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Abstract

The goal of this paper is to calculate the order reduction of the generalized mKdV equation
with constant-coefficients (gmKdVcc) and the generalized mKdV equation with variable-coefficients
(gmKdVvc) using the µ-symmetry method. Moreover we obtain Lagrangian and µ-conservation law
of the gmKdVcc equation and the gmKdVvc equation using the variational problem method.
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1 Introduction

P
artial differential equations (PDEs) have been

a most important subject of study in all areas

of mathematical physics, engineering sciences and

other technical arena. At present time, different

methods are being established to order reduction

and conservation law of nonlinear PDEs such as

the symmetries method [21], the direct method

[22], the general theorem [22] and the Noether

theorem [9].

The Korteweg-de Vries (KdV) equation is as:

ut + a1uux + b1uxxx = 0,

where a1 and b1 are real constants. The modified
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KdV (mKdV) equation

ut + a2u
2ux + b2uxxx = 0,

where a2 and b2 are real constants, is one of the

most popular partial differential equations by Ko-

rteweg and de Vries in the 19th century as water

waves equations.

The KdV type equation can be shown as fol-

lows:

ut + a1uux + b1uxxx + c1ux = 0,

where a1, b1 and c1 are real constants. The

mKdV type equation is as:

ut + a2u
2ux + b2uxxx + c2ux = 0,

where a2, b2 and c2 are real constants. Both of

them used to model water waves, plasma physics,

harmonic lattices, elastic rods and nonlinear long

dynamo waves observed in the Sun [10, 15].
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The generalized mKdV equation with

constant-coefficients (gmKdVcc) is as follows:

ut+au2ux+ buxxx+ cux+d(xux+u) = 0, (1.1)

where a, b, c and d are real constants. The

most of mathematical methods are related to

the partial differential equations with constant-

coefficient models [6, 7].

Recently, the study of the variable-coefficient

nonlinear equations has attracted much attention

[24] because most of real nonlinear physical equa-

tions possess variable-coefficients. The variable-

coefficient models can describe the true physical

systems in various fields, they bring more difficul-

ties to be solved analytically [26, 27]. It is also

important to study the nonlinear wave equations

with variable-coefficients.

We consider the generalized mKdV equation

with variable-coefficient (gmKdVvc) in the form:

ut + α(t)u2ux + β(t)uxxx + γ(t)ux

+δ(t)(xux + u) = 0, (1.2)

where α(t), β(t),γ(t) and δ(t) are arbitrary func-

tions of time t.

This equation is a generalization of the

variable-coefficient mKdV equation which is well

known as a model equation describing the propa-

gation of weakly nonlinear and weakly dispersive

waves in inhomogeneous media[11, 28]. Eq. (1.2)

is used as a mathematical model to study phys-

ical phenomena arising in several areas of inter-

est. For example, in the study of coastal waves in

ocean and liquid drops and bubbles, in the issues

of atmospheric blocking phenomenon and dipole

blocking [2, 25].

Many researchers studied the gmKdVcc equa-

tion and the gmKdVvc equation for obtaining so-

lutions, etc. But these equations are not inves-

tigated via the µ-symmetry, Lagrangian and µ-

conservation law.

In this article we calculate an order reduction

of the gmKdVcc and the gmKdVvc equations us-

ing the µ-symmetry method. Moreover we calcu-

late Lagrangian and µ-conservation law of these

equations using the variational problem method.

The outline of this paper is as follows.

Firstly, µ-symmetry and reduced equations for

the gmKdVcc and the gmKdVvc equations are

provided. Secondly, lagrangian for the gmKdVcc

and the gmKdVvc equations are shown in po-

tential form. Finally, µ-conservation law for the

gmKdVcc and the gmKdVvc equations are de-

scribed.

2 Background

In 2001, Muriel and Romero introduced a new

method to order reduction of ordinary differ-

ential equations (ODEs), and they called it

as λ-symmetries method to order reduction of

ODEs. In 2004, Gaeta and Morando ex-

panded λ-symmetries method of ODEs to µ-

symmetries method of the partial differential

equations (PDEs) frame with p independent vari-

ables x = (x1, ..., xp) and q dependent variables

u = (u1, ..., uq), where µ = λidx
i is a horizontal

one-form on first order jet space (J (1)M,π,M)

and also µ is a compatible, i.e. Diλj −Djλi = 0.

In 2006, Muriel, Romero and Olver have ex-

panded the concept of variational problem and

conservation law in the case of symmetries to the

case of λ-symmetries of ODEs. They have pre-

sented an adapted formulation of the Nother’s

theorem for λ-symmetry of ODEs. In 2007, Ci-

cogna and Gaeta have generalized the results

obtained by Muriel, Romero and Olver in the

case of λ-symmetries for ODEs to the case of

µ-symmetries for PDEs, and in the case of µ-

symmetry of the Lagrangian, the conservation

law is referred as µ-conservation law.

3 µ-symmetry and µ-
conservation law

In this section, the foundational results of µ-

prolongation, µ-symmetry and µ-conservation

law are briefly introduced.

Let µ = λidx
i be horizontal one-form on first

order jet space (J (1)M,π,M) and compatible

[12], i.e. Diλj − Djλi = 0, where Di is total

derivative xi and λi : J
(1)M −→ R.

µ-symmetry:

Suppose ∆(x, u(k)) = 0 is a scalar PDEs of order
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k for u = u(x1, ..., xp), i.e. involving p indepen-

dent variables x = (x1, ..., xp) and one dependent

variable. Let X = ξi∂xi + φ∂u be a vector field

on M . We define

Y = X +
k∑

J=1

ΨJ ∂uJ

on k-th order jet space JkM as µ-prolongation

of X if its coefficient satisfies the µ-prolongation

formula

ΨJ,i = (Di + λi)ΨJ − uJ,m(Di + λi)ξ
m , (3.3)

where Ψ0 = φ. Let S ⊂ J (k)M be the solution

manifold for ∆. If Y : S −→ TS, we say that X

is a µ-symmetry for ∆.

if µ = 0 in (3.3), then it can be assumed

that ordinary prolongation is as 0-prolongation

in µ-prolongation and ordinary symmetry is as

0-symmetry in µ-symmetry framework.

symmetry of exponential type:

We consider an equation ∆ such that µ = λidx
i is

a horizontal 1-form and compatible on S∆. Sup-

pose V = exp (
∫
µ)X is an exponential vector

field, where X is a vector field on M . Then V is

a general symmetry for ∆ if and only if X is a

µ-symmetry for ∆.

order reduction of PDEs:

In paper [12], an order reduction of PDEs under

µ-symmetries is shown as the following theorem.

Theorem 3.1. Let ∆ be a scalar PDE of order

k for u = u(x1, ..., xp). Let X = ξi( ∂
∂xi ) + φ( ∂

∂u)

be a vector field on M , with characteristic Q =

φ − uiξ
i, and let Y be the µ-prolong of order k

of X. If X is a µ-symmetry for ∆, then Y :

SX −→ TSX , where SX ⊂ J (k)M is the solution

manifold for the system ∆X made of ∆ and of

EJ := DJQ = 0 for all J with | J |= 0, 1, ..., k−1.

µ-symmetry of given equations (PDE):

In order to determine µ-symmetry of a given

equation ∆ of order n, the same way as for ordi-

nary symmetries is considered that a generic vec-

tor field X acting in M , and its µ-prolongation

Y of order n for a generic µ = λidx
i, acting

in J (n)M . Then applies Y to ∆, and restricts

the obtained expression to the solution manifold

S∆ ⊂ J (n)M . The equation ∆∗ resulting by re-

quiring this is zero is the determining equation

for µ-symmetries of ∆; this is an equation for

ξ, τ, φ and λi. If we require λi are functions on

J (k)M , all the dependences on uJ will be explicit,

and one obtains a system of determining equa-

tion. This system should be complemented with

the compatibility conditions between the λi. If

we determine a priori the form µ, we are left with

a system of linear equation for ξ, τ, φ; similarly,

if we fix a vector field X and try to find the µ for

which it is a µ-symmetry of the given equation

∆, we have a system of quasilinear equation for

the λi [12].

µ-conservation law:

A conservation law is a relation DivP :=∑p
i=1DiP

i = 0, where P = (P 1, · · · , P p) is a

p−dimensional vector. Let µ = λidx
i be a hori-

zontal one-form and compatibility condition, i.e,

Diλj = Djλi . A µ-conservation law is a relation

as

(Di + λi)P
i = 0,

where P i is a vector and the M−vector P i is

called a µ-conserved vector.

The following theorem about the existence of

M−vector P i and µ-conservation law can be seen

in [9]:

Theorem 3.2. Consider the n−th order La-

grangian L = L(x, u(n)), and vector field X, then

X is a µ-symmetry for L, i.e. Y [L] = 0 if and

only if there exists M−vector P i satisfying the

µ-conservation law (Di + λi)P
i = 0.

Using the other theorems in [9] and Theorem

3.2, the M−vector P i is obtained for first and

second order Lagrangian, as the following:

• For first order Lagrangian L(x, t, u, ux, ut)
and the vector field X = φ (∂/∂u) is a µ-

symmetry for L, then the M−vector P i :=

φ (∂L/∂ui), is a µ-conserved vector.

• For second order Lagrangian L and the vec-

tor field X = φ (∂/∂u) is a µ-symmetry for
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L, then the M−vector

P i := φ
∂L
∂ui

+ ((Dj + λj)φ)
∂L
∂uij

− φDj
∂L
∂uij

, (3.4)

is a µ-conserved vector.

4 order reduction of the
gmKdVcc equation and the
gmKdVvc equation using the
µ-symmetry method

In this section, we want to compute order reduc-

tion of the gmKdVcc equation in subsection (4.1)

and order reduction of the gmKdVvc equation in

subsection (4.2) using the µ-symmetry method.

4.1 order reduction of the gmKdVcc

equation using the µ-symmetry
method

The generalized mKdV equation with constant-

coefficients (gmKdVcc) can be shown as follows:

ut + au2ux + buxxx + cux + d(xux + u) = 0,

where a, b, c and d are real constants and this

equation a scalar PDE of order 3 for u = u(x, t).

Let µ = λ1dx+λ2dt be a horizontal one-form and

with the compatibility condition Dtλ1 = Dxλ2

when ut + au2ux + buxxx + cux + d(xux + u) = 0.

Suppose X = ξ∂x + τ∂t + φ∂u is a vector field

on M . In order to compute µ-prolongation Y of

order 3 of X, we can use of (3.3); therefore, µ-

prolongation Y of X is as

Y = X +Ψx∂ux +Ψt∂ut +Ψxx∂uxx + ...

+Ψttt∂uttt ,

where coefficients Y are as the following

Ψx = (Dx + λ1)φ− ux(Dx + λ1)ξ

−ut(Dx + λ1)τ ,

Ψt = (Dt + λ2)φ− ux(Dt + λ2)ξ

−ut(Dt + λ2)τ ,

Ψxx = (Dx + λ1)Ψ
x − uxx(Dx + λ1)ξ

−uxt(Dx + λ1)τ ,

Ψxt = (Dt + λ2)Ψ
x − uxx(Dt + λ2)ξ

−uxt(Dt + λ2)τ ,

Ψtt = (Dt + λ2)Ψ
t − utx(Dt + λ2)ξ

−utt(Dt + λ2)τ , (4.5)

Ψxxx = (Dx + λ1)Ψ
xx − uxxx(Dx + λ1)ξ

−uxxt(Dx + λ1)τ,

Ψxxt = (Dt + λ2)Ψ
xx − uxxx(Dt + λ2)ξ

−uxxt(Dt + λ2)τ,

Ψxtt = (Dt + λ2)Ψ
xt − uxtx(Dt + λ2)ξ

−uxtt(Dt + λ2)τ ,

Ψttt = (Dt + λ2)Ψ
tt − uttx(Dt + λ2)ξ

−uttt(Dt + λ2)τ .

By applying Y to Eq. (1.1) and substituting

−1

b

(
ut + au2ux + cux + d(xux + u)

)
,

for uxxx , we obtain the following system 1 1:

−3bτu = 0, −3bτuu = 0, −bτuuu = 0,

−3bξu = 0, −6bξuu = 0, −bξuuu = 0,

−3b(λ1τ + τx) = 0,

... (4.6)

−3b(τxx + τλ1x + 2λ1τx + λ2
1τ) = 0.

For any choice of the type

λ1 = Dx[f(x, t)] + g(x),

λ2 = Dt[f(x, t)] + h(t), (4.7)

where f(x, t), g(x) and h(t) are arbitrary func-

tions and λ1 and λ2 satisfy to the compatibility

condition, i.e. Dtλ1 = Dxλ2 on solutions to Eq.

(1.1). For instance, two cases are studied to ob-

tain in µ-symmetry of Eq. (1.1) as follows:

11 using Maple
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• When g(x) = 0 and h(t) = d in the functions

of (4.7), then by substituting the functions

λ1 = Dxf(x, t) , λ2 = Dtf(x, t) + d

into the system of (4.6) and solving them, we

obtain

ξ = F (x, t), τ = 0, φ = 0,

where f(x, t) = − ln(F (x, t)) and F (x, t) is

an arbitrary positive function. Then

X = ξ∂x + τ∂t + φ∂u

= F (x, t)∂x

is µ-symmetry of Eq. (1.1) and corresponds

to an ordinary symmetry

V = exp
( ∫

(Dxf(x, t)dx+ (Dtf(x, t)

+d)dt)
)
X ,

of exponential type. In this case, using The-

orem 3.1, reduction of Eq. (1.1) is

Q = φ− ξux − τut

= −F (x, t)ux. (4.8)

• When g(x) = 0 and h(t) = 0 in the functions

of (4.7), then by substituting the functions

λ1 = Dxf(x, t) , λ2 = Dtf(x, t),

into the system of (4.6) and solving them, we

obtain

ξ = 0 , τ = F (x, t) , φ = 0 ,

where f(x, t) = − ln(F (x, t)) and F (x, t) is

an arbitrary positive function. Then

X = ξ∂x + τ∂t + φ∂u

= F (x, t)∂t,

is µ-symmetry of Eq. (1.1) and corresponds

to an ordinary symmetry

V=exp
(∫

Dxf(x, t)dx+Dtf(x, t)dt)
)
X,

of exponential type. In this case, using The-

orem 3.1, reduction of Eq. (1.1) is

Q = φ− ξux − τut

= −F (x, t)ut, (4.9)

4.2 order reduction of the gmKdVvc

equation using the µ-symmetry
method

The generalized mKdV equation with variable-

coefficients (gmKdVvc) can be shown as follows:

ut + α(t)u2ux + β(t)uxxx + γ(t)ux

+δ(t)(xux + u) = 0,

where α(t), β(t), γ(t) and δ(t) are arbitrary func-

tions of time t and its a scalar PDE of order

3 for u = u(x, t). Let µ = λ1dx + λ2dt be a

horizontal one-form and with the compatibility

condition Dtλ1 = Dxλ2 when ut + α(t)u2ux +

β(t)uxxx + γ(t)ux + δ(t)(xux + u) = 0. Suppose

X = ξ∂x + τ∂t + φ∂u is a vector field on M . In

order to compute µ-prolongation Y of order 3 of

X, we can use of (3.3); therefore, µ-prolongation

Y of X is as

Y=X +Ψx∂ux+Ψt∂ut+Ψxx∂uxx + ...+Ψttt∂uttt ,

where coefficients Y are as of (4.5). By applying

Y to Eq. (1.1) and substituting

−1

β(t)

(
ut + α(t)u2ux + γ(t)ux + δ(t)(xux + u)

)
,

for uxxx , we obtain the following system 12:

−3β(t)τu = 0,−3β(t)τuu = 0,

−β(t)τuuu = 0,−3β(t)ξu = 0,

−6β(t)ξuu = 0,−β(t)ξuuu = 0,

−3β(t)(λ1τ + τx) = 0,

... (4.10)

−3β(t)(τxx + τλ1x + 2λ1τx + λ2
1τ) = 0.

Let λ1 and λ2 are functions of (4.7) and satisfy

to the compatibility condition, i.e. Dtλ1 = Dxλ2

on solutions to Eq. (1.2). For instance, two cases

are studied to obtain in µ-symmetry of Eq. (1.2)

as follows:

• When g(x) = 0 and h(t) = δ(t) in the func-

tions of (4.7), also α(t), β(t) and γ(t) are

arbitrary functions, then by substituting the

functions

λ1 = Dxf(x, t) , λ2 = Dtf(x, t) + δ(t)

21 using Maple
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into the system of (4.10) and solving them,

we obtain

ξ = F (x, t), τ = 0, φ = 0 ,

where f(x, t) = − ln(F (x, t)) and F (x, t) is

an arbitrary positive function. Then

X = ξ∂x + τ∂t + φ∂u = F (x, t)∂x ,

is µ-symmetry of Eq. (1.2) and corresponds

to an ordinary symmetry

V = exp
( ∫

Dxf(x, t)dx+ (Dtf(x, t)

+δ(t))dt
)
X ,

of exponential type. In this case, using The-

orem 3.1, reduction of Eq. (1.2) is

Q = φ− ξux − τut

= −F (x, t)ux. (4.11)

• When g(x) = 0 and h(t) = 1/t in the func-

tions of (4.7), also α(t) = c1/t
2, (t) = c2t

2,

γ(t) = c3 and δ(t) = c4/t where c1, c2, c3
and c4 are arbitrary constants, then by sub-

stituting the functions

λ1 = Dxf(x, t) , λ2 = Dtf(x, t) + 1/t

into the system of (4.10) and solving them,

we obtain

ξ =
x

t
F (x, t), τ = F (x, t), φ =

u

t
F (x, t),

where f(x, t) = − ln(F (x, t)) and F (x, t) is

an arbitrary positive function. Then

X = F (x, t)
(x
t
∂x + ∂t +

u

t
∂u

)
,

is µ-symmetry of Eq. (1.2) and corresponds

to an ordinary symmetry

V = exp
( ∫

Dxf(x, t)dx+ (Dtf(x, t)

+1/t)dt
)
X ,

of exponential type. In this case, using The-

orem 3.1, reduction of Eq. (1.2) is

Q = φ− ξux − τut

=F (x, t)
(u
t
−x

t
ux−ut

)
. (4.12)

5 Lagrangian of the gmKdVcc

and the gmKdVvc equations in
potential form using the vari-
ational problem method

In this section, we show that the gmKdVcc equa-

tion and the gmKdVvc equation do not admit

a variational problem since they are of odd or-

der, but the gmKdVcc equation and the gmKdVvc

equation in potential form admitting a variational

problem. We obtain Lagrangian of the gmKdVcc

equation in subsection (5.1) and Lagrangian of

the gmKdVvc equation in subsection (5.2).

In the book [22], a system admits a variational

formulation if and only if its Frechet derivative is

self-adjoint. In fact, we have the following theo-

rem.

Theorem 5.1. Let ∆ = 0 be a system of differen-

tial equation. Then ∆ is the Euler-Lagrange ex-

pression for some variational problem L =
∫
Ldx,

i.e. ∆ = E(L), if and only if the Frechet deriva-

tive D∆ is self-adjoint: D∗
∆ = D∆. In this case, a

Lagrangian for ∆ can be explicitly constructed us-

ing the homotopy formula L[u] =
∫ 1
0 u.∆[λu]dλ.

5.1 Lagrangian of the gmKdVcc equa-
tion in potential form

We consider the gmKdVcc as

∆Kucc : ut + au2ux + buxxx

+cux + d(xux + u) = 0. (5.13)

The Frechet derivative of ∆Kucc is

D∆Kucc
= Dt + 2auux + bD3

x

+
(
au2 + c+ xd

)
Dx + d.

Obviously, it does not admit a variational prob-

lem since D∗
∆Kucc

̸= D∆Kucc
. But the well-known

differential substitution u = vx yields the related

transformed the gmKdVcc as the following

∆Kvcc : vxt + av2xvxx + bvxxxx + cvxx

+d(xvxx + vx) = 0. (5.14)
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This equation is called ”the gmKdVcc in potential

form” and its Frechet derivative is

D∆Kvcc
= DxDt +

(
2avxvxx + d

)
Dx

+
(
av2x + c+ xd

)
D2

x + bD4
x .

which is self-adjoint: D∗
∆Kvcc

= D∆Kvcc
. By The-

orem 5.1, the gmKdVcc in potential form ∆Kvcc

has a Lagrangian of the form

L[v] =

∫ 1

0
v.∆Kvcc [λv]dλ

= −1

2

(
vxvt − bv2xx + cv2x + (1/6)av4x

+xdv2x

)
+DivP.

Hence, Lagrangian of the gmKdVcc in potential

form ∆Kvcc , up to Div-equivalence is

L∆Kvcc
[v] = −1

2

(
vxvt − bv2xx + cv2x

+(1/6)av4x + xdv2x

)
. (5.15)

5.2 Lagrangian of the gmKdVvc equa-
tion in potential form

We consider the gmKdVvc as

∆Kuvc : ut + α(t)u2ux + β(t)uxxx

+γ(t)ux + δ(t)(xux + u) = 0. (5.16)

The Frechet derivative of ∆Kuvc is

D∆Kuvc
= Dt + 2α(t)uux + β(t)D3

x

+
(
α(t)u2 + γ(t) + xδ(t)

)
Dx + δ(t).

Obviously, it does not admit a variational prob-

lem since D∗
∆Kuvc

̸= D∆Kuvc
. But the well-known

differential substitution u = vx yields the related

transformed the gmKdVvc as the following

∆Kvvc : vxt + α(t)v2xvxx + β(t)vxxxx

+γ(t)vxx + δ(t)(xvxx + vx) = 0. (5.17)

This equation is called ”the gmKdVvc in potential

form” and its Frechet derivative is

D∆Kvvc
= DxDt +

(
2α(t)vxvxx + δ(t)

)
Dx

+
(
α(t)v2x + γ(t) + xδ(t)

)
D2

x + β(t)D4
x .

which is self-adjoint: D∗
∆Kvvc

= D∆Kvvc
. By The-

orem 5.1, the gmKdVvc in potential form ∆Kvvc

has a Lagrangian of the form

L[v] =

∫ 1

0
v.∆Kvvc [λv]dλ

= −1

2

(
vxvt − β(t)v2xx + γ(t)v2x

+ (1/6)α(t)v4x ++xδ(t)v2x

)
+DivP.

Hence, Lagrangian of the gmKdVvc in potential

form ∆Kvvc , up to Div-equivalence is

L∆Kv
[v] = −1

2

(
vxvt − β(t)v2xx + γ(t)v2x

+(1/6)α(t)v4x + xδ(t)v2x

)
. (5.18)

6 µ-conservation laws of the
gmKdVcc equation in potential
form

In this section, we want to compute µ-

conservation law for the gmKdVcc equation in

potential form ∆Kvcc in subsection (6.1) and us-

ing it, we compute µ-conservation law for the

gmKdVcc equation ∆Kucc in subsection (6.2).

6.1 µ-conservation laws of the gmKdVcc

equation in potential forms

We consider the second order Lagrangian (5.15),

i.e.

L∆Kvcc
[v] = −1

2

(
vxvt − bv2xx + cv2x

+(1/6)av4x + xdv2x

)
,

for the gmKdVcc equation in potential form

∆Kvcc = vxt + av2xvxx + bvxxxx + cvxx

+ d(xvxx + vx)

= E(L∆Kv
). (6.19)

Suppose X = φ∂v is a vector field for L∆Kvcc
[v].

Let µ = λ1dx + λ2dt be a horizontal one-form

and with the compatibility condition Dtλ1 =

Dxλ2 when ∆Kvcc = 0. In order to compute µ-

prolongation of order 2 of X, we can use of (3.3),
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we have,

Y = φ∂v +Ψx∂vx +Ψt∂vt +Ψxx∂vxx

+Ψxt∂vxt +Ψtt∂vtt ,

where coefficients Y are as the following:

Ψx = (Dx + λ1)φ, Ψt = (Dt + λ2)φ,

Ψxx = (Dx + λ1)Ψ
x,Ψxt = (Dt + λ2)Ψ

x,

Ψtt = (Dt + λ2)Ψ
t. (6.20)

Thus, the µ-prolongation Y acts on the L∆Kvcc
[v],

and substituting
(
− bv2xx + cv2x + (1/6)av4x +

xdv2x

)
/−vx for vt, we obtain the system as the

following:

bφvv = 0, (−1/6)aφv = 0,

−(1/2)b(φx + λ1φ) = 0,

(−1/4)a(φx + λ1φ) = 0 ,

b(λ1vφ+ 2λ1φv + 2φxv) = 0 , (6.21)

b(2λ1φx + λ1xφ+ φxx + λ2
1φ) = 0 ,

(−1/2)(xdφx + φt + cλ1φ+ λ2φ+ cφx

+xdλ1φ) = 0 .

Suppose φ = F (x, t), where F (x, t) is an arbitrary

positive function satisfying L∆Kvcc
[v] = 0, then a

special solution of the system (6.21) is given by

λ1 = −Fx(x, t)

F (x, t)
, λ2 = −Ft(x, t)

F (x, t)
, (6.22)

where λ1 and λ2 are satisfying to Dtλ1 = Dxλ2.

Hence,

X = F (x, t)∂v

is a µ-symmetry for L∆Kvcc
[v], then, using Theo-

rem 3.2, there exists M−vector P i satisfying the

µ-conservation law (Di + λi)P
i = 0. Then, by of

(3.4), the M−vector P i is as

P 1 =
−1

6

(
3vt + 2av3x + 6bvxxx + 6cvx

+6xdvx

)
F (x, t), (6.23)

P 2 = −vx
2
F (x, t),

and (Dx + λ1)P
1 + (Dt + λ2)P

2 = 0, or corre-

sponds to DxP
1 + DtP

2 + λ1P
1 + λ2P

2 = 0, is

a µ-conservation law for second order Lagrangian

L∆Kvcc
[v]. Therefore we have obtained the fol-

lowing corollary:

Corollary 6.1. µ-conservation law for the

gmKdVcc equation in potential form ∆Kvcc =

E(L∆Kvcc
) is as

DxP
1 +DtP

2 + λ1P
1 + λ2P

2 = 0, (6.24)

where P 1 and P 2 are the M−vector P i of (6.23).

Remark 6.1. µ-conservation law for the

gmKdVcc equation in potential form ∆Kvcc , sat-

isfying to the Noether’s Theorem for µ-symmetry,

i.e.

(Di + λi)P
i = (Dx + λ1)P

1 + (Dt + λ2)P
2

= F (x, t)
(
vxt + av2xvxx + bvxxxx

+cvxx + d(xvxx + vx)
)

= QE(L∆Kvcc
).

6.2 µ-conservation laws of the gmKdVcc

equation

We consider the gmKdVcc equation in potential

form

∆Kvcc = vxt + av2xvxx + bvxxxx + cvxx

+d(xvxx + vx) = 0,

or equivalently

Dx

(
vt+(1/3)av3x+bvxxx+cvx+ xdvx

)
=0,

vt + (1/3)av3x + bvxxx + cvx + xdvx = F1(t),

where F1(t) is an arbitrary function. If we sub-

stitute

F1(t)− (1/3)av3x − bvxxx − cvx − xdvx

for vt and substitute u for vx in the M−vector P i

of (6.23), then, we obtain M−vectors P 1 and P 2

as the following

P 1 = −1

6

(
3F1(t) + au3 + 3buxx + 3cu

+3xdu
)
F (x, t), (6.25)

P 2 = −u

2
F (x, t) .

Therefore we have obtained the following corol-

lary:
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Corollary 6.2. µ-conservation law for the

gmKdVcc equation is as

DxP
1 +DtP

2 + λ1P
1 + λ2P

2 = 0, (6.26)

where P 1 and P 2 are the M−vector P i of (6.25).

Remark 6.2. The gmKdVcc equation satisfying

to the characteristic form, i.e.

(Di + λi)P
i = (Dx + λ1)P

1 + (Dt + λ2)P
2

= F (x, t)(ut + au2ux + buxxx + cux

+d(xux + u))

= Q∆Kucc .

7 µ-conservation laws of the
gmKdVvc equation in potential
form

In this section, we want to compute µ-

conservation law for the gmKdVvc equation in

potential form ∆Kvvc in subsection (7.1) and us-

ing it, we compute µ-conservation law for the

gmKdVvc equation ∆Kuvc in subsection (7.2).

7.1 µ-conservation laws of the gmKdVvc

equation in potential forms

We consider the second order Lagrangian (5.18),

i.e.

L∆Kvvc
[v] = −1

2

(
vxvt − β(t)v2xx + γ(t)v2x

+(1/6)α(t)v4x + xδ(t)v2x

)
,

for the gmKdVvc equation in potential form

∆Kv = vxt + α(t)v2xvxx + β(t)vxxxx

+γ(t)vxx + δ(t)(xvxx + vx)

= E(L∆Kv
). (7.27)

Suppose X = φ∂v is a vector field for L∆Kvvc
[v].

Let µ = λ1dx+λ2dt be a horizontal one-form and

with the compatibility condition Dtλ1 = Dxλ2

when ∆Kvvc = 0. In order to compute µ-

prolongation of order 2 of X, we can use of (3.3),

we have,

Y = φ∂v +Ψx∂vx +Ψt∂vt +Ψxx∂vxx

+Ψxt∂vxt +Ψtt∂vtt ,

where coefficients Y are as of (6.20). Thus, the

µ-prolongation Y acts on the L∆Kvvc
[v], and sub-

stituting
(
− β(t)v2xx + γ(t)v2x + (1/6)α(t)v4x +

xδ(t)v2x

)
/−vx for vt, we obtain the system as the

following:

β(t)φvv = 0, (−1/6)α(t)φv = 0,

−(1/2)β(t)(φx + λ1φ) = 0,

(−1/4)α(t)(φx + λ1φ) = 0,

β(t)(λ1vφ+ 2λ1φv+ 2φxv)= 0, (7.28)

β(t)(2λ1φx + λ1xφ+ φxx + λ2
1φ) = 0,

(−1/2)(xδ(t)φx + φt + γ(t)λ1φ+ λ2φ

+γ(t)φx + xδ(t)λ1φ) = 0 .

Suppose φ = F (x, t), where F (x, t) is an arbitrary

positive function satisfying L∆Kvvc
[v] = 0, then a

special solution of the system (7.28) is given by

λ1 = −Fx(x, t)

F (x, t)
, λ2 = −Ft(x, t)

F (x, t)
, (7.29)

where λ1 and λ2 are satisfying to Dtλ1 = Dxλ2.

Hence,

X = F (x, t)∂v

is a µ-symmetry for L∆Kvvc
[v], then, using Theo-

rem 3.2, there exists M−vector P i satisfying the

µ-conservation law (Di + λi)P
i = 0. Then, by of

(3.4), the M−vector P i is as

P 1 =
−1

6

(
3vt + 2α(t)v2x + 6β(t)vxxx

+ 6γ(t)vx+ 6xδ(t)vx

)
F (x, t), (7.30)

P 2 = −vx
2
F (x, t),

and (Dx + λ1)P
1 + (Dt + λ2)P

2 = 0, or corre-

sponds to DxP
1 + DtP

2 + λ1P
1 + λ2P

2 = 0, is

a µ-conservation law for second order Lagrangian

L∆Kvvc
[v]. Therefore we have obtained the fol-

lowing corollary:

Corollary 7.1. µ-conservation law for the

gmKdVvc equation in potential form ∆Kvvc =

E(L∆Kvvc
) is as

DxP
1 +DtP

2 + λ1P
1 + λ2P

2 = 0, (7.31)
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where P 1 and P 2 are the M−vector P i of (7.30).

Remark 7.1. µ-conservation law for the

gmKdVvc equation in potential form ∆Kvvc , sat-

isfying to the Noether’s Theorem for µ-symmetry,

i.e.

(Di + λi)P
i = (Dx + λ1)P

1 + (Dt + λ2)P
2

= F (x, t)
(
vxt + α(t)v2xvxx + β(t)vxxxx

+γ(t)vxx + δ(t)(xvxx + vx))
)

= QE(L∆Kvvc
) .

7.2 µ-conservation laws of the gmKdVvc

equation

We consider the gmKdVvc equation in potential

form

∆Kv = vxt + α(t)v2xvxx + β(t)vxxxx

+γ(t)vxx + δ(t)(xvxx + vx) = 0,

or equivalently

Dx

(
vt +

1

3
α(t)v3x + β(t)vxxx + γ(t)vx

+δ(t)xvx

)
= 0,

vt +
1

3
α(t)v3x + β(t)vxxx + γ(t)vx

+δ(t)xvx = F1(t),

where F1(t) is an arbitrary function. If we sub-

stitute

F1(t)−
1

3
α(t)v3x−β(t)vxxx−γ(t)vx − δ(t)xvx

for vt and substitute u for vx in the M−vector P i

of (7.30), then, we obtain M−vectors P 1 and P 2

as the following

P 1 = −1

6

(
3F1(t) + α(t)u3 + 3β(t)uxx

+3γ(t)u+ 3xδ(t)u
)
F (x, t),

P 2 = −u

2
F (x, t) . (7.32)

Therefore we have obtained the following corol-

lary:

Corollary 7.2. µ-conservation law for the

gmKdVvc equation is as

DxP
1 +DtP

2 + λ1P
1 + λ2P

2 = 0, (7.33)

where P 1 and P 2 are the M−vector P i of (7.32).

Remark 7.2. The gmKdVvc equation satisfying

to the characteristic form, i.e.

(Di + λi)P
i = (Dx + λ1)P

1 + (Dt + λ2)P
2

= F (x, t)(ut + α(t)u2ux + β(t)uxxx

+γ(t)ux + δ(t)(xux + u))

= Q∆Kuvc .

8 Conclusion

In this paper, we provided µ-symmetry and

reduced equations for the gmKdVcc and the

gmKdVvc equations and lagrangian for the

gmKdVcc and the gmKdVvc equations are shown

in potential form. Finally, we described µ-

conservation law for the gmKdVcc and the

gmKdVvc equations.

References

[1] H. Airault, Rational solutions of Painlevé
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