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Abstract

In this paper, a procedure is reported that discuss how linear algebra can be used in image compression.
The basic idea is that each image can be represented as a matrix. We apply linear algebra (QR
factorization and wavelet transformation algorithms) on this matrix and get a reduced matrix out
such that the image corresponding to this reduced matrix requires much less storage space than the
original image.
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1 Introduction

E
ntering the digital age and increasing growth
of technology, we have to handle a vast

amount of information that must be stored and
retrieved in an efficient and effective manner,
which often presents difficulties. As a result of
it, various compression techniques are in demand
which can help to reduce the size of data files.
The image is actually a kind of redundant data
i.e. it contains the same information from certain
perspective of view. By using data compression
techniques, it is possible to remove some of the
redundant information contained in images.
The vital purpose of compression techniques is
reducing information redundancy for minimiz-
ing transmission bandwidth and archiving costs
[18, 16]. So the size in bytes of a graphics file is
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minimized without degrading the quality of the
image to an unacceptable level. The reduction
in file size allows more images to be stored in a
certain amount of disk or memory space and re-
duces the time necessary for images to be sent
over the internet or downloaded from web pages.
Performance of compression techniques depends
on some criteria such as quality of image, com-
pression ratio (speed of compression and com-
putational complexity), memory resources, and
power consumption [17].
Compression techniques can be either lossless or
loosy [15]. If removing the redundancy is a re-
versible process and has no information loss, this
is called lossless compression. On the other hand,
if it has an information loss, it will be called lossy
compression technique. In lossless compression
approach, decompressed image is identical to the
original one [19]. In lossy compression, data loss
is incurred and the compressed image is not usu-
ally the same as the original one, but forms a close
approximation to the original image and compres-
sion ratio is very high. Therefore, some form of
distortion measure is required. Distortion mea-
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sure is a mathematical quantity that specifies how
close is an approximation image to the original
image. The most commonly used distortion mea-
sures in image compression are MSE and PSNR
that will be described in Section 4.
The goal of this research is to find out a transfor-
mation based compression approach which have
low computational complexity and be able to con-
centrate the signal energy in the smallest num-
ber of parameters. Transform based techniques
are based on converting input vector X (may be
image) through transform T into another form
Y which is less correlated than X. Transform
T does not compress any data; the compres-
sion comes from processing and quantization of
Y components. For this target there is a de-
scription of discrete cosine transform and discrete
wavelet tyransform (DWT) [8]. Wavelets provide
a mathematical way of encoding information in
such a way that it is layered according to level of
details. This layering facilitates approximations
at various intermediate stages. These approxi-
mations can be stored using a lot less space than
the original data. Here a low complex 2D image
compression method using wavelets and the QR
matrix decomposition is presented.

2 Background

2.1 QR decomposition

There is a class of compression schemes that are
based purely on linear algebra and are completely
insensitive to analytical origin of the operator.
This class consists of the singular value decom-
position (SVD) [7], the so-called QR, QLP fac-
torizations [13] and several others. The QR ma-
trix decomposition appears in fields related di-
rectly with algebra, such as linear equations, least
squares problems, constrained least squares prob-
lems, the pseudo-inverse of a matrix with linearly
independent columns and the inverse of a nonsin-
gular matrix. Also its usefulness in applications
concerning image processing has been evaluated.
Among these appliations we can mention patron
recognition, secret communiaction of digital im-
ages, quantization, and compression of images as
much as of video sequences [1].
In QR decomposition any matrix A of size m×n

can be factored as

A = QR,

where Q is an m× n matrix satisfying QQT = I
and R is an n× n upper triangular matrix. If A
is non-singular, this factorisation is unique.
In [14], Naderahmadian and Hosseini proved that
if the columns of matrix A are correlated then
the absolute value of elements of the first row of
matrix R is larger than the absolute value of the
other rows. Based on this fact, small change in
the first row of matrix R will not lead to image
distortion, if A is an image matrix.

Theorem 2.1 [5] Suppose that A is an m × n
matrix, l = min(m,n), and k is an integer such
that 1 ≤ k ≤ l. Then there exists a factorization

AP = QR, (2.1)

where P is an n×n permutation matrix, Q is an
m× l matrix with orthonormal columns, and R is
an l × n upper triangular matrix. Furthermore,
splitting Q and R,

Q =

(
Q11 Q12

Q21 Q22

)
, R =

(
R11 R12

R21 R22

)
,

(2.2)
in such that Q11 and R11 are k×k matrices, Q21

is (m−k)×k, Q12 is k× (l−k), Q22 is (m−k)×
(l−k), R12 is k×(n−k) and R22 is (l−k)×(n−k),
results the following inequalities

σk(R11) ≥ σk(A)
1√

1 + k(n− k)
, (2.3)

σ1(R22) ≤ σk+1(A)
√

1 + k(n− k), (2.4)

∥R−1
11 R12∥F≤

√
k(n− k), (2.5)

where {σi}ri=1 are singular values of the matrix A
with σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Remark 2.1 Let ε = σk+1(A) be a very small
number. Therefore, the inequality (2.4) implies
that A can be well approximated by a low rank
matrix such that

∥A−
[
Q11

Q21

]
[R11|R12]P

∗∥2≤ ε
√

1 + k(n− k).

(2.6)
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While Theorem (2.1) asserts the existence of QR
factorization with the properties (2.3), (2.4), (2.5)
, it says nothing about the cost of constructing
such a factorization numerically. The following
theorem asserts that a factorization that satisfies
bounds that weaker than (2.3), (2.4), (2.5) by a
factor of

√
n can be computed in O(mn2) opera-

tions.

Theorem 2.2 [5] For an m × n matrix A that
satisfies the inequalities

σk(R11) ≥ σk(A)
1√

1 + nk(n− k)
, (2.7)

σ1(R22) ≤ σk+1(A)
√

1 + nk(n− k), (2.8)

∥R−1
11 R12∥F≤

√
nk(n− k), (2.9)

a factorization of the form (2.1) can be computed
in O(mn2) operations.

Remark 2.2 The complexity O(mn2) in The-
orem (2.2) is a worst-case bound. Typically, the
number of opeations required is similar to the
time required for simple pivoted Gram-Schmidt
algorithm; O(mnk).

Theorem (2.1) tells us how to obtain approxima-
tions of small rank for a matrix. This result has
been used to compress an image in the following
way.
An image (matrix) A of size m × n has initially
m × n entires to store. So if we consider Ak de-
fined as

Ak =

[
Q11

Q21

]
[R11|R12]P

∗, (2.10)

instead of A, then we have an approximation of
A which can be stored with k(m + n) +mn val-
ues. Clearly, a compromise between the precision
of approximation and desired compression ratio
must be achieved. The compression algorithm is
competitive when with a small value of k we get
already a good quality of the resulting image.
All popular image compression techniques work
on the sub-block of original image instead of com-
pressing the whole image at once. If a portion of
the image is simple, then only a smaller k needs
to be used to achieve satisfactory approximation.
On the other hand, if the image is complex, then
larger k would have to be used in order to main-
tain the image quality. To see the effect of this

rank selection scheme, we can observe the fact
that the ranks used for each sub-block are in-
deed correlated with the complexity of the im-
age. So, to obtain a better adaptation to the
concrete characteristics of a given image we apply
the QR algorithm to the matix by blocks. A fur-
ther reduction in the ranks used can be achieved
by subtracting the mean of the original image be-
fore perfromaning the QR decomposition. Then
the mean is added back to the QR construction
to obtain the the reconstructed image.

2.2 Wavelet transform

Wavelets are a more general way to represent and
analyze multiresolution images that can also be
applied to 1D signals. Wavelets are a class of
functions constructed from dilation and trans-
lation of a single function called the mother
wavelet. When the dilation and translation pa-
rameters a and b are vary continuously, the fol-
lowing family of continuous wavelets are obtained

ψab(t) = |a|−
1
2ψ

(
t− a

a

)
, a, b ∈ R, a ̸= 0.

When the parameters a and b are restricted to
discrete values as a = 2−k, b = n2−k, then, we
have the following family of discrete wavelets

ψkn(t) = 2
k
2ψ(2kt− n), k, n ∈ Z,

where the function ψ, the mother wavelet, sat-
isfies

∫
R ψ(t)dt = 0. We are interested in the

case where ψkn constitutes an orthonormal ba-
sis of L2(R). A systematic way to do this is by
means of multiresolution analysis (MRA).
In 1910, Haar [6] constructed the first orthonor-
mal basis of compactly supported wavelets for
L2(R). It has the form {2j/2ψ(2jt−k) : j, k ∈ Z}
where the fundamental wavelet ψ is constructed
as follows: Construct a compactly supported scal-
ing function φ by the two-scale scaling relation
φ(t) = φ(2t) + φ(2t − 1) together with the nor-
malization constraint

∫
φ(t)dt = 1. A solution

of this recursion that represents φ in L2(R) is
χ[0, 1). Then ψ(t) = φ(2t)−φ(2t− 1). The Haar
wavelets are piecewise continuous and have dis-
continuities at certain dyadic rational numbers.
In a seminal papers; Daubechies [3, 2], con-
structed the first orthonormal basis of continuous
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compactly supported wavelets for L2(R). They
have led to a significant literature and develop-
ment, both in theoretical and applied arenas.
Later in 1989, Mallat [9] studied the properties of
multiresolution approximation and proved that it
is characterized by a 2π-periodic function. From
any MRA, one can derive a function ψ(t) called
a wavelet such that {2j/2ψ(2jt− k) : j, k ∈ Z} is
an orthonormal basis of L2(R). The MRA showed
the full computational power that this new basis
for L2(R) possessed. In the same year, Mallat
[10] applied MRA for analyzing the information
content of the images.
Note that a system : k ∈ Z is called a Riesz ba-
sis if it is obtained from an orthonormal basis by
means of a bounded invertible operator [20].

Definition 2.1 The increasing sequence
{Vk}k∈Z of closed subspaces of L2(R) with
scaling function φ ∈ V0 is called MRA if

(i)
∪

k Vk is dense in L2(R) and
∩

k Vk = {0},

(ii) f(t) ∈ Vk iff f(2−kt) ∈ V0,

(iii) {φ(t− n)}n∈Z is a Riesz basis for V0.

Note that (iii) implies that the sequence
{2k/2φ(2kt−n)}n is an orthonormal basis for Vk.
Let ψ(t) be the mother wavelet, then

ψ(t) =
∑
n∈Z

anφ(2t− n),

and {2k/2ψ(2kt− n)}k,n∈Z forms an orthonormal
basis for L2(R) under suitable conditions.
Over the past few years, a variety of powerful
and sophisticated wavelet-based schemes for im-
age compression have been developed and imple-
mented. Wavelet based transform represent a sig-
nal with good resolution in time and frequency
using a set of basis functions called wavelets [11].
The 2D wavelets used in image compression are
separable functions. Their implementation can
be obtained by first applying low pass filter on
rows to produce L and H subbands, then apply
high pass filter on columns to produce four sub-
bands LL (approximate subband), LH, HL, and
HH (detail subbands). Then, in the second level,
each of these four subbands is self-decomposed
into four subbands LL2, LH2, HL2, HH2, and so
on. It can be decomposed into 3, 4, . . . levels. At

each level, we just store the differences (residuals)
between the image at that level and the predicted
image from the next level and we can reconstruct
the image by just adding up all the residuals. One
of the advantages of wavelets method is that the
residuals are easier to store. Also, wavelet cod-
ing schemes at higher compression avoid blocking
artifacts and are better matched to the HVS (Hu-
man Visual System) characteristics.

3 Proposed Technique

As we said in the previous section wavelet trans-
formation can help to improve the compression
capablities of the QR algorithm. Unifying the
featured aforementioned concepts, we construct
our algorithm as the following multistage process.

(i) Image A is read.

(ii) Consider X = A−mean.

(iii) X is converted into a column vector Y of
size mn × 1 and Y is resorted as increasing
order to obtain Y ′. Meanwhile record the
original position of the element of Y ′, it will
be used in step (x).

(iv) Y ′ is reshaped back tom×n imageX ′. Then
X ′ transformed using wavelet transformation
which decomposes image into 4 different fre-
quency bands as explained in Section (2.2).

(v) Step 4 is applied on upto 3 Level decompo-
sition on LL block. We get one approxima-
tion image of size m/8 × n/8 and nine de-
tails images of different size (3 images of size
m/8 × n/8, 3 images of size m/4 × n/4 and
3 images of size m/2× n/2).

(vi) Approximation image (LL subband) result-
ing from iteration 3 is divided into non-
overlapping blocks {bij} of size m1 × n1.

(vii) Apply QR decomposition to each block to
obtain two components Qij and Rij , where
they can spilit such as equation (2.2).

(viii) Perform Aij
k as said in equation (2.10) for

each {bij} and merge all of these blocks to-
gether to obtain X ′′ as opposite to step (vi).
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(ix) Perform inverse wavelet transform to X ′′

and other subbands HL , LH and HH ob-
tained in step (v).

(x) X ′′ is converted into a column vector of size
mn × 1 and by using the position vector in
step iii, rearrange this vecor. Then reshape
back final vector to m×n image matrix. By
adding back the mean value to this matrix
we can obtain compressed image XC .

At this algorithm, we can choose different values
of k and compare the results with each other and
select the best ones. In this paper we choose the
rank of each block as the value of k.

4 Experimental Analysis

In this section, the feasibility and robustness
of the proposed image compression method
are analysed by simulation experiments. All
simulation experiments are conducted on a per-
sonal computer using MATLAB version R2015b.
We apply the QR and QR-wavelet methods to
some normal images such as the Cameraman
image (256 × 256, gray scale) and Moon image
(256 × 256, gray scale), with the purpose of
studying the pros and cons of these methods.
There is a need for specifying methods that can
judge image quality after reconstruction process
and measure the amount of distortion due to
compression process as minimal image distortion
means better quality. There are two types
of image quality measures, subjective quality
measurement and objective quality measure-
ment [12]. Subjective quality measurement is
established by asking human observers to report
and judge image or video quality according to
their experience, and these measures would be
relative or absolute. Absolute measures classify
image quality not regarding to any other image
but according to some criteria of television
allocations study organization. On the other
hand, relative measures compare image against
another and choose the best one.
Objective measures are mathematical measures
that measure the amount of image distortion and
image quality. Those measures are

(1) Mean Square Error (MSE) which is defined
as

MSE =
1

mn

m∑
i=1

n∑
j=1

(I(i, j)− Ic(i, j))2

(4.11)
where I is original image and Ic is com-
pressed image with the same size m× n.

(2) Peak-Signal-To-Noise ratio (PSNR) which
measures the size of error relative to peak
value of I(i, j) (for 8 bit pixel max I(i, j)
equals 255) of the signal and it is given by

PSNR = 20 log10
max I(i, j)√

MSE
. (4.12)

(3) Compression Ratio (CR) is the ratio of the
storage space required to store original image
to that required to store a compressed image
compression ratio is a term that is being used
to describe and measured with bits per pixel
(bpp) as described as follows

CR =
Entries of the original image

Entries stored in the compressed image
.

When reconstructed image is close to original
one, this means that MSE between two images
is low. On the other hand, higher PSNR means
better image quality. CR can be used to judge
how compression efficiency is, as higher CR
means better compression.

Figures 1 and 2 show the results of the com-
pression with QR-wavelet method used for ’cam-
eraman’ and ’moon’ images with block size 16.
Figures 3 and 4 show the absolute difference be-
tween the original image and the reconstructed
image with block size 16.
In tables 1 and 2, degree of compression is mea-
sured using compression ratio, MSE and PSNR
values. From figures and tables we conclude that
in QR method larger size of the blocks conclude
more compression ratio (i.e. less storage space
is required) but image quality deteriorates (i.e.
larger MSE and smaller PSNR values). In QR-
wavelet method smaller size of the blocks con-
clude more compression ratio (i.e. less storage
space is required) but image quality deteriorates
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Table 1: Image quality and Compression ratio for cameraman image.

QR decomposition QR-wavelet method
(Haar wavelet)

Size of blocks CR MSE PSNR CR MSE PSNR
4 2 0.0038 72.2250 48.7619 7.1783e-05 89.5022
8 4 0.0104 67.8862 41.7959 1.1914e-04 87.3017
16 8 0.0225 64.5499 35.9298 1.8799e-05 95.3211

Table 2: Image quality and Compression ratio for moon image.

QR decomposition QR-wavelet method
(Haar wavelet)

Size of blocks CR MSE PSNR CR MSE PSNR
4 2 0.0044 71.6726 57.6901 822.9787 18.9428
8 4 0.0118 67.3961 62.0606 563.9517 20.5843
16 8 0.0246 64.1883 58.5143 563.1445 20.5905

(i.e. larger MSE and smaller PSNR values).
Thus, it is necessary to strike a balance between
storage space required and image quality for good
image compression. Generally, choice of block
size depends on the application. For instance,
in some applications, if image quality is impor-
tant then higher values of block size are chosen
but sometimes storage space is more important
than image quality , in that case lower block size
values are taken.

Figure 1: QR-wavelet method with size of blocks=16

Figure 2: QR-wavelet method with size of blocks=16

Figure 3: Absolute difference between the original
image and the reconstructed images by QR-wavelet
method with size of blocks 16 for ’cameraman’

5 Conclusion

In this paper, we present a compression scheme
that allows us to modify the QR method with
wavelet method in such way that a larger com-
pression is attained. From the results it is de-
rived that QR-wavelet technique achieved higher
PSNR value compared to QR method. So pro-
posed technique have better visual decompressed
image or less loss of compressing embedding
compared to QR based compression. The rea-
son behind better decompressed image quality
of proposed technique is that compression with
wavelets is scalable as the transform process
can be applied to an image as many times as
wanted and hence very high compression ratios
can be achieved. Wavelet based compression al-
lows parametric gain control for image softening
and sharpening. Wavelet-based coding is more
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Figure 4: Absolute difference between the original
image and the reconstructed images by QR-wavelet
method with size of blocks 16 for ’moon’

robust under transmission and decoding errors,
and also facilitates progressive transmission of
images. Wavelet compression is very efficient at
low bit rates and provide an efficient decomposi-
tion of signals prior to compression.
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