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Abstract

In the current work, we implement the meshless local radial point interpolation (MLRPI) method to
find numerical solution of one-dimensional linear telegraph equations with variable coefficients. The
MLRPI method, as a meshless technique, does not require any background integration cells and all
integrations are carried out locally over small quadrature domains of regular shapes, such as lines in one
dimensions, circles or squares in two dimensions and spheres or cubes in three dimensions. Weak form
formulation of the discretized equations has been constructed on local subdomains, hence the domain
and boundary integrals in the weak form methods can easily be evaluated over the regularly shaped
sub-domains by some numerical quadratures. Radial basis functions augmented with monomials are
used in to create shape functions. These shape functions have delta function property. Also the time
derivatives is eliminated by using two-step finite differences approximation. Two illustrative numerical
examples are given to show the stability and accuracy of the present method.

Keywords : Meshless local radial point interpolation (MLRPI); Radial basis function; Variable coeffi-
cient; Telegraph equation.
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1 Introduction

T
his paper is dedicated to study the numerical
solutions of the second order hyperbolic tele-

graph equation. The telegraph equation is impor-
tant for modeling several relevant problems such
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as signal analysis [25], wave propagation [48], vi-
brational systems [10], random walk theory [6],
mechanical systems [45] and etc. Recently, in-
creasing attention has been paid to the devel-
opment, analysis, and implementation of stable
methods for the numerical solutions of second-
order hyperbolic equations. There have been
many numerical methods for hyperbolic equa-
tions, such as the finite difference, the finite ele-
ment, and the collocation methods, etc. see [3, 4,
12, 11, 13, 14, 16, 17, 18, 24, 31, 32, 33, 34, 35, 46]
and literatures are therein.

One of the most important advances in the
field of numerical methods was the development
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of the finite element method (FEM) in the late
1950s. For a long time, FEM has been a stan-
dard tool for numerically solving different engi-
neering problems. But The main shortcoming
of FEM is that this numerical method rely on
meshes or elements. Therefore, the meshless or
meshfree method is proposed as one such nu-
merical technique to overcome this shortcoming.
Meshless methods have been developed in the
past decade, and significant progress has been
achieved recently for numerical computations of
wide ranging engineering problems. These mesh-
less methods do not require mesh for discretisa-
tion of problem domains, and they construct the
approximate functions only via a set of nodes so-
called field nodes where no element is required for
approximation of functions [28]. In general, the
meshless methods can be grouped into two cate-
gories based on using or not using integration or
based on computational modelling [27]. The first
category involves methods that do not require in-
tegration and are based on the strong forms of
partial differential equations (PDEs) such as the
meshless collocation method based on radial basis
functions (RBFs) [26, 15, 29, 20] and the mesh-
less collocation method based on boundary par-
ticle method (BPM) [21]. The second category
includes meshless methods based on the weak
forms of PDEs such as the element free Galerkin
(EFG) method [8, 9]. In addition, a meshless
method based on the combination of the strong
form and weak form has also been developed and
is known as the meshless weakstrong (MWS) form
method. In the meshless strong form methods,
usually the PDEs are discretized at nodes by the
collocation technique and it is simple to imple-
ment. However, the meshless strong form meth-
ods have obvious shortcomings. For example,
they are often numerically unstable and less ac-
curate. The second category consists of meshless
methods based on the weak forms of PDEs, in-
cluding global weak form and local weak form.
The meshless methods based on the weak form
have very attractive merits. They exhibit very
good stability and excellent accuracy. The rea-
son is probably that the weak form can smear the
computational error over the integral domain and
control the error level [28]. The weak forms are
used to derive a set of algebraic equations through

a numerical integration process using a set of
quadrature domain that may be constructed glob-
ally or locally in the domain of the problem.
In the global weak form methods, global back-
ground cells are needed for numerical integration
in computing the algebraic equations. To avoid
the use of global background cells, a so-called lo-
cal weak form is used to develop the meshless
local Petrov-Galerkin (MLPG) and meshless lo-
cal radial point interpolation (MLRPI) methods
[44, 42, 43, 5, 41, 22, 1, 2, 38, 39, 40]. When a local
weak form is used for a field node, the numerical
integrations are carried out over a local quadra-
ture domain defined for the node, which can also
be the local domain where the test (weight) func-
tion is defined. The local domain usually has
a regular and simple shape for an internal node
(such as sphere, rectangular, etc.), and the inte-
gration is done numerically within the local do-
main. Hence the domain and boundary integrals
in the weak form methods can easily be evaluated
over the regularly shaped sub-domains(spheres in
3D or circles in 2D) and their boundaries.

According to the numerical results obtained by
the MLRPI method, it seems this method can
be employed as practical and effective numerical
technique to solve telegraph equations with vari-
able coefficients.
Let Ω = [0, 1] and consider the 1D linear tele-
graph equation:

∂2u(x, t)

∂t2
+ 2α(x, t)

∂u(x, t)

∂t
+

β2(x, t)u(x, t) = A(x, t)
∂2u(x, t)

∂x2
+ g(x, t),

(x, t) ∈ Ω × [0, T ], (1.1)

with the initial and boundary conditions:

u(x, 0) = g1(x) ,
∂u

∂t
(x, 0) = g2(x), (1.2)

u(0, t) = φ0(t) , u(1, t) = φ1(t) , t ≥ 0 (1.3)

where g, g1, g2, φ0, φ1 are known functions, the
function u is unknown and α, β,A are variable
coefficients.

2 Numerical scheme

In this section, we concentrate on the numerical
solution of the Eqs. (1.1)-(1.3) using the meshless
local radial point interpolation (MLRPI) method.
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2.1 Finite differences approximation

In the proposed method, we employ a time-
stepping scheme to approximate the time deriva-
tive. For this purpose, the following finite differ-
ence approximations of order O(∆t)2 are used:

∂2u(x, t)

∂t2
∼=

1

∆t2

(
u(k+1)(x) − 2 u(k)(x) ,

+ u(k−1)(x)
)
, (2.4)

∂u(x, t)

∂t
∼=

1

2 ∆t

(
u(k+1)(x) − u(k−1)(x)

)
.

(2.5)
By using Crank-Nicholson scheme, we have:

u(x, t) ∼=
1

3

(
u(k+1)(x) + u(k)(x)

+u(k−1)(x)
)
,

∂2u(x, t)

∂x2
∼=

1

3

(
∂2u(k+1)(x, t)

∂x2

+
∂2u(k)(x, t)

∂x2
+

∂2u(k−1)(x, t)

∂x2

)
,

(2.6)

where uk(x) = u(x, k ∆t).
Using the above approximations, Eq. (1.1) be-
comes:

1

∆t2
(
u(k+1)(x) − 2 u(k)(x) + u(k−1)(x)

)
+

α

∆t

(
u(k+1)(x) − u(k−1)(x)

)
+
β2

3

(
u(k+1)(x) + u(k)(x) + u(k−1)(x)

)
−A

3

(
∂2u(k+1)(x)

∂x2
+

∂2u(k)(x)

∂x2

+
∂2u(k−1)(x)

∂x2

)
=

1

3

(
g(k+1)(x) + g(k)(x) + g(k−1)(x)

)
.

(2.7)
In this paper for simplicity, telegraph equation
is considered with variable coefficients α(x, t) =

x2, β(x, t) = x,A(x, t) = 1 + x, therefore

1

∆t2
(
u(k+1)(x) − 2 u(k)(x) + u(k−1)(x)

)
+

x2

∆t

(
u(k+1)(x) − u(k−1)(x)

)
+
x2

3

(
u(k+1)(x) + u(k)(x) + u(k−1)(x)

)
−1 + x

3

(
∂2u(k+1)(x)

∂x2
+

∂2u(k)(x)

∂x2

+
∂2u(k−1)(x)

∂x2

)
=

1

3

(
g(k+1)(x) + g(k)(x) + g(k−1)(x)

)
,

(2.8)
thus

1

∆t2
u(k+1) +

(
1

∆t
+

1

3

)
x2 u(k+1)

− 1

3

∂2u(k+1)(x)

∂x2
− 1

3
x
∂2u(k+1)(x)

∂x2

=
2

∆t2
u(k) − 1

3
x2 u(k)

+
1

3

∂2u(k)(x)

∂x2
+

1

3
x
∂2u(k)(x)

∂x2

− 1

∆t2
u(k−1) +

(
1

∆t
− 1

3

)
x2 u(k−1)

+
1

3

∂2u(k−1)(x)

∂x2
+

1

3
x
∂2u(k−1)(x)

∂x2

+
1

3

(
g(k+1)(x) + g(k)(x) + g(k−1)(x)

)
.

(2.9)

2.2 Approximation of field variables
using radial point interpolation
method

In the classical point interpolation method
(PIM), we use monomial terms of a complete
polynomail basis obtained from the triangle of
pascal. It is possible that the polynomial moment
matrix (it will be defined later) becomes singu-
lar or ill-conditioned, leading to the PIM failure.
The most common reason for the inexistence of
inverse of the polynomial moment matrix is the
spatial collinearity of field nodes belonging to the
same support-domain, which is recurrent in uni-
formly distributed nodal meshes or linear domain
boundaries [7]. In order to avoid this drawback,
the radial point interpolator (RPI) is employed.
RPI is a numerical technique belonging to the
point interpolation methods (PIM), which com-
bines polynomial basis functions with radial basis
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functions.
Consider a continuous function u(x) defined in a
domain Ω, which is represented by a set of field
nodes. The u(x) at a point of interest x is ap-
proximated in the form of

u(x) =
∑n

i= 1 Ri(x) ai
+
∑m

j = 1 pj(x) bj = RT (x) a + PT (x) b,

(2.10)
where Ri(x) is a radial basis function (RBF), n
is the number of RBFs, pj(x) is monomial in the
space coordinate x and m is the number of poly-
nomial basis functions. The pj(x) in Eq. (2.10)
is, in general, chosen in a top-down approach from
the Pascal triangle, so that the basis is complete
to a desired order and a complete basis is usually
preferred. For 1D problems, We use

PT (x) =
{
1, x, x2, x3, ..., xm

}
, (2.11)

for 2D problems, We shall have

PT (x) = PT (x, y) ={
1, x, y, xy, x2, y2, ..., xm, ym

}
,

(2.12)

and etc.
When m = 0, only RBFs are used. Otherwise,
the RBF is augmented with m polynomial ba-
sis functions. Coefficients ai and bj are unknown
which should be determined. There are a number
of types of RBFs, and the characteristics of RBFs
have been widely investigated [26, 19, 37]. In this
paper we consider the thin plate spline (TPS) as
radial basis functions in Eq. (2.10). This RBF is
defined as follows:

R(x) = r2s ln(r), s = 1, 2, 3, .... (2.13)

Since R(x) in Eq. (2.13) belongs to C2s− 1 (all
continuous function to the order 2s−1), so higher-
order thin plate splines must be used for higher-
order partial differential operators. For the
second-order partial differential equation (1.1),
s = 2 is used for thin plate splines (i.e., second-
order thin plate splines). In the radial basis
function Ri(x), the variable is only the distance
between the point of interest x and a node at
xi, i.e., r = | x − xi | for 1-D and r =√

(x − xi)2 + (y − yi)2 for 2-D. In order to de-
termine ai and bj in Eq. (2.10), a support domain
is formed for the point of interest at x, and n field

nodes are included in the support domain. Coef-
ficients ai and bj in Eq. (2.10) can be determined
by enforcing Eq. (2.10) to be satisfied at these n
nodes surrounding the point of interest x. This
leads to the system of n linear equations, one for
each node. The matrix form of these equations
can be expressed as

Us = Rn a + Pm b, (2.14)

where the vector of function values Us is

Us = { u1, u2, u3, ..., un }T , (2.15)

the RBFs moment matrix is

Rn =


R1(r1) R2(r1) ... Rn(r1)
R1(r2) R2(r2) ... Rn(r2)

...
...

. . .
...

R1(rn) R2(rn) ... Rn(rn)


n× n

,

(2.16)
and the polynomial moment matrix is

Pm =


1 x1 ... xm−1

1

1 x2 ... xm−1
2

...
...

. . .
...

1 xn ... xm−1
n


n×m

. (2.17)

Also, the vector of unknown coefficients for RBFs
is

aT = { a1, a2, a3, ..., an } , (2.18)

and the vector of unknown coefficients for poly-
nomial is

bT = { b1, b2, b3, ..., bm } . (2.19)

We notify that, in Eq. (2.16), rk in Ri(rk) is
defined as

rk = | xk − xi | . (2.20)

We mention that there are m+ n variables in Eq.
(2.14). The additional m equations can be added
using the following m constraint conditions:

n∑
i= 1

pj(xi) ai = PT
m a = 0, j = 1, 2, ..., m.

(2.21)
Combining Eqs. (2.14) and (2.21) yields the fol-
lowing system of equations in the matrix form:

Ũs =

[
Us

0

]
=

[
Rn Pm

PT
m 0

] [
a
b

]
= G ã,

(2.22)
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where

ŨT
s = { u1, u2, ..., un, 0, 0, ..., 0 } ,

ãT = { a1, a2, ..., an, b1, ..., bm } .
(2.23)

Because the matrix Rn is symmetric, the matrix
G will also be symmetric. Solving Eq. (2.22), we
obtain

ã =

[
a
b

]
= G−1 Ũs. (2.24)

Eq. (2.10) can be rewritten as

u(x) = RT (x) a + PT (x) b =

{
RT (x), PT (x)

} [ a
b

]
. (2.25)

Now using Eq. (2.24), we obtain

u(x) =
{
RT (x),PT (x)

}
G−1Ũs = Φ̃T (x)Ũs,

(2.26)
where Φ̃T (x) can be rewritten as

Φ̃T (x) =
{
RT (x), PT (x)

}
G−1 =

{ ϕ1(x), ϕ2(x), ...,

ϕn(x), ϕn+1(x), ..., ϕn+m(x) } .

(2.27)

The first n functions of the above vector function
are called the RPIM shape functions correspond-
ing to the nodal displacements. We show by the
vector Φ̃T (x) so that it is

Φ̃T (x) = { ϕ1(x), ϕ2(x), ..., ϕn(x) } . (2.28)

Then Eq. (2.26) is converted to the following one:

u(x) = Φ̃T (x) Ũs =
n∑

i=1

ϕi(x) ui. (2.29)

The derivatives of u(x) are easily obtained as

∂u(x)

∂x
=
∑n

i= 1

∂ϕi(x)

∂x
ui,

∂2u(x)

∂x2
=
∑n

i= 1

∂2ϕi(x)

∂x2
ui.

(2.30)

Note that R−1
n usually exists for arbitrary scat-

tered nodes and therefore the augmented matrix
G is theoretically non-singular [36, 47]. In addi-
tion, the order of polynomial used in Eq. (2.10)

is relatively low. We add that the RPIM shape
functions have the Kronecker delta function prop-
erty, that is

ϕi(xj) =

{
1, i = j, j = 1, 2, ..., n,
0, i ̸= j, j = 1, 2, ..., n.

(2.31)
This is be cause the RPIM shape functions are
created to pass through nodal values.

2.3 Local weak equations

To avoid the numerical integration on the whole
domain, the MLRPI method constructs the weak
form equations on local subdomains. The sub-
domains overlap with each other and cover the
whole global domain. The subdomains could be
of any geometric shape and size. In one dimen-
sional problems, they are line (interval). For xi in
the interior of domain, we consider a subdomain
Ωi
q around xi, i.e, xi ∈ Ωi

q = (xi − rq , xi + rq) ,
and the local weak form of Eq. (2.9) for some
test function ν on subdomain Ωi

q will be written
as follows:

1

∆t2
∫
Ωi

q
u(k+1) ν(x) dx +

(
1

∆t
+

1

3

)
∫
Ωi

q
x2u(k+1)ν(x)dx−

1

3

∫
Ωi

q

∂2u(k+1)(x)

∂x2
ν(x)dx−

1

3

∫
Ωi

q
x
∂2u(k+1)(x)

∂x2
ν(x)dx =

2

∆t2
∫
Ωi

q
u(k)ν(x)dx− 1

3

∫
Ωi

q
x2u(k)ν(x)dx

+
1

3

∫
Ωi

q

∂2u(k)(x)

∂x2
ν(x)dx+

(2.32)
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1

3

∫
Ωi

q
x
∂2u(k)(x)

∂x2
ν(x)dx−

1

∆t2
∫
Ωi

q
u(k−1)ν(x)dx

+

(
1

∆t
− 1

3

)∫
Ωi

q
x2u(k−1)ν(x)dx+

1

3

∫
Ωi

q

∂2u(k−1)(x)

∂x2
ν(x)dx

+
1

3

∫
Ωi

q
x
∂2u(k−1)(x)

∂x2
ν(x)dx

+
1

3

∫
Ωi

q

(
g(k+1)(x) + g(k)(x) + g(k−1)(x)

)
×

ν(x)dx,

using the Heaviside step function [23, 30]:

ν(x) =

{
1, x ∈ Ωi

q,

0, x /∈ Ωi
q,

(2.33)

as the test function in each subdomain and using
integration by parts:

∫
Ωi

q

∂2u(k)(x)

∂x2
ν(x)dx =

ν(x)
∂u(k)(x)

∂x

∣∣∣x=xi+rq

x=xi−rq
−

∫
Ωi

q

∂u(k)(x)

∂x

∂ν(x)

∂x
dx,

(2.34)

∫
Ωi

q
x
∂2u(k)(x)

∂x2
ν(x)dx = x

∂u(k)(x)

∂x

∣∣∣x=xi+rq

x=xi−rq

−
∫
Ωi

q

∂u(k)(x)

∂x
dx = x

∂u(k)(x)

∂x

∣∣∣x=xi+rq

x=xi−rq

−u(k)(x)
∣∣∣x=xi+rq

x=xi−rq
,

(2.35)

the following local weak equation will be ob-
tained:

1

∆t2
∫
Ωi

q
u(k+1)dx+

(
1

∆t
+

1

3

)∫
Ωi

q
x2u(k+1)dx

−1

3

(
∂u(k+1)(x)

∂x

∣∣∣x=xi+rq

x=xi−rq

)

−1

3

(
x
∂u(k+1)(x)

∂x

∣∣∣x=xi+rq

x=xi−rq

)

+
1

3

(
u(k+1)

∣∣∣x=xi+rq

x=xi−rq

)
=

2

∆t2
∫
Ωi

q
u(k)dx− 1

3

∫
Ωi

q
x2u(k)dx

(2.36)

+
1

3

(
∂u(k)(x)

∂x

∣∣∣x=xi+rq

x=xi−rq

)
+

1

3

(
x
∂u(k)(x)

∂x

∣∣∣x=xi+rq

x=xi−rq

)
− 1

3

(
u(k)

∣∣∣x=xi+rq

x=xi−rq

)
−

1

∆t2
∫
Ωi

q
u(k−1)dx+

(
1

∆t
− 1

3

)∫
Ωi

q
x2u(k−1)dx

+
1

3

(
∂u(k−1)(x)

∂x

∣∣∣x=xi+rq

x=xi−rq

)
+

1

3

(
x
∂u(k−1)(x)

∂x

∣∣∣x=xi+rq

x=xi−rq

)

−1

3

(
u(k−1)

∣∣∣x=xi+rq

x=xi−rq

)
+

1

3

∫
Ωi

q

(
g(k+1)(x) + g(k)(x) + g(k−1)(x)

)
dx.

Now, using the radial point interpolation
(RPIM) shape functions the local integral equa-
tions (2.36) are transformed into a system of al-
gebraic equations with respect to unknown quan-
tities, as will be described in the next subsection.

2.4 Discretized equations

Now, we consider Eq. (2.36) to see how to ob-
tain discrete equations. Consider N regularly
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Table 1: The L1, L2 and L∞ errors calculated by MLRPI for Example 3.1 with different ∆x and ∆t at time
t = 1.0.

∆t ∆x ∥ E ∥1 ∥ E ∥2 ∥ E ∥∞
0.01 0.0125 4.959087e− 06 6.384063e− 07 1.199214e− 07
0.0025 0.0125 1.129247e− 06 1.614878e− 07 3.890040e− 08
0.00125 0.0125 1.048819e− 06 1.456785e− 07 3.867238e− 08
0.001 0.0125 1.039219e− 06 1.439781e− 07 3.864510e− 08

Table 2: The L1, L2 and L∞ errors calculated by MLRPI for Example 3.1 with different ∆x and ∆t at time
t = 1.0.

∆t ∆x ∥ E ∥1 ∥ E ∥2 ∥ E ∥∞
0.001 0.1 6.589887e− 04 2.605541e− 04 1.755683e− 04
0.001 0.05 7.800750e− 05 2.191627e− 05 1.136000e− 05
0.001 0.025 8.830760e− 06 1.738533e− 06 6.605878e− 07
0.001 0.0125 1.039219e− 06 1.439781e− 07 3.864510e− 08

Table 3: The L1, L2 and L∞ errors calculated by MLRPI for Example 3.1 with different t at ∆x = 0.0125 and
∆t = 0.001

t ∥ E ∥1 ∥ E ∥2 ∥ E ∥∞
0.0 0 0 0
0.1 1.358360e− 07 1.778375e− 08 3.079967e− 09
0.2 2.645755e− 07 3.365996e− 08 5.625544e− 09
0.3 3.623065e− 07 4.541930e− 08 7.216603e− 09
0.4 4.089601e− 07 5.129782e− 08 7.964108e− 09
0.5 3.984947e− 07 5.046876e− 08 8.134482e− 09
0.6 3.485346e− 07 4.463411e− 08 7.832943e− 09
0.7 3.031383e− 07 4.146396e− 08 1.283511e− 08
0.8 3.239724e− 07 5.573539e− 08 1.947124e− 08
0.9 5.787852e− 07 9.146506e− 08 2.795837e− 08
1.0 1.039219e− 06 1.439781e− 07 3.864510e− 08

Table 4: The L1, L2 and L∞ errors calculated by MLRPI for Example 3.2 with different ∆x and ∆t at time
t = 1.0.

∆t ∆x ∥ E ∥1 ∥ E ∥2 ∥ E ∥∞
0.01 0.0125 4.042456e− 05 5.910543e− 06 1.178377e− 06
0.0025 0.0125 2.409794e− 06 3.525553e− 07 7.147390e− 08
0.00125 0.0125 5.336124e− 07 7.185181e− 08 1.459832e− 08
0.001 0.0125 3.400774e− 07 4.333283e− 08 7.754398e− 09

located points on the boundary and domain of
the problem i.e. interval [0 1] so that the dis-
tance between two consecutive nodes in each di-
rection is constant and equal to h. Assuming that
u(xi, k∆t), i = 1, 2, ..., N are known, our aim is
to compute u(xi, (k + 1)∆t), i = 1, 2, ..., N . So,
we have N unknowns and to compute these un-

knowns, we need N equations. As it will be de-
scribed, corresponding to each node we obtain
one equation. To obtain the discrete equations
from the locally weak forms (2.36), for nodes lo-
cated in the interior of the domain, i.e., for xi ∈
interior Ω, we substitute approximation formu-
las (2.29) and (2.30) into local integral equations
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(2.36) to have
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(2.37)

2.5 Implementation

For the boundary points, we have

∀k : uk(x1) = φ0(k), uk(xN ) = φ1(k),

xi ∈ ∂Ω = {x1 = 0, xN = 1} .
(2.38)

The matrix forms of Eqs. (2.37) and (2.38) for all
N nodal points in the domain and the boundary
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of the problem are given below:
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(2.39)
where
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∫
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Assuming
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(2.41)

Ci,j = − 1
∆t2

Ai,j +
(

1
∆t −

1
3

)
Bi,j+

1
3Ci,j +

1
3Di,j − 1

3Ei,j ,

Fk = [F1(k − 1, k, k + 1),

F2(k − 1, k, k + 1), ..., FN (k − 1, k, k + 1)]T ,

U = [u1, u2, ..., uN ]T ,

yeilds

AU (k+1) = BU (k) +CU (k−1) + Fk. (2.42)

Furthermore, to satisfy Eqs. (2.38), for both
nodes belong to the boundary, i.e., {x1, xN}, we
set

∀k : Fk
i = φi(k),∀j : Bi,j = Ci,j = 0,

Ai,j =

{
1, i = j,
0, i ̸= j.

(2.43)

At the first time level, when k = 0, according to
the initial conditions that were introduced in Eq.
(1.2), we apply the following assumptions:

u(0) = g1(x),

and

u(−1) ∼= u(1) − 2∆tg2(x),

where g1(x) = [g1(x1), g1(x2), ..., g1(xN )]T and
g2(x) = [g2(x1), g2(x2), ..., g2(xN )]T .

3 Numerical demonstrations

The proposed MLRPI scheme is applied to two
numerical examples of 1D linear telegraph equa-
tion with variable coefficients. In the current
work a uniform node arrangement, with step size
h = ∆x is used. To numerical investigation of the
local technique it is important to generate the lo-
cal sub-domain for each computational node, in
our process we construct the local quadrature do-
main by choosing rq = 0.8h, where rq is the radius
of local subdomain. The size of rq is such that the
union of these sub-domains must cover the whole
global domain. In the process, the 7 point Gauss
quadrature rule is used to evaluate the domain
integrals. The radius of support domain to lo-
cal radial point interpolation method is rs = 4rq.
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This size is significant enough to have sufficient
number of nodes (n) to give appropriate shape
functions. Also, in Eq. (2.10), we set m = 5.

Example 3.1 Consider the telegraph equation
(1) with variable coefficients α = x2, β = x and
A = 1 + x over the domain [0 , 1] with the fol-
lowing initial and boundary conditions:

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0,

u(0, t) = 0, u(1, t) = 0, t ≥ 0.

The exact solution is given by

u(x, t) = t3x2(1− x)2, (x, t) ∈ [0, 1]× [0, 1]

and

g(x, t) = (6t+ 6x2t2 + x2t3)x2(1− x)2

−t3(1 + x)(2− 12x+ 12x2).

The results of the example are reported in Tables
1, 2 and 3 and Fig f1. As it is seen, MLRPI
method is of high accuracy. Also Tables 1 and 2
show the order of convergence of the scheme. It
can be seen that the errors are decreasing as we
decrease ∆t or ∆x.]
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Exact solution

Numerical solution

Figure 1: Numerical solutions and exact solution
at time t = 1.0 for Example 3.1. The solid line
corresponds to the exact solution, the stared line
corresponds to numerical solution of the MLRPI
with ∆t = 0.001 and ∆x = 0.0125.

Example 3.2 In this example, telegraph equa-
tion (1) is considered with variable coefficients
α = x2, β = x and A = 1+x over the domain [0 ,
1] and following initial and boundary conditions:

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0,

u(0, t) = 0, u(1, t) = 0, t ≥ 0.

The exact solution is given by

u(x, t) = t2(1− x)sinh(x), (x, t) ∈ [0, 1]× [0, 1]

and

g(x, t) = (2 + 4x2t+ x2t2 − t2 − xt2)×

(1− x)sinh(x) + (2t2 + 2xt2)cosh(x).

The results of the example are reported in Ta-
bles 4, 5 and 6 and Fig 2. As it is seen, MLRPI
method is of high accuracy. Also Tables 4 and 5
show the order of convergence of the scheme. It
can be seen again the errors are decreasing as we
decrease ∆t or ∆x.
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Figure 2: Numerical solutions and exact solution
at time t = 1.0 for Example 3.2. The solid line
corresponds to the exact solution, the stared line
corresponds to numerical solution of the MLRPI
with ∆t = 0.001 and ∆x = 0.0125.

4 Conclusions

In this article, The meshless local radial point
interpolation (MLRPI) method has been formu-
lated and successfully implemented for solving
the linear telegraph equation with variable coef-
ficients. The time variable has been discretized
by using finite differences approximation. Also,
weak form of the discretized equations has been
constructed on local subdomains. Furthermore,
The radial point interpolation method is adopted
for approximating the field variables. All integra-
tions are regular, therefore the Gaussian quadra-
ture rule used to calculate the numerical integra-
tion for local weak form.
The proposed method is a truly meshless method,
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Table 5: The L1, L2 and L∞ errors calculated by MLRPI for Example 3.2 with different ∆x and ∆t at time
t = 1.0.

∆t ∆x ∥ E ∥1 ∥ E ∥2 ∥ E ∥∞
0.001 0.1 2.284578e− 04 7.702824e− 05 3.246693e− 05
0.001 0.05 2.576054e− 05 6.007151e− 06 1.877456e− 06
0.001 0.025 2.893497e− 06 4.757451e− 07 1.179273e− 07
0.001 0.0125 3.400774e− 07 4.333283e− 08 7.754398e− 09

Table 6: The L1, L2 and L∞ errors calculated by MLRPI for Example 2 with different t at ∆x = 0.0125 and
∆t = 0.001.

t ∥ E ∥1 ∥ E ∥2 ∥ E ∥∞
0.0 0 0 0
0.1 3.880335e− 07 5.440162e− 08 1.023566e− 08
0.2 6.507940e− 07 8.805265e− 08 1.624005e− 08
0.3 7.864868e− 07 1.015752e− 07 1.793090e− 08
0.4 8.207701e− 07 1.028369e− 07 1.752439e− 08
0.5 7.763044e− 07 9.760137e− 08 1.707048e− 08
0.6 6.652667e− 07 8.486414e− 08 1.555002e− 08
0.7 4.956624e− 07 6.144735e− 08 1.096194e− 08
0.8 2.870293e− 07 3.243863e− 08 4.663845e− 09
0.9 2.130055e− 07 2.736595e− 08 5.918456e− 09
1.0 3.400774e− 07 4.333283e− 08 7.754398e− 09

which requires neither domain elements nor back-
ground cells in either the interpolation or the in-
tegration. The main advantage of the scheme is
to capture the behaviour of solution for similar
problems with variable coefficients where most of
the schemes fail. Test problems verified the accu-
racy and convergency of the proposed approach.
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