) is
xn ⊙ yn = 0 ⇒ xn = 0 or yn = 0.

Figure 1: First-type nanostar dendrimer, NS1[2]
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5 Conclusion

In this paper, we have considered the folding the-
ory of a filter which is a generalization of a fil-
ter in pseudo-hoop. We have provided conditions
for a filter to be an n-fold obstinate filter of a
pseudo-hoop. So we discuss on concept n-fold
obstinate pseudo-hoops. Then we studied rela-
tionships between n-fold obstinate pseudo-hoops
and some other special pseudo-hoops, such as
simple pseudo-hoop and local pseudo-hoop. On
the other hands, we introduced the notion of an
n-fold obstinate filter in pseudo-hoop. Then we
studied relationships between an n-fold obstinate
filter and some other special n-fold filter, such as
n-fold fantastic, n-fold positive implicative and
n-fold implicative filter.
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