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Abstract 

One of the main challenges already faced by communication networks is the efficient 

management of increasing complexity. The recently proposed concept of cognitive networks 

has appeared as a candidate for addressing this issue. Cognitive networks are put forward in 

the framework of the evolution of network architectures as novel paradigms to provide 

autonomous systems in network reasoning to support end-to-end goals. This paper proposes 

a new method for modifying the spectral efficiency of topology control using the new vertex 

coloring algorithm in Thomas cognitive networks. This paper proposed a learning automata-

based iterative algorithm for approximating the near-optimal solution to the vertex coloring 

problem in the channel control of the cognitive network. Vertex coloring is a well-known NP-
hard optimization problem in graph theory in which each vertex is assigned a color so that no 

two adjacent vertices have the same color. As the proposed algorithm proceeds, the required 

number of colors tends to the chromatic number of the graph since the number of channels 

assigned to radios will be optimal. To show the performance of the proposed algorithm, we 

compare it with several existing vertex coloring algorithms in terms of the number of 

iterations and colors required for coloring the graphs and then map this solution to the channel 

assignment problem. Then, we compare the results of our algorithm with other channel 

assignment topology control methods. The results show that the proposed algorithm is 

superior to the others.  
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1. Introduction 

The area of information and communication technologies is one of the fastest-changing areas, 

with related services and applications having enormous and almost immediate impact on 

diverse aspects of modern society, including inter-human relations, economy, education, and 

entertainment. In this respect, the development of reliable and robust yet flexible and future-

proof communication infrastructure capable of real-time, secure, and cost-effective delivery 

of data is of utmost importance to increase the user’s perceived quality of life by facilitating 

human-to-human as well as human-to-machine communication almost anywhere and 

anytime, providing services such as e-health, e-learning and e-payments. Future networks will 

be ever more complex, extending towards ubiquitous communications, and will provide a 

broad range of other services and applications, from remote managing of an intelligent house 

to advanced real-time navigation systems. Despite the increased complexity, future networks 

should be easily maintainable, and their capabilities should be continuously improved and 

upgraded by relying as little as possible on human intervention. To meet this demand, the 

networking research community proposed a new paradigm for networking: the cognitive 

network [1-4]. 

A cognitive system is a complex system with the ability for emergent behavior [5,6]. It 

processes data over time by performing the following steps: 1) perceive defined situations; 2) 

learn from defined situations and adapt to their statistical variations; 3) build a predictive 

model on prescribed properties; and 4) control the situations and do all of these procedures in 

real time to execute prescribed tasks. 

Cognitive networks are motivated by complexity. Particularly in wireless networks, 

there has been a trend towards increasingly complex, heterogeneous, and dynamic 

environments [7]. While wired networks can also take on any of these characteristics 

and are not excluded from potential cognitive network applications because of the 

internode interactions and the size of the system state space, wireless networks are a 

natural focus of research on complex networks. 

In [1,3], Thomas presented a new method with the cognitive network to minimize the 

transmission power and spectral impact of a wireless network topology under static and 

dynamic conditions. Unlike most of the literature on topology control [8,9], he jointly 

examined lifetime and spectral efficiency objectives. His goal is to establish a distributed 

framework for minimizing the maximum transmission power and spectral footprint while 

achieving interference-free connectivity. This paper tries to modify the channel assignment in 

topology control. We use graph coloring as a model for channel assignment in topology 

control and propose an iterative algorithm based on learning automata for approximating a 

near-optimal solution to the vertex coloring problem. Graph coloring [10,11] is a well-known 

NP-hard optimization problem in graph theory in which each vertex is assigned a color so that 

no two adjacent vertices have the same color. As the proposed algorithm precedes the number 

of stages per iteration and so the required number of colors tends to the chromatic number of 

graphs, using learning automata since the number of vertices that are colored at each stage is 

maximized. To show the performance of the proposed algorithm we compare it with several 

existing vertex coloring algorithms [12,14] in terms of the number of iterations and colors 

required for coloring graphs. The obtained results show the superiority of the proposed 

algorithm over others. 
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The rest of this paper is organized as follows: Section 2 describes the cognitive topology 

control. Section 3 describes the variable action-set learning automaton. Section 4 describes 

the proposed learning automata-based algorithm. Section 5 evaluates the performance of the 

proposed algorithm through simulation experiments, and section 6 concludes the paper. 

 

2. Cognitive topology control 

Wireless networks are unstructured in the most general sense [6,7]. With increasing 

programmability, radios can autonomously adapt to their environment, setting transmission 

power and selecting their frequency of operation. Topology control attempts to harness this 

programmability to build structure into the wireless network. 

Traditionally, the field of topology control has examined power control problems that 

disregard spectral efficiency or vice-versa. Unlike most of the literature on topology control 

[8,9], the cognitive network method [2] jointly examines lifetime and spectral efficiency 

objectives. The goal is to establish a distributed framework for minimizing the maximum 

transmission power and spectral footprint while achieving interference-free connectivity. To 

address these spectrum and power control issues, there is a two-phased CN approach in which 

cognitive elements are distributed on each network radio. CN uses two potential class 

cognitive elements: TopoPower Control, which controls the transmission power of a radio, 

and Topo Channel Control, which chooses the transmission channel for a radio. CN aims to 

establish a distributed framework for interference-free communication between selfish radios. 

Each cognitive element observes network conditions and then selfishly chooses the reduced 

power level that still maintains topological connectivity (in the case of TopoPower Control) 

and then chooses channels that allow interference-free connectivity with all desired receivers 

(in the case of Top Channel Control). Pursuing these selfish objectives, the network reaches 

a topology state that minimizes the maximum transmission power, and the number of 

orthogonal channels required to achieve interference-free connections. This paper tries to 

modify the channel assignment in cognitive topology control. We use graph coloring as a 

model for channel assignment in topology control. We propose an iterative algorithm based 

on learning automata to approximate a near-optimal solution to the vertex coloring problem. 

 

3. Variable Action-Set Learning Automata 

A variable action-set learning automaton is one in which the number of actions available at 

each instant changes with time. It has been shown in [16] that a learning automaton with a 

changing number of actions is reasonable and ε-optimal when the reinforcement scheme is  

LR-I. Such an automaton has a finite set of n actions, α = {α1,α2,αn}. A= {A1,A2,Am} denotes 

the set of action subsets, and A(k) ⊆α is the subset of all the actions that can be chosen by the 

learning automaton at each instant k. The selection of the particular action subsets is randomly 

made by an external agency, according to the probability distribution  

q(k)={q1(k),q2(k),…,qm(k)}defined over the possible subsets of the actions, where 

qi(k)=prob[A(k)=Ai| Ai∈A, 1 ≤ i≤ 2n−1].  

pˆ (k) prob[α(k)=αi | A(k), αi∈A(k)] is the probability of choosing action αi, conditioned on the 

event that the action subset A(k) has already been selected and αi∈A(k). The scaled probability 

pˆi (k) is defined as: 

pˆi (k) =pi (k) / K(k)        (1) 
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Where ( )  )(kAa i
i

kp  Is the sum of the probabilities of the actions in subset A (k), and 

pi(k)=prob[α(k)=αi] 

The procedure of choosing an action and updating the action probabilities in a variable action-

set learning automaton can be described as follows. Let A (k) be the action subset selected at 

instant k. Before choosing an action, the probabilities of all the actions in the selected subset 

are scaled as defined in equation (1). The automaton then randomly selects one of its possible 

actions according to the scaled action probability vector pˆ (k). Depending on the response 

received from the environment, the learning automaton updates its scaled action probability 

vector. Note that the probability of the available actions is only updated. Finally, the 

probability vector of the actions of the chosen subset is rescaled as: 

Pi (k+1) = pˆi (k+1). K (k)        (2) 

For all αi∈A (k), [16] has proven the method's absolute expediency and ε-optimality. 
 

4. Proposed Learning Automata-based Graph Coloring 

In this section, we propose a learning automat-based approximation algorithm called LAGC 

for solving the minimum vertex coloring problem and using it for channel assignment. The 

proposed algorithm is iterative and exploits the variable action-set learning automata to color 

the graph. 

It is mentioned that in the directed graph G (V, E), the set of nodes is V (|V|=n), the edges are 

E, and arcs eij in E represent connections from a transmitter to a receiver. In this algorithm, 

the goal is vertex coloring in which each vertex is assigned a color so that no two adjacent 

vertices have the same color. The input topology in our problem is a connected graph, which 

can be obtained from power control. A bidirectional connection exists between two nodes 

when arcs exist in both directions. G is connected if a bi-directed path (a collection of 

contiguous bi-directed arcs) exists between any two radios in G. Our algorithm is an iterative 

algorithm that proposes a valid coloring in each iteration. Valid coloring means that no two 

adjacent vertices have the same color. 

In the proposed algorithm, each node of the graph is first assigned a learning automaton, so a 

network of learning automata isomorphic to the graph is initially constructed. This network 

of learning automata can be described by a duple, which  nAAAA ,...,, 21= denotes the set 

of learning automata corresponding to the vertex-set and  n ,...,,, 321= denotes the 

action set in which  ir

iiiii  ,...,, 21=  Defines the set of actions that can be taken 

by the learning automaton Ai. It should be noted that a learning automaton is associated with 

a vertex (one-to-one). So, hereafter, vertex vi may be referred to as learning automaton Ai and 

vice versa. 

As described earlier, the proposed coloring algorithm consists of several iterations, at each of 

which the graph is thoroughly colored. 

In this algorithm, the action set of each learning automaton includes a set of all the potential 

colors that can be assigned for each node and the nodes that we can reach through the next 

automata. So, for each node, the size of the action set corresponds with the product of the 

number of node edges and colors. For example, as shown in Figure 1, if the set of colors is 
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{a, b, c, d, e}, for node 1, the action set is: , a2, b2, c2, d2, e2, a3, b3, c3, d3, e3, a5, b5, c5, 

d5, e5} 

 

Figure 1- A sample graph 

For instance, action a2 (in node 1) means that this node is colored with “a,” the next active 

automata will be node 2. In this case, each action includes node one, and the color “a” will be 

deleted from the action set of nodes 2 (lines 16, 17, and 18). This avoids assigning the same 

color to the neighboring nodes, one at a time; each automaton (node) selects one of its actions 

(line 19) until no uncolored node remains, and finally, we can achieve a valid coloring of the 

graph (line 23). 

This process guarantees that the graph can be legally colored at each iteration. The set of 

colors used to color the graph is called a color set. After all nodes are colored, the number of 

colors used in the current iteration |Ct| is compared with the minimum number of colors in 

previous iterations |χ|. If the cardinality of the selected color set |Ct| is less than |χ|, LAGC 

rewards the actions chosen by all the activated learning automata (lines 24,25), sets χ, and 

then removes all the actions, including unused colors from action sets of all nodes and colors 

used in this iteration become optimal color set (line 28). To ensure we have a valid coloring, 

assume the cardinality of colors at the first iteration equals the degree of the graph plus one . 

There are enormous action sets for each automaton at the preliminary iterations, and this is 

why unused color is removed from action sets, improving the speed of convergence to a near-

optimal solution. 

If the number of colors used in each iteration is equal to those in previous iterations, the 

algorithm rewards selected actions and doesn’t change action sets of automata in each node 

(lines 29, 30). Therefore, in the forthcoming iterations, these actions are selected with a higher 

probability as the choice probability of the other actions decreases. It should be mentioned 

that at the end of each iteration and after each valid coloring process, all nodes will be 

uncolored and ready to enter the new iteration (line 32) . In this algorithm, the learning scheme 

LR-P is used to update the action probability vectors in which the parameters for reward and 

penalty are equal; in this algorithm, the actions that form a smaller color set are rewarded. 

Coloring will certainly be valid during the first iteration because the cardinality of colors is 

numerous. As the algorithm proceeds, the cardinality of colors will be less, and the action sets 

will be significantly smaller. This is because the maximum number of required colors 

decreases as the algorithm approaches the end. Indeed, after several iterations, the network of 

learning automata converges to an optimal action selection strategy at each iteration. Here, 

the kth iteration of LAGC is completed or acceptable convergence to a solution, meeting the 

stopping condition of the algorithm. The pseudo-code of the proposed coloring algorithm is 

shown in Figure 2. 
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    Algorithm LAGC 

1. Input: Graph G (V, E)  

2. Input:   Gin  degree maximum,1,...,3,2,1 =+= mm   

3. Output: Chromatic number   

4. Assumptions: 

5. Assign a learning automaton Ai to each vertex vi 

6. Let i denotes the action-set of automaton Ai 

7. Let Ct denotes used colors in iteration t 
8. Begin Algorithm 

9.  121 ,...,,,0 += mt   

10. For each Vvi  do 

11. ( )ii vofneigbors=   

12. Repeat 

13.        Vertex vi randomly is selected 

14. 0tc  

15. Repeat 

16.                For each action ik ja   do 

17.  If   (color( neighbors of  vi) =  k)   then 

18.                                      Deactivate   akj 

19.                 Automaton Ai (corresponding to vi) randomly chooses action akj  from its active actions 

20.                 Color(vi) ka  

21.    ittktt vvvacc −+  

22. ji vv   

23.        Until 0tv  

24. If tc  then 

25.   All learning automata reward their chosen actions 

26.    For each vi∈ 𝑉do 

27. ( ) ( ) itii vofNeighborsc −−   

28. tc  

29. Else 

30. vvt   

31. Discolor all of nodes 

32. 1+ tt  

33. Until Stop Condition = TRUE 

34. Return   

35. End Algorithm 
 

 

Figure 2. The pseudo code of proposed algorithm 
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5. Numerical Results 

We have conducted several simulation experiments to study the proposed algorithm's 

efficiency. In these experiments, the proposed coloring algorithm is tested on a subset of hard-

to-color benchmarks [17] like Fulllns [18], Queen [18], Insertions [18], Leighton [19], and 

Wap [20]. The performance of the proposed algorithm is measured both in terms of the 

number of iterations and colors required for coloring the benchmarks and compared with those 

of LAVCA [12], GLS [14], and AMACOL [13]. In all experiments presented in this paper, 

the reinforcement scheme by which the action probability vectors are updated is LR-I, and the 

reward and penalty parameters (i.e., a and b) are 0.15 and 0. In these experiments, threshold 

P is set to 0.95. So, the proposed algorithm stops if all the activated learning automata choose 

their action with a probability higher than 0.95 or when they achieve maximum iteration. The 

results are summarized in Tables 4, 5, and 6. In these tables, the first column includes the 

graph name, the chromatic number is in the second column, and the next columns include the 

number of colors required for coloring the graph (CN) and the running time of each algorithm 

(RT). The programming language used for experiences is C#. Table 1 represents the 

simulation parameters in this study.  

Table1. Simulation Parameters 

Simulator name C# & NS2 

Node Placement Random 

Application Type Event Driven 

Frequency band 2.4Ghz 

Link layer transmission rate 250kbps 

Simulation Time 400 sec 

Area Size 100m *100m 

Network Architecture Homogeneous, Flat 

Number of nodes Variable 

Average Node degree Variable 

Communication Radius 5m 

Packet Size 25byte 

Buffer Size 10 Packets 

Learning automata type LR-I 

Penalty parameter  0 

Reward parameter  0.15 

In the second part of this section, we used the NS2 network simulator to simulate power 

control and channel assignment in sensor network topology and evaluate the cardinality of 

channel assignment for a wireless sensor network with different numbers of radios. The result 

of our method is compared with Thomas' method [1], and the tables summarize the LAVCA, 

GLS, and AMACOL algorithms simulated in sensor networks.   
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Table2. The characteristics of Fulllns, Insertion and Queen graphs 

Chromatic Number Density Number of Edges Number of Nodes Graph 

4 

5 

5 

4 

3 

7 

7 

5 

0.23 

0.15 

0.10 

0.11 

0.07 

0.40 

0.46 

0.53 

100 

201 

232 

72 

110 

476 

290 

160 

30 

52 

67 

37 

56 

49 

36 

25 

1-Fulllns-3 

2-Fulllns-3 

1-Insertions-4 

2-Insertions-3 

3-Insertions-3 

Queen7-7 

Queen6-6 

Queen5-5 

Fulllns and Leighton benchmark graphs are the first and second graphs on which the proposed 

algorithm is tested. The characteristics (i.e., density and number of vertices and edges) of 

Fulllns, Insertion, and Queen graphs are in Table 2, and the specifications of Leighton 

benchmark graphs are given in Table 3. The number of nodes in Leighton is 450 and denotes 

as le450_xy, that x represents the optimal number of colors for coloring (chromatic number), 

and y is the density (the probability of Connecting every pair of nodes in the graph) of the 

edges. Table 3 includes 12 graph families with density 0.17, 0.1, 0.08, 0.06. 

Table3. The characteristics of Leighton graphs 

Density Number of Edges Number of Nodes Graph 

.06 

.06 

.10 

.10 

.08 

.08 

.17 

.17 

.08 

.08 

.17 

.17 

5714 

5734 

9803 

9757 

8168 

8169 

16680 

16750 

8260 

8263 

17343 

17425 

450 

450 

450 

450 

450 

450 

450 

450 

450 

450 

450 

450 

Le450_5a 

Le450_5b 

Le450_5c 

Le450_5d 

Le450_15a 

Le450_15b 

Le450_15c 

Le450_15d 

Le450_25a 

Le450_25b 

Le450_25c 

Le450_25d 

The third class of benchmarks we consider includes Apographs, which are used in the design 

of transparent optical networks. In this class, graphs have many vertices between 905 and 

5231, and all instances have a clique of size 40. The characteristics (i.e., density, and the 

number of vertices and edges) of Wap benchmark graphs are given in Table 4. 

Table4. The characteristics of Waographs 

Chromatic Number Density Number of Edges Number of Nodes Graph 

42 

41 

44 

43 

41 

41 

42 

42 

.04 

.04 

.03 

.02 

.11 

.10 

.06 

.06 

110871 

111742 

286722 

294902 

43081 

43571 

103368 

104176 

2368 

2464 

4730 

5231 

905 

947 

1809 

1870 

Wap01a 

Wap02a 

Wap03a 

Wap04a 

Wap05a 

Wap06a 

Wap07a 

Wap08a 
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Comparing the results of algorithms, we can see that when the number of nodes is low in all 

cases, all algorithms achieve the chromatic number (the minimum color required for coloring). 

Comparing the results of the number of iterations in all algorithms, we find that in all cases 

(when the density is high or low), the proposed algorithm converges to an optimal solution 

faster than other algorithms. For graphs with high density (i.e., Queen Graphs), GLS, 

LAVCA, and AMACOL have the next places respectively. Still, for graphs with low density 

(i.e., Fulllns, Insertions), AMACOL converges to an optimal solution faster than LAVCA. 

However, the GLS algorithm has the second place in convergence speed (Table 5). 

Table 5. Comparing the efficiency of proposed algorithm and other coloring algorithms in 

the Fulllns, Insertions and Queen Graphs 

LAGC LAGC LAVCA LAVCA GLS GLS AMACOL AMACOL   

Number of 

Iterations 

Number 

of Colors 

Number of 

Iterations 

Number 

of Colors 

Number of 

Iterations 

Number 

of Colors 

Number of 

Iterations 

Number 

of Colors 
Best Graph 

141 4 169 4 148 4 158 4 4 
1-Fulllns-

3 

146 5 175 5 158 5 170 5 5 
2-Fulllns-

3 

147 5 191 5 174 5 186 5 5 
1-Fulllns-

4 

136 4 166 4 148 4 159 4 4 

2-

Insertions-
3 

165 4 196 4 171 4 183 4 4 

3-

Insertions-

3 

155 7 181 7 156 7 173 7 7 Queen7-7 

152 7 162 7 154 7 169 7 7 Queen6-6 

151 5 157 5 151 5 163 5 5 Queen5-5 

The next class of benchmark graphs on which the proposed algorithm is tested is Wap, a set 

of large random graphs. When the number of nodes is large, the proposed algorithm always 

does not converge to a chromatic number, which is its weakness (Table 6).  

Table 6. Comparing the efficiency of proposed algorithm and other coloring algorithms in 

Wap Graphs 

LAGC LAGC LAVCA LAVCA GLS GLS AMACOL AMACOL 

Best Graph 
Number of 

Iterations 

Number 

of Colors 

Number of 

Iterations 

Number 

of Colors 

Number of 

Iterations 

Number 

of Colors 

Number of 

Iterations 

Number 

of Colors 

1500 46 1500 44.5 1410 42 1500 46.5 42 Wap01a 

1500 46.5 1500 43 1417 41 1500 46.5 41 Wap02a 

1500 44.5 1500 42.5 1391 41 1500 45 41 Wap06a 

Table 7 shows the results reported for our algorithm compared with other algorithms in two 

instances of Leighton graphs. We find that, in almost all cases, LAGC outperforms others in 

terms of the number of iterations and the number of colors. It is necessary to mention that 

these graphs have many nodes, but the proposed algorithm is better than other algorithms 

because of its low density. 
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Table 7. Comparing the efficiency of proposed algorithm and other coloring algorithms in 

two instances of Leighton Graphs 

LAGC LAGC LAVCA LAVCA GLS GLS AMACOL AMACOL   

Number of 

Iterations 

Number of 

Colors 

Number of 

Iterations 

Number 

of Colors 

Number of 

Iterations 

Number 

of Colors 

Number of 

Iterations 

Number of  

Colors 
Best Graph 

315 15 900 19.5 373 15 900 17.5 15 Le450_15a 

323 15 900 20 389 15 900 18 15 Le450_15b 

Comparing the results reported in Table 8, we find that our algorithm converges to the optimal 

solution with many iterations in Leighton graphs with high density. GLS and LAVCA 

algorithms can find the optimal solution with lower iterations. 

Table 8. Comparing the efficiency of proposed algorithm and other coloring algorithms in 

two another instances of Leighton Graphs 
LAGC LAGC LAVCA LAVCA GLS GLS AMACOL AMACOL 

Best Graph 
Number 

of 
Iterations 

Number 

of  
Colors 

Number 

of 
Iterations 

Number 

of 
Colors 

Number 

of 
Iterations 

Number 

of 
Colors 

Number 

of 
Iterations 

Number 

of 
 Colors 

662 15 573 15 421 15 900 18 15 Le450_15c 

687 15 595 15 438 15 900 18.5 15 Le450_15d 

As noted above, we used the NS network simulator to simulate power control and then channel 

assignment in topology and evaluate the cardinality of channel assignment for a wireless 

sensor network with different numbers of radios. The result of our method compares with 

Thomas' method [1], and the LAVCA, AMACOL, and GLS algorithms are summarized in 

Tables 9 and 10. 

Table 8 shows the results reported for our algorithm compared with others in the case of an 

average maximum number of channel assignments in 100 iterations. The sensor network is 

distributed randomly with 5, 25,45,65,85, and 105 radios. For the networks with 5, 25, 45, 

and 65, the LAGC algorithm always assigns the smallest channels to radios, but when the 

number of radios increases, the performance of the proposed algorithm decreases gradually. 
 

Table 9. Comparing the efficiency of the proposed algorithm and other coloring algorithms 

with different radios in the sensor network 
Number 

of Radios 

Average Number of Assigned Channels for 100 Iteration 

DIA LAGC LAVCA GLS AMACOL 

5 3.15 3.13 3.16 3.15 4.7 

25 5.58 5.31 5.46 5.32 6.51 

45 6.90 6.47 6.50 6.46 8.33 

65 7.84 7.65 8.12 7.70 9.53 

85 6.21 6.00 5.94 5.9 5.37 

105 6.44 6.3 5.10 6.28 8.34 

Table 10 shows that when connectivity is low, the LAGC algorithm is the best method for 

determining the average maximum number of channels. However, when the percentage of 

connectivity increases, our methods require more than 100 iterations to converge to the 

optimal solution. As the percentage of connectivity increases, the action set also increases, 

which requires an increase in the number of iterations. 
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Table 10. Comparing the efficiency of proposed algorithm and other coloring algorithms 

with 100 random radios in the environment 
Density Percentage Average Number of Assigned Channels for 100 Iteration and 100 Radios 

 LAGC LAVCA GLS AMACOL 

5% 6.29 8.15 31.6 8.11 

10% 6.33 7.74 6.44 8.12 

15% 5.70 7.36 6.81 8.12 

25% 6.84 6.90 6.85 8.18 

35% 6.61 6.98 6.59 8.20 

55% 7.3 7.84 6.86 8.22 

 

6. Conclusion 

One of the main challenges already faced by communication networks is the efficient 

management of increasing complexity. The recently proposed concept of cognitive networks 

has appeared as a candidate for addressing this issue. This paper proposes a new method for 

modifying the spectral efficiency of topology control in cognitive networks using a new 

coloring algorithm in Thomas cognitive networks. The coloring problem is a combinatorial 

optimization problem in which a color is assigned to each graph node so that no two adjacent 

nodes have the same color. The minimum coloring is an NP-hard problem, and most 

algorithms have been proposed to solve it. This paper proposed an approximation algorithm 

for solving the minimum coloring problem based on learning automata. The proposed 

algorithm iteratively finds different possible colorings of the graph. The proposed algorithm 

guarantees that the graph is legally colored at each iteration. As the proposed algorithm 

approaches the end, each node learns to select one of its neighborhoods and colors. Therefore, 

as the proposed algorithm proceeds, the required number of colors tends to be the chromatic 

number of the graph. To show the performance of the proposed algorithm, we compared it 

with several vertex coloring algorithms in terms of the time and the number of colors required 

for coloring the graphs. The results show that the proposed algorithm is superior to the others. 

Given the large application of the graphing algorithm, use it in other complex issues will be 

some of the future works. 
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