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Abstract

This paper aims to propose a constructive methodology for determining the matrix sign function for a
stable variant of the Kung-Traub method. It analytically shows that the new scheme is asymptotically
stable. Different numerical experiments compare the new scheme’s behavior with the existing matrix
iteration of the same type. Finally, the given approach applies to solve the algebraic Riccati equation
and the Sylvester equation.
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1 Introduction

I
n 1858, Cayley [8] introduced the square root

of a matrix, and it was not long before the

definition of a matrix was proposed by Sylvester

and others [37]. Recently, the problem of find-

ing a function f of a matrix A, named by f(A),

becoming one of the most studied topics in the

field of applied mathematics with widespread ap-

plications in science and engineering especially in

control theory [7, 10, 13, 16, 17, 14, 29, 32].

One of the fundamental computational prob-

lems in control theory is to find the solution of
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the matrix algebraic Riccati equation. As math-

ematical models of physical systems get larger,

it is vital to develop some reliable and efficient

techniques for solving the matrix algebraic Ric-

cati equation. Some of them are: Gardiner and

Laub [18], Pandey, Kenney, and Laub [35], Char-

lier and Van Dooren [11], Gardiner [19].

The other problem in control theory is the

Sylvester equation. This equation is applied

widely in different fields such as control the-

ory, image restoration, signal processing, model

reduction, filtering, decoupling techniques for

ordinary and partial differential equations see,

e.g., [1, 9, 12, 16]. Bartels-Stewart method [3]

and the Hessenberg-Schur method [13, 15] are

standard methods for Sylvester equations of the

form (7.26). Some iterative schemes for solv-

ing Sylvester equation have been proposed in

[9, 22, 40]. In [4, 5] the authors investigated the
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numerical solution of stable Sylvester equation

via iterative schemes, Newton iteration, Newton-

Schulz iteration, Halley method, for computing

the sign function of a matrix. Recently, we stud-

ied the local convergence analysis of the family

of Kung-Traub’s two-point method and obtained

the convergence ball for this family. Moreover,

we studeid the dynamical behavior on quadratic

and cubic polynomials for this family [2].

The purpose of the present paper is two top-

ics. One of our intentions is to expand the root-

finding Kung-Traub two-point method for the

matrix sign function S. Stability of the scheme

will be shown analytically. The other aim is to

solve the algebraic Ricatti equation and the sta-

ble Sylvester equation as an application of the

contributed method.

The organization of the paper is as follows. In

section 3, some fundamental definitions and prop-

erties for Kung-Traub two-point method are pre-

sented. Convergence of the method is analysed

in section 4, while section 5 is devoted to inves-

tigating the stability. The numerical examples

for illustrating the method’s convergence behav-

ior are devoted to Section 6. Section 7 is ded-

icated to solving the algebraic Ricatti equation

and the Sylvester equation. Section 8 concludes

this article with a summary.

2 Theoretical Background

In what follows, we briefly recall the basic defini-

tions and properties of a matrix sign function. A

primary matrix function is the matrix sign func-

tion. It was introduced by Robert in [34] as a tool

for solving the algebraic Riccati equation and the

Lyapunov equation. The function of sign for any

non-imaginary number z is given as follows.

sign(z) =

{
1, Re(z) > 0;
−1, Re(z) < 0.

(2.1)

It is supposed that A ∈ Cn×n does not have

any eigenvalues on the imaginary axis. Also,

A = PJP−1 is the Jordan canonical form ar-

ranged where J = diag(J1, J2) and the eigenval-

ues of J1 ∈ CP×P and the eigenvalues of J2 ∈
C(n−p)×(n−p) lie in the open left half-plane and

the open right half-plane, respectively. Therefore,

the matrix sign function of A is defined as

S = sign(A) = P

(
−Ip 0
0 In−p

)
P−1. (2.2)

We can define this matrix uniquely (A is a non-

singular square matrix). Certain significant prop-

erties of the matrix sign function are outlined in

Lemma 2.1.

Lemma 2.1. (See [4, 10, 23]) Let A ∈ Cn×n with

no eigenvalues on the imaginary axis. Then the

matrix sign function has the following properties

1. sign(A)2 = I.

2. sign(A) is diagonalizable with eigenvalues

±1.

3. sign(A) A = A sign(A).

4. If A is real, then sign(A) is real.

5. If A is stable, then

sign(A) = −In, sign(−A) = In. (2.3)

According to property (2.1) of the previous

lemma, solving the following nonlinear matrix

equation

F (X) = X2 − I,

where I is the identity matrix, by a appropriate

root finding method could yield to S = sign(A)

if the starting point is chosen as A.

The matrix iteration of Newton, defined as be-

low, is one the most useful and broadly applicable

method for computing S.

Xk+1 =
1

2
(Xk +X−1

k ), (2.4)

that converges quadratically whenX0 = A chosen

as an initial matrix with an ultimately quadratic

convergence [34]. Now consider wk = xk +

βF (xk), F [xk, wk] is the two point divided

and β ∈ R \ {0}. We apply the Steffensen family

of [38]

xk+1 = xk −
F (xk)

F [xk, wk]
, k = 0, 1, ...
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in order to compute sign(A). Therefore, we ob-

tain the generalized Steffensen iteration for the

matrix sign function (|β|≤ 0.001) [25]

Xk+1 =
(
I +X2

k − βXk + βX3
k

)
(
2Xk − βI + βX2

k

)−1
, k = 0, 1, ... (2.5)

The importance of the Steffensen method is in the

fact that it has the same order and computational

cost as the Newton method.

3 Kung-Traub two-point
method

The problem of finding a simple zero of a non-

linear equation f(x) = 0, is an often discussed

problem in many applications of science and tech-

nology [17, 30, 31]. In 1974 Kung and Traub pro-

posed an optimal fourth-order method [28, 33]

for finding a simple zero of a nonlinear equation

f(x) = 0. Let F : D ⊂ X → Y be a nonlinear

Fréchet differentiable operator in open convex do-

main D. Let F ′(x0)
−1 ∈ L(Y,X), where L(Y,X)

is the set of bounded linear operators from Y into

X. Assume that α is a simple real zero of a real

function F (x) and x0 is an initial approximation

to α. The Kung-Traub two-point method can be

represented by
yn = xn − F (xn)

F ′(xn)
,

xn+1 = yn − F (xn)2F (yn)

F ′(xn)

(
F (yn)−F (xn)

)2 .
(3.6)

According to property (2.1) of Lemma 2.1, solv-

ing the following nonlinear matrix equation

F (X) := X2 − I, (3.7)

by a appropriate root finding method could yield

to S = sign(A) if the starting point is chosen as

A. Now, we consider the Eq.(3.6) to solve the

Eq.(3.7) and derive an iterative formula in the

reciprocal form as follows.

Xk+1 =
(
I + 3X2

k + 23X4
k + 5X6

k

)
(
2Xk + 12X3

k + 18X5
k

)−1
(3.8)

First, we show that the method (3.8) is conver-

gence by using the basin of attraction. In order

to indicate this, it is sufficient to plot the basin

of attraction of the scheme (3.8) for solving the

equation g(x) = x2−1 = 0 (for more information

see [23] or [24]).

We take square [−2, 2]× [−2, 2] of the complex

plane with a mesh 500×500, while the maximum

number of iterations are set to 50 in our written

programs. The area of convergence to the roots

is painted in sky blue and violet, while the di-

vergence area ( if it exists) painted in black (See

Figure 1). The exact location of the simple roots

of (3.7), i.e. ±1 is marked with white color.

Figure 1 (b) shows the basins of attraction for

(3.8). As you can see we do not have any black

region, so the scheme (3.8) is convergence. The

local convergence analysis of the family of Kung-

Traub’s two-point method and the convergence

ball for this family are obtained in [2]. Moreover,

we studied the dynamical behavior on quadratic

and cubic polynomials for this family.

4 Convergence analysis

In this section, we present the theoretical behav-

ior of iterative expression (3.8).

Theorem 4.1. Assume that A ∈ Cn×n possess

no pure imaginary eigenvalues. Then, by choos-

ing X0 = A, the matrix sequence {Xk}∞k=0 defined

by (3.8) is convergent to the matrix sign S.

Proof. Suppose that R is the rational operator

associated to (3.8). If complex matrix X ∈ Cn×n

has a Jordan canonical form, i.e. there is a matrix

Z so that X = ZJZ−1, Then

R(x) = ZR(J)Z−1.

Thus, an eigenvalue λ of Xk gets mapped into

the eigenvalue of R(λ) of Xk+1 by applying the

matrix iteration (3.8). This scalar relationship

between eigenvalues denotes that it is needed to

regard how the complex plane is mapped into it-

self by R(λ). The rational operator R must sat-

isfy following properties.

i. Sign preservation:sign(R(x)) = sign(x), ∀x ∈
C.
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(b). The Kung-Traub Method .

Figure 1: The basins of attractions for the equation
g(x) = x2 − 1.

ii. Global convergence: the sequence defined as

xk+1 = R(xk) with x0 = x, converges to

sign(x) for any x not on the imaginary axis.

Suppose that A has a Jordan canonical form as

follows [21]

Z−1AZ = Λ =

[
C 0
0 N

]
. (4.9)

where Z is a nonsingular matrix and C, N are

square Jordan blocks regarding to eigenvalues

which are loocated in C− and C+, respectively.

Let us consider λ1, ..., λp and λp+1, ..., λn are the

values locating on the main diagonals of blocks C

and N , respectively. By utilizing (4.9), we have

sign(A) = Z

[
−Ip 0
0 In−p

]
Z−1.

Hence, it is clear that

sign(Λ) = sign(Z−1AZ) = Z−1sign(A)Z

Consider D0 = Z−1AZ, we define Dk =

Z−1XkZ, k = 1, 2, ..., then from the method

(3.8), we observe that

Dk+1 =
(
I + 3D2

k + 23D4
k + 5D6

k

)
[
2Dk + 12D3

k + 18D5
k

]−1
. (4.10)

It is noteworthy that if D0 is a diagonal matrix

then all successive Dk are diagonal as well. This

can be shown by an inductive proof. The case

when D0 is not diagonal can be treated in similar

fashion. This will be proved later.

It is sufficient show that {Dk} converges to

sign(Λ). Now, (4.10) is rewritten in the form

of n uncoupled scalar iterative methods to solve

f(x) = x2 − 1 = 0 as follows:

dik+1 =
1 + 3dik

2
+ 23dik

4
+ 5dik

6

2dik + 12dik
3
+ 18dik

5 , (4.11)

where dik = (Dk)i,i and i = 1, ..., n. Using

Eq.(4.10) and Eq.(4.11), we must investigate the

convergence of {dik} to sign(λi), for i = 1, ..., n.

Because the eigenvalues of A are not pure imag-

inary and using Eq.(4.11), we get sign(λi) = si =

±1. Hence, we obtain

dik+1 − 1

dik+1 + 1
=

(
dik − 1

dik + 1

)4 1 + 2dik + 5dik
2

1− 2dik + 5dik
2 . (4.12)



P. Ataei Delshad et al., /IJIM Vol. 14, No. 2 (2022) 227-237 231

Since |di0|= |λi|> 0 and |d
i
0−1

di0+1
|< 1, we have

lim
k→∞

∣∣∣∣dik+1 − 1

dik+1 + 1

∣∣∣∣ = 0,

and limk→∞|dik|= 1 = |sign(λi)|. So we can con-

clude that limk→∞Dk = sign(Λ).

Now, consider D0 is not diagonal. Because the

Jordan of some matrices may not be diagonal, it

is not possible to write Eq.(4.10) as n uncoupled

scalar iterations (4.11). In this case, the follow-

ing relation maps the eigenvalues of Xk from the

iteration k to the iteration k + 1.

λi
k+1 =

(
− I − 3λi

k
2
+ 23λi

k
4
+ 5λi

k
6
)

[
2λi

k + 12λi
k
3
+ 18λi

k
5
]−1

. (4.13)

According to the process described above,

Eq.(4.13) shows that the eigenvalues are conver-

gent to ±1 generally, that is to say

lim
k→∞

∣∣∣∣λi
k+1 − 1

λk+1 + 1

∣∣∣∣ = 0.

Finally, we have

lim
k→∞

Xk = Z
(

lim
k→∞

Dk

)
Z−1 = Zsign(Λ)Z−1 = sign(A).

That is establishing the claim.

Theorem 4.2. Assume that A ∈ Cn×n has no

pure imaginary eigenvalues. Then, by choosing

X0 = A, the matrix sequence {Xk}∞k=0 defined by

(3.8) is convergent to S by fourth rate.

Proof. The xk are rational functions of A and

hence, like A, commute with S. We know that

S2 = I, S−1 = S, S2j = I, S2j+1 = S, for j ≥ 1.

Let us consider

Bk = 2Xk + 12X3
k + 18X5

k ,

we observe that

Xk+1 − S = (I + 3X2
k + 23X4

k + 5X6
k)B

−1
k − S

=
(
I + 3X2

k + 23X4
k + 5X6

k − SBk

)
B−1

k

=
(
I + 3X2

k + 23X4
k + 5X6

k − 2SXk

− 12SX3
k − 18SX5

k

)
B−1

k

=
(
S6 − 2S5Xk + 3S4X2

k − 12S3X3
k + 23S2X4

k

− 18SX5
k + 5X6

k

)
B−1

k

= (Xk − S)4
(
I +Xk(2S + 5Xk)

)
B−1

k . (4.14)

Now, using any matrix norm from both side of

(4.14), we have

∥Xk+1 − S∥≤
(
∥B−1

k ∥∥I +Xk(2S + 5Xk)∥
)
∥Xk − S∥4.

The above inequality shows the fourth order of

convergence. The proof of the theorem now is

clear and completed.

5 Stability

Theorem 5.1. With identical hypothesis in The-

orem 4.2, matrix sequence {Xk}∞k=0 produced by

(3.8) is stable.

Proof. If X0 is a function A, then the iterates

form (3.8) are all functions of A and hence com-

mute with A. Let ∆k be the numerical pertur-

bation presented at the k-th iteration of (3.8).

therefore, It can be written as follows

X̃k = Xk +∆k. (5.15)

Here, a first-order error analysis is carried out;

that is, we formally neglect quadratic terms such

as (∆Xk)
2, since (∆k)

i, i ≥ 2 is near to zero

matrix. This discussion will be significant if ∆k

is small enough. We get

X̃k+1 =
(
I + 3X̃2

k + 23X̃4
k + 5X̃6

k

)
[
2X̃k + 12X̃3

k + 18X̃5
k

]−1

=
(
I + 3(Xk +∆k)

2 + 23(Xk +∆k)
4

+ 5(Xk +∆k)
6
)[

2(Xk +∆k)

+ 12(Xk +∆k)
3 + 18(Xk +∆k)

5
]−1

.
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For any nonsingular matrix B and C we have the

following statement [20]

(B + C)−1 ≈ B−1 −B−1CB−1,

and

S2 = I, and S−1 = S.

By assuming Xk ≃ sign(A) = S where k is large

enough, we obtain

X̃k+1 ≈ (32I + 97S∆k + 31∆kS)(
32S + 32∆k + 96S∆kS

)−1

≈ (32I + 97S∆k + 31∆kS)( 1

32
S − 1

32
S∆kS − 3

32
∆k

)
≈ (S +

1

2
S∆kS − 1

2
∆k).

Now, after some simplification and by ∆k+1 =

X̃k+1 −Xk+1, we observe that

∆k+1 =
1

2
(S∆kS −∆k). (5.16)

Therefore, we can conclude that the perturbation

is bounded at the iteration k+1 , in other words

∥∆k+1∥≤
(
1

2

)k+1

∥S∆0S −∆0∥.

Hence, the sequence {Xk}∞k=0 generated by (3.8)

is asymptotically stable. The proof is ended.

6 Numerical Experiments

Here, the result of comparisons in terms of num-

ber of iteration and the residual norms is pre-

sented for different matrix iterations.

The convergence my be slow if there is a large

eigenvalue in iteration Xk , i.e. in the case

∥Xk∥≫ 1. Therefore, we can speed up the con-

vergence of the proposed iteration through scal-

ing. For this purpose, the scaling parameter µk

is introduced as follows [26]

µk =


√

∥X−1
k

∥
∥Xk∥

, (norm scaling),√
ρ(X−1

k
)

ρ(Xk)
, (spectral scaling,)√

|det(Xk)|
−1
n , (determinantal scaling.)

(6.17)

The new scheme can be expressed as follows
X0 = A,
µk = is the scaling parameter computed by (6.17).

Xk+1 =
(
I + 3µ2

kX
2
k + 23µ4

kX
4
k + 5µ6

kX
6
k

)
[
2µkXk + 12µ3

kX
3
k + 18µ5

kX
5
k

]−1
,

where limk→∞ µk = 1 and limk→∞Xk = S. How-

ever, the computation of the scaling parameter µk

is not studied in depth for the iteration method

due to its high cost in some cases. In this work,

the stopping termination is considered as follows.

∥X2
k − I∥∗≤ ϵ (6.18)

where ϵ is the tolerance and ∥.∥∗ is an appropriate

matrix norm. For complex and real input matrix,

l2 and l∞ should be taken , respectively [36].

In order to comparison, we implement the com-

pared methods, Kung-Traub method abbreviated

as KTM, Newton method denoted by NM and

Steffensen method denoted by SM1 with β =

0.001 and SM2 with β = 0.0001 in Mathematica

[39]. The computer specifications are Microsoft

Windows 7, 32-bit, Intel(R) Core(TM)i5 CPU

2.27GHz, with 4GB of RAM.

Figure 2: History of convergence of various methods
for solving Example 6.1

Figure 3: Convergence history of different methods
in solving Example 6.2
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Example 6.1. In this example, the behavior of

different methods for the following 250×250 ran-

domly complex matrix (I =
√
−1) is investigated

to find the matrix sign function

n = 250; SeedRandom[123];

A= RandomComplex

[{ -100 - I, 100 + I }, {n, n}];

The results of comparisons are displayed in Figure

2. In this example, the stopping criterion (6.18)

with ϵ = 10−8, l2 (the input matrix is complex)

has been and X0 = A is taken as the initial ma-

trix.

Example 6.2. In this test, we run Example 6.1

for the dimension n = 400. The results in this

case are shown in Figure 3

From these numerical cases, we conclude that

the Kung-Traub two-point method produced the

best approximation which matches the theoreti-

cal fourth order of convergence.

7 Applications

In this section, the iterative method (3.8) is em-

ployed to solve the algebraic Riccati equation and

the Sylvester equation.

7.1 Algebraic Riccati Equation

Let us consider the following algebraic Riccati

equation

R(X) = XA+ATX +Q−XBR−1BTX = 0,(7.19)

where A ∈ Rn×n, B ∈ Rn×m, Q = QT ∈ Rn×n

is positive semi-definite, R = RT ∈ Rm×m is

positive definite and X ∈ Rn×n is the unknown

matrix [6, 27, 34]. Generally, the desirable so-

lution is stabilizing because the eigenvalues of

A−BR−1BTX have negative real parts.

Theorem 7.1. Eq. (7.19) can have a unique sta-

bilizing solution X ∈ Rn×n if (A,B) is stabilizable

and (A,Q) is detectable. Furthermore X is sym-

metric and positive semidefinite.

Equation (7.19) holds is and only if(
A BR−1BT

Q −AT

)(
I 0

−X I

)
=

(
I 0

−X 0

)
(
A−BR−1BTX BR−1BT

0 −AT +XBR−1BT

)
,

Now consider

W =

(
W11 W12

W21 W22

)
= sign(H)

=

(
I 0

−X I

)(
−I K
0 I

)(
I 0

−X I

)−1

,

(7.20)

where K is a suitable matrix and

H =

(
A BR−1BT

Q −AT

)
(7.21)

Therefore we can find X as follows(
W11 W12

W21 W22

)(
I

−X

)
=

(
−I
X

)
,

so

−
(
W12

W22

)
X +

(
W11

W21

)
+

(
I
X

)
= 0,

Therefore, we have(
W12

W22 + I

)
X =

(
W11 + I
W21

)
(7.22)

Thus we get the required solution by solving the

overdetermined system (7.22). This solution can

be computed with the QR decomposition or the

method of least squares.

To verify the efficacy of the method we solve a

simple example [36]. Consider

A =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 ,

B =


0.8 0 0 −1.6 0
0 0.8 0 0 −1.6
0 0 0.8 0 0

−1.6 0 0 0.8 0
0 −1.6 0 0 0.8

 , (7.23)
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Q =


4.55719 0 0 0 0

0 9.77826 0 0 0
0 0 9.43215 0 0
0 0 0 9.62216 0
0 0 0 0 3.02348

 ,

R =


500 100 −200 0 0
100 600 −100 0 −200
−200 −100 500 0 −200
0 0 0 400 0
0 −200 −200 0 400

 . (7.24)

By attention to Eq.(7.21) , we apply the iterative

expression (3.8) to obtain sign(H) by the stop

termination (6.18) in the infinity norm and the

tolerance 10−12. We solve system (7.22) by the

Mathematica function LeastSquares and get

X =


1265.8 −587.5 −483.8 1027.6 −448.5
−587.5 719.4 10.2 −539.2 506.0
−483.8 10.2 1252.8 −598.0 57.2
1027.6 −539.2 −598.1 1349.1 −672.0
−448.5 506.0 57.2 −672.0 1129.9


(7.25)

Using Eq.(7.25), we compute the residual norm

of (7.19) in the infinity norm and we obtain

∥R(X)∥∞= 4.03814 × 10−6, which confirms the

accuracy of the approximation solution using the

approach of matrix sign function based on the

Kung-Traub two-point method.

7.2 Sylvester Equation

Consider the Sylvester equation

R(X) = AX +XB + C = 0, (7.26)

where A ∈ Rn×n, B ∈ Rm×m , C ∈ Rn×m

and X ∈ Rn×m is the proper solution. Equa-

tion (7.26) has a unique solution if and only if

α+ β ̸= 0 for all α ∈ Λ(A) and β ∈ Λ(B), where

Λ(Z) symbolizes the spectrum of the matrix Z.

This property is established for stable Sylvester

equation, while both Λ(A) and Λ(B) are in the

open left half plane. The antistable case can be

turned into the stable case by multiplying (7.26)

by −1 [4, 5].

In this section, by computation of the matrix

sign function, we use the iterative schemes (3.8)

for solving Sylvester equations in stable case.

Provided that X is a solution of (7.26), the

similarity transformation defined as

(
In X
0 Im

)
,

can be used to block-diagonalize the block upper

triangular matrix

H =

(
A C
0 −B

)
, (7.27)

as follows

(
In X
0 Im

)−1(
A C
0 −B

)(
In X
0 Im

)
=

(
In −X
0 Im

)(
A C
0 −B

)(
In X
0 Im

)
=

(
A 0
0 −B

)
. (7.28)

By utilizing the matrix sign function of H, the

relation given in (7.28) and Eq.(2.3), we can de-

rive the following expression for the solution of

the Sylvester equation (7.26)

sign(H) =

(
−In 2X
0 Im

)
. (7.29)

Therefore, in order to solve (7.26), we apply

the Kung-Traub two-point schemes suggested for

computing sign function.

Now, we solve a simple example to verify the

efficacy of the method. First, we construct [4]

Â = diag(−1,−a,−a2, · · · ,−an−1), a > 1,

B̂ = diag(−1,−b,−b2, · · · ,−bn−1), b > 1,

Ĉ = diag(1, 2, 3, · · · , n),

Here, the spectra of A and B are adjusted by the

parameters a and b, respectively.

In the second step, a transformation matrix

K ∈ Rn×n defined as follows is employed.

K = H2SH1, (7.30)

where

H1 = In − 2

n
h1h

T
1 , h1 = [1, 1, ..., 1]T ,

H2 = In − 2

n
h2h

T
2 , h2 = [1,−1, ..., (−1)n−1]T ,

S = diag(1, s, · · · , sn−1),

for transforming the equation matrices as

A = (K−1)T ÂKT , B = KB̂K−1, C = (K−1)T ĈK−1.
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Here, the scalar s is applied for adjusting the

conditioning of K. By setting the parameters

a = 1.03, b = 1.008, s = 1.001 and n = 5, the

solution of the Sylvester equation (7.26) is ob-

tained

X =


1.77 0.08 0.63 0.23 0.00
0.083 1.92 −0.07 0.00 −0.23
0.61 −0.07 1.44 0.07 −0.61
0.22 0.00 0.07 0.98 −0.07
0.00 −0.22 −0.59 −0.07 1.13

 .

The residual norm of (7.26) in l∞ is equaled

∥R(X)∥∞= 1.99862 × 10−15, which confirm

the accuracy of the approximation approach

of matrix sign function and the method (3.8).

Figure 4 shows the accuracy of the Kung-Traub

iteration for different values of n.

Figure 4: Relative errors of the Sylvester equation
solvers for different n.

8 Conclusions

This paper devoted the Kung-Traub method to

the computation of the matrix sign function.

We showed that this method is convergence via

attraction basin in the complex plane. Some

numerical examples performed the contributed

method’s consistency and efficiency. Moreover,

we discussed applying the sign function method

for solving the algebraic Riccati equation and a

class of the stable Sylvester equation. The nu-

merical results are well in line with the theoretical

aspects.
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